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Abstract
We present an extension of the Poisson–Bochner formula for the Fourier transform of rota-
tionally invariant distributions by analytic continuation “with respect to the dimension”. As
application of this extension, a new derivation of the fundamental solution of the Euler–
Poisson–Darboux operator is given.
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1 Introduction and notation

If f ∈ L1(Rn) is rotationally invariant, i.e., if f (x) = g(|x |) with g(ρ)ρn−1 ∈ L1((0,∞)),

then the classical Poisson–Bochner formula expresses the Fourier transform F f ∈ C0(Rn)

of f by the integral

(F f )(ξ) = (2π)n/2|ξ |−n/2+1
∫ ∞

0
g(ρ)ρn/2 Jn/2−1(ρ|ξ |) dρ, ξ �= 0, (1.1)

see [36, (VII, 7; 22), p. 259], [37, Thm. 3.10, p. 158].Our naming “Poisson–Bochner formula”
is motivated by the generalization of the formula (1.1) for dimensions n = 2, 3 (discovered
by Poisson and Cauchy, see footnote 109 in [5, p. 226]) to dimensions n ≥ 4 by S. Bochner
in [5, Satz 56, p. 186].

A generalization for functions in weighted L1-spaces, i.e., for g ∈ L1
loc((0,∞)) fulfilling∫ ∞

0
|g(ρ)|ρn−1(1 + ρ)(1−n)/2 dρ < ∞, (1.2)

B Peter Wagner
wagner@mat1.uibk.ac.at

Norbert Ortner
mathematik1@uibk.ac.at

1 University of Innsbruck, Technikerstr. 13, 6020 Innsbruck, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40574-018-0185-x&domain=pdf
http://orcid.org/0000-0001-5688-099X


470 N. Ortner, P. Wagner

is given in [33, Lemma 25.1, p. 358; Engl. transl. p. 485]. (In fact, if (1.2) is satisfied,
then F f is continuous outside the origin and formula (1.1) is valid for ξ �= 0 by applying
Lebesgue’s theorem on dominated convergence to limN→∞〈φ(ξ),F( f (x) · Y (N − |x |))〉
for φ ∈ D(Rn\{0}).)A further generalization by means of partial integration can be found in
[24,25], see also [31, Ex. 1.6.13 (a), p. 102]. A limit representation of the Fourier transform
of radial temperate distributions is given in [26, (2.109), p. 140].

Let usmention that, e.g., the forward fundamental solution E of thewave operator ∂2t −�n

is given by

E = (2π)−nY (t)Fx

( sin(t |x |)
|x |

)
,

see Examples 2.2, 2.4 below. In this case, for t > 0, g(ρ) = (2π)−nρ−1 sin(tρ) and
f (x) = g(|x |) is not integrable nor does g satisfy condition (1.2). In order to calculate
this important Fourier transform, different approximation methods were used, compare [13,
pp. 177–183], [38, p. 51], [31, Ex. 1.6.17 (a), p. 106, Ex. 2.3.6, p. 141].

The main purpose of this paper consists in generalizing formula (1.1) so as to yield
a representation of the Fourier transform FS for arbitrary radially symmetric temperate
distributions S. This is done by analytic continuation with respect to the index λ = n

2 − 1 of
the Bessel function in (1.1), see Theorems 2.1, 2.3. So in a way, we use “analytic continuation
with respect to the dimension n” of the underlying space Rn . Heuristically, this procedure
goes back, at least, to A.Weinstein, comp. [39, p. 44]: “The viewpoint of spaces of ‘fractional
dimensions’ due to Weinstein is very fruitful and led to fundamental solutions in the large of
the iterated EPD-equation.”

In [11, p. 8], the Bochner transform Tn is defined by

Tnϕ(r) = 2π

rn/2−1

∫ ∞

0
Jn/2−1(2πrρ)ρn/2ϕ(ρ) dρ

for suitable functions ϕ and n ∈ N. Whereas in [16] the connection between Tn and Tn+2 is
rederived, see [33, (25.14′), Lemma 25.1′, p. 359; Engl. transl. p. 486] and [32, p. 270], and
in [12,27], the general connection between Tn and Tn+q , q ∈ N, is investigated, the present
study is concerned with the analytic continuation of the function λ 
→ Tλ for complex λ.

In order to illustrate our method, we first apply it to the wave equation (Examples 2.2, 2.4)
and then, in Sect. 3, to the Euler–Poisson–Darboux equation. In Propositions 3.2, 3.3, we
derive in this way the fundamental solution E of the EPD-operator. (For the concept of fun-
damental solutions of linear partial differential operators with non-constant coefficients, see
[36, pp. 138–142], [23, p. 29], [9, pp. 11–14].) This more complicated fundamental solution
was given in [10] and verified therein by series expansion, see [3,4] for a recapitulation.
Our deduction of E based on the analytic continuation of the Poisson–Bochner formula is
different from that in [3,4,10] and seems to be new, comp. [2, p. 478]: “We do not know how
to obtain an explicit formula (or formulas) for the inverse Fourier transform of F̃(ξ, y; b)
when b �= 0, a problem that merits to be investigated.”

Let us introduce somenotation.Weemploy the standard notation for the distribution spaces
D′, S ′, E ′, the dual spaces of the spaces D, S, E of “test functions”, of “rapidly decreasing
functions” and of C∞ functions, respectively, see [18,20,36]. In order to display the active
variable in a distribution, say x ∈ R

n, we use notation as T (x) or T ∈ D′(Rn
x ). Furthermore,

we use the spaces DL p ,D′
L p , 1 ≤ p ≤ ∞, OM ,O′

C , which were introduced in [36, Ch. VI,
§ 8, p. 199;Ch.VII, § 5, p. 243], andwe setS ′

r (R
n) = {S ∈ S ′(Rn); S is radially symmetric}.

For the evaluation of a distribution T ∈ E ′ on a test function φ ∈ E, we use angle
brackets, i.e., 〈φ, T 〉 or, more precisely E 〈φ, T 〉E ′ .More generally, if φ ∈ E ⊗̂ F and T ∈ E ′
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for distribution spaces E, F, then E ⊗̂ F 〈φ, T 〉E ′ symbolizes the vector-valued scalar product
(E ⊗̂ F) × E ′ → F, see [34,35] for more information on vector-valued distributions. (In
all tensor products of this study, both factors are complete and at least one of the factors is
nuclear and hence E ⊗̂π F = E ⊗̂ε F and we simply write E ⊗̂ F .)

The Heaviside function is denoted by Y , see [36, p. 36], and we set

χμ(t) = Y (t)tμ

�(μ + 1)
∈ L1

loc(R
1
t ) for μ ∈ C with Reμ > −1. (1.3)

The function μ 
→ χμ can be analytically continued in S ′(R1) and thus yields an entire
function

χ : C −→ S ′(R1) : μ 
−→ χμ,

see [18, (3.2.17), p. 73]. We write δτ (t) ∈ D′(R1
t ), τ ∈ R, for the delta distribution with

support in τ, which is the derivative of Y (t − τ), i.e., 〈φ, δτ 〉 = φ(τ) for φ ∈ D(R1). In
contrast, δ ∈ D′(Rn) without any subscript stands for the delta distribution at the origin.

The pull-back h∗T = T ◦ h ∈ D′(�) of a distribution T in one variable t with respect to
a submersive C∞ function h : � → R, � ⊂ R

n open, is defined as in [14, (7.2.4/5), p. 82]
or in [31, Def. 1.2.12, p. 19], i.e.,

〈φ, h∗T 〉 =
〈 d
dt

(∫
�

Y (t − h(x))φ(x) dx

)
, T

〉
, φ ∈ D(�). (1.4)

We use the Fourier transform F in the form

(Fφ)(ξ) :=
∫

e−iξ xφ(x) dx, φ ∈ S(Rn),

this being extended toS ′ by continuity.Wewrite |Sn−1| for the hypersurface area 2πn/2/�( n2 )

of the unit sphereSn−1 inRn .For j ∈ N andw ∈ C,weuse Pochhammer’s symbol (w)0 = 1,
(w) j = w · (w + 1) · · · · · (w + j − 1). Jλ and Nλ denote, as usual, the Bessel functions of
the first and of the second kind.

2 Analytic continuation of the Poisson–Bochner formula

Let us first rewrite (1.1) in a more symmetrical fashion by the following n-dimensional
integral, still under the assumptions that f ∈ L1(Rn) and f is radially symmetric:

(F f )(ξ) = 2n/2−1�
( n
2

) ∫
Rn

f (x)
Jn/2−1(|x | · |ξ |)
(|x | · |ξ |)n/2−1 dx . (2.1)

We note incidentally that formula (2.1) allows a generalization (which follows, e.g., by
density) for S ∈ D′

L1(R
n) ∩ S ′

r (R
n), i.e., for radially symmetric integrable distributions S.

Then FS is a continuous function given by

(FS)(ξ) = 2n/2−1�
( n
2

) · D′
L1

(Rn
x )

〈
S(x),

Jn/2−1(|x | · |ξ |)
(|x | · |ξ |)n/2−1

〉
DL∞ (Rn

x )

, ξ ∈ R
n . (2.2)

As can be derived from [17, p. 538], the kernel

K (x, ξ) = Jn/2−1(|x | · |ξ |)
(|x | · |ξ |)n/2−1 ∈ OM (R2n)
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belongs to the completed tensor productS(Rn
x ) ⊗̂S ′(Rn

ξ ), and therefore the Fourier transform
of S ∈ S ′

r (R
n) can be written in the form

(FS)(ξ) = 2n/2−1�
( n
2

) · S ′(Rn
x )

〈S(x), K (x, ξ)〉S(Rn
x ) ⊗̂S ′(Rn

ξ ) (2.3)

(by applying [35, Prop. 4, p. 41]).
Note that formula (2.3) allows to represent Fx (|x |−1 sin(t |x |)) by the S ′-valued scalar

product

Fx

( sin(t |x |)
|x |

)
(ξ) = 2n/2−1�

( n
2

) · S ′(Rn
x )

〈
sin(t |x |)

|x | ,
Jn/2−1(|x | · |ξ |)
(|x | · |ξ |)n/2−1

〉
S(Rn

x ) ⊗̂S ′(Rn
ξ )

.

(2.4)

However, formula (2.4) cannot be evaluated for fixed ξ. In the following two theorems, we
shall therefore imbed the kernel K (x, ξ) into an analytic family of kernels Kλ(x, ξ) such that
FS, S ∈ S ′

r (R
n), can be obtained by analytic continuation with respect to λ. Let us mention

that

Jλ(|x | · |ξ |)
(|x | · |ξ |)λ ∈ OM (R2n)

depends holomorphically on λ ∈ C (see below), but that these kernels do not belong to
S(Rn

x ) ⊗̂S ′(Rn
ξ ) and not even to D′

L1(R
n
x ) ⊗̂S ′(Rn

ξ ) for λ ∈ C\( n2 − N). This is the reason
for the more complicated choices of Kλ below.

Theorem 2.1 The kernel

Kλ(x, ξ) = |ξ |2λ−n+2 · Jλ(|x | · |ξ |)
(|x | · |ξ |)λ ∈ S ′(R2n

x,ξ )

is an entire function of λ with values in S(Rn
x ) ⊗̂S ′(Rn

ξ ). Furthermore, if S ∈ S ′
r (R

n), then

FS = 2n/2−1�
( n
2

) ·Un/2−1

where the function

U : C −→ S ′(Rn
ξ ) : λ 
−→ Uλ(ξ) = S ′(Rn

x )
〈S(x), Kλ(x, ξ)〉S(Rn

x ) ⊗̂S ′(Rn
ξ ) (2.5)

is entire.

Proof (a) Let us first show that the mapping

C −→ OM (R2n
x,ξ ) : λ 
−→ Jλ(|x | · |ξ |)

(|x | · |ξ |)λ (2.6)

is entire. From [15, 8.411.8] and using analytic continuation, we obtain the representation

Jλ(|x | · |ξ |)
(|x | · |ξ |)λ = 1

2λ
√

π E(R1
t )

〈
cos(t |x | · |ξ |), χ−1/2+λ(1 − t2)

〉
E ′(R1

t )

for each (x, ξ) ∈ R
2n . (For χμ see Sect. 1, in particular (1.3).) Since

cos(t |x | · |ξ |) ∈ OM (R2n+1
t,x,ξ ) = OM (R1

t ) ⊗̂OM (R2n
x,ξ ),

see [34, Prop. 28, p. 98], and since

C −→ E ′(R1
t ) : λ 
−→ χ−1/2+λ(1 − t2)
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is entire and E ′ ⊂ O′
M , we conclude that also the mapping in (2.6) is entire, see [35, Prop. 4,

p. 41].
(b) The distribution-valued function

F : {λ ∈ C; Re λ > −1} −→ S ′(Rn
ξ ) : λ 
−→ Fλ = |ξ |2λ−n+2 ∈ L1

loc(R
n
ξ )

can analytically be continued to C\(−N) and has simple poles for λ = −k, k ∈ N, with the
residues

Resλ=−k Fλ = πn/2�k−1
n δ

22(k−1)(k − 1)!� ( n
2 + k − 1

) ,

see [30, Ex. 2.3.1, p. 41]. Therefore, the product

Kλ(x, ξ) = Fλ(ξ) · Jλ(|x | · |ξ |)
(|x | · |ξ |)λ ∈ S ′(Rn

ξ ) · OM (R2n
x,ξ )

is well-defined and belongs to OM (Rn
x ) ⊗̂S ′(Rn

ξ ) for λ ∈ C\(−N), see [34, Props. 20 bis,
28, pp. 70, 98]. Furthermore, Kλ(x, ξ) is also holomorphic in λ = −k ∈ −N since

J−k(|x | · |ξ |)
(|x | · |ξ |)−k

= (−1)k(|x | · |ξ |)k · Jk(|x | · |ξ |)

vanishes of order 2k at ξ = 0 and hence its product with Resλ=−k Fλ(ξ) vanishes.
(c) Let us next calculate the partial Fourier transform Fξ (Kλ(x, ξ)). Since the kernel

Kλ(x, ξ) belongs to OM (Rn
x ) ⊗̂S ′(Rn

ξ ), it is semi-regular in x, and it suffices to determine
Fξ (Kλ(x, ξ)) for fixed x �= 0. If x �= 0, then Kλ(x, ξ) is bounded by a constant times
|ξ |3/2−n+Re λ for |ξ | → ∞. This implies that condition (1.2) is satisfied upon setting g(ρ) =
|x |−λρλ−n+2 Jλ(ρ|x |) and that Kλ(x, ξ) ∈ L1(Rn

ξ ) + L2(Rn
ξ ) if n ≥ 3 and −1 < Re λ <

n
2−2.ThereforeFξ Kλ belongs to L2

loc(R
n
ξ ) for such x andλ and thePoisson–Bochner formula

applies and represents Fξ Kλ by the absolutely convergent integral in (1.1) for ξ �= 0. For
x �= 0, ξ �= 0 and λ as above, formula 6.575.1, p. 692, in [15] then yields

(Fξ Kλ)(x, ξ) = (2π)n/2|x |−λ|ξ |−n/2+1
∫ ∞

0
Jn/2−1(ρ|ξ |)Jλ(ρ|x |)ρλ−(n/2−2) dρ

= 2λ+2πn/2|ξ |2−nχn/2−λ−2(|ξ |2 − |x |2).
(The correct parameter range for formula 6.575.1 in [15] is −1 < Reμ < Re(ν + 1).)

For x �= 0, the function h(ξ) = |ξ |2 − |x |2 is submersive and hence the composition
χn/2−λ−2(|ξ |2 − |x |2) ∈ S ′(Rn

ξ ) is well-defined, see (1.4), and it is an entire function of λ.

Since χn/2−λ−2(|ξ |2 − |x |2) vanishes at ξ = 0, the product |ξ |2−nχn/2−λ−2(|ξ |2 − |x |2)
is also well-defined and depends holomorphically on λ in S ′(Rn

ξ ). By analytic continuation,
we conclude that Fξ Kλ is represented by the continuous function R

n
x → S ′(Rn

ξ ) which, for
x �= 0, is given by the equation

Fξ Kλ = 2λ+2πn/2|ξ |2−nχn/2−λ−2(|ξ |2 − |x |2). (2.7)

Ifn = 2 orn = 1, then the same conclusion can be reached byproving (2.7) forRe λ < − 3
2

with the help of formula (2.2). (Note that Kλ(x, ξ) ∈ D′
L1(R

n
ξ ) for Re λ < − 3

2 and fixed
x ∈ R

n\{0}.) Hence (2.7) is valid for n ∈ N, x �= 0 and each λ ∈ C.

(d) If φ ∈ S(Rn
ξ ), then

ψ(x) = 〈φ(ξ),Fξ Kλ〉 = S(Rn
ξ )〈(Fφ)(ξ), Kλ(x, ξ)〉OM (Rn

x ) ⊗̂S ′(Rn
ξ )
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belongs to OM (Rn
x ) and (2.7) implies, for x �= 0,

ψ(x) = 〈φ(ξ),Fξ Kλ〉 = 2λ+2πn/2 〈
φ(ξ), |ξ |2−nχn/2−λ−2(|ξ |2 − |x |2)〉

= 2λ+2πn/2|x |n−2λ−2 〈
φ(|x |η), |η|2−nχn/2−λ−2(|η|2 − 1)

〉
.

Because the support of the distribution |η|2−nχn/2−λ−2(|η|2 −1) does not contain the origin
η = 0, we conclude that ψ is, with all its derivatives, rapidly decreasing for |x | → ∞ and
hence ψ ∈ S(Rn). This means that Fξ Kλ and thus also Kλ belong to S(Rn

x ) ⊗̂S ′(Rn
ξ ).

(e) We observe that Kn/2−1(x, ξ) = Jn/2−1(|x | · |ξ |)/(|x | · |ξ |)n/2−1 and hence (2.3)
implies FS = 2n/2−1�( n2 )Un/2−1. Finally, the map λ 
→ Uλ in (2.5) is analytic by [35,
Prop. 4, p. 41]. This completes the proof. ��

Example 2.2 Let us illustrate Theorem 2.1 by calculating the forward fundamental solution
E of the wave operator ∂2t − �n . We consider E ∈ S ′(Rn+1

t,x ) as the C∞ mapping

E : [0,∞) −→ S ′(Rn
x ) : t 
−→ Et (x)

and represent Et by partial Fourier transform, i.e.,

Et = (2π)−nFx

( sin(t |x |)
|x |

)
, t ≥ 0,

compare [31, Ex. 1.6.17, p. 106].
(a) The distribution-valued functionUλ in (2.5) corresponding to S = sin(t |x |)/|x |, t > 0

fixed, is given by

Uλ(ξ) = DL∞ (Rn
x )

〈1(x), sin(t |x |)|ξ |λ−n+2|x |−λ−1 Jλ(|x | · |ξ |)〉D′
L1

(Rn
x ) ⊗̂ S′(Rn

ξ ).

If Re λ > n − 1, then

ξ 
→ sin(t |x |)|ξ |λ−n+2|x |−λ−1 Jλ(|x | · |ξ |)

is a continuous function with values in L1(Rn
x ). Under this assumption on λ, we therefore

obtain that Uλ ∈ C(Rn
ξ ) is given by

Uλ(ξ) = |Sn−1| · |ξ |λ−n+2
∫ ∞

0
ρn−λ−2 sin(tρ)Jλ(ρ|ξ |) dρ. (2.8)

(b) If n ≥ 3 is odd, then [29, I, 13.11, p. 67] yields the following for Re λ > n − 1:

Uλ(ξ) = |Sn−1| · (−1)(n−1)/2|ξ |λ−n+2
( ∂

∂t

)n−2
∫ ∞

0
ρ−λ cos(tρ)Jλ(ρ|ξ |) dρ

= |Sn−1| · (−1)(n−1)/2|ξ |λ−n+2
( ∂

∂t

)n−2[ √
π

(2|ξ |)λ · χ−1/2+λ(|ξ |2 − t2)
]
.

The distributions χ−1/2+λ(|ξ |2 − t2) ∈ S ′(Rn
ξ ) depend C∞ on t > 0 and hence the last

formula holds by analytic continuation for each λ ∈ C and t > 0. This implies
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E = (2π)−nY (t)Fx

( sin(t |x |)
|x |

)
= (2π)−nY (t) · 2n/2−1�

( n
2

) ·Un/2−1(x)

= Y (t)

�
( n−1

2

)
(−4π)(n−1)/2

∂n−2
t

[
Y (|x | − t)|x |2−n(|x |2 − t2)(n−3)/2]

= 1

(n − 2)! |Sn−1| ∂n−2
t

[
Y (t − |x |)|x |2−n(t2 − |x |2)(n−3)/2]

in accordance with [31, Lemma 3.3.5, p. 218 (for k = 1)].
(c) For even n and Re λ > n − 1 we obtain the following from (2.8):

Uλ(ξ) = |Sn−1| · (−1)n/2−1|ξ |λ−n+2
( ∂

∂t

)n−2
∫ ∞

0
ρ−λ sin(tρ)Jλ(ρ|ξ |) dρ. (2.9)

The integral in (2.9) is absolutely convergent for Re λ > 1 and yields a continuous function
of t and ξ depending analytically on λ. However, this integral is more complicated than
the one in the case of odd n (see [15, Eq. 6.699.1, p. 747]), and we proceed differently. By
applying once more [35, Prop. 4, p. 41], we obtain from Theorem 2.1 also a formula for the
partial Fourier transform, i.e., the distribution-valued function

U : C −→ S ′(Rm+n
t,ξ ) : λ 
−→ Uλ(t, ξ) = S ′(Rm

t )⊗̂S ′(Rn
x )

〈S(t, x), Kλ(x, ξ)〉S(Rn
x ) ⊗̂S ′(Rn

ξ )

is entire for S(t, x) ∈ S ′(Rm+n
t,x ) and (Fx S)(t, ξ) = 2n/2−1�( n2 ) · Un/2−1 if S is radially

symmetric with respect to x . Hence, puttingm = 1, S(t, x) = (2π)−nY (t) sin(t |x |)/|x | and
assuming n even with n ≥ 6 we can insert λ = n

2 − 1 into (2.9), and we obtain by analytic
continuation

E = (2π)−n/2Y (t) · ∂n−2
t

[
|ξ |−n/2+1

∫ ∞

0
ρ−n/2+1 J−n/2+1(ρ|ξ |) sin(tρ) dρ

]
.

(Note that J−k(s) = (−1)k Jk(s) for k ∈ N and s ∈ R. Let us also mention that the last
formula can be deduced as well for n = 2 or n = 4 upon using a further differentiation with
respect to t .)

In order to evaluate the last integral, let us assume ξ �= 0 and consider the analytic
distribution-valued function

T : {
ν ∈ C; Re ν > − 1

2

} −→ S ′(R1
ρ) : ν 
−→ Tν(ρ) = Y (ρ)ρν Jν(ρ|ξ |).

By means of the series expansion of the Bessel function, we infer that T can be analytically
continued to C\(− 1

2 − N0) having simple poles in − 1
2 − N0 (see also [22, 2.4, p. 193]).

Furthermore,

T : {
ν ∈ C; Re ν < − 1

2 , ν /∈ − 1
2 − N

} −→ D′
L1(R

1
ρ)

is also well-defined and analytic. A classical formula (see [29, II, 13.9, p. 164]) furnishes∫ ∞

0
ρν Jν(ρ|ξ |) sin(tρ) dρ = √

π(2|ξ |)νχ−1/2−ν(t2 − |ξ |2) (2.10)

if −1 < Re ν < − 1
2 . By analytic continuation we deduce from (2.10)
∫ ∞

0
ρ−n/2+1 J−n/2+1(ρ|ξ |) sin(tρ) dρ

= DL∞ (R1
ρ)〈sin(tρ), ρ−n/2+1 J−n/2+1(ρ|ξ |)〉D′

L1
(R1

ρ)

= √
π(2|ξ |)−n/2+1χ(n−3)/2(t2 − |ξ |2),
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and this yields

E = 1

(n − 2)! |Sn−1| ∂n−2
t

[
Y (t − |x |)|x |2−n(t2 − |x |2)(n−3)/2] (2.11)

exactly as in the case of odd n. Let us mention that a unified deduction of (2.11) independent
of the parity of n is given in [31, Lemma 3.3.5, p. 218].

For some examples (and in particular for the application to the EPD-operator in Sect. 3),
we need a different family of kernels K̃λ. Of course, they are chosen such that K̃n/2−1 again
coincides with Jn/2−1(|x | · |ξ |)/(|x | · |ξ |)n/2−1.

Theorem 2.3 Let Kλ be defined as inTheorem 2.1 and assume λ ∈ C\(−N). Then the kernel

K̃λ(x, ξ) = |x |2λ−n+2 · Kλ(x, ξ) = (|x | · |ξ |)λ−n+2 Jλ(|x | · |ξ |)
belongs to O′

C (Rn
x ) ⊗̂S ′(Rn

ξ ) and it depends therein holomorphically on λ ∈ C\(−N).

If S ∈ S ′
r (R

n) and S is C∞ in a neighborhood of 0, then S(x) · K̃λ(x, ξ) belongs to
D′

L1(R
n
x ) ⊗̂S ′(Rn

ξ ) and depends therein holomorphically on λ ∈ C\(−N). Finally,

FS = 2n/2−1�
( n
2

) · Ũn/2−1

where the function

Ũ : C\(−N) → S ′(Rn
ξ ) : λ 
→ Ũλ(ξ) = DL∞ 〈1(x), S(x) · K̃λ(x, ξ)〉D′

L1
(Rn

x ) ⊗̂S ′(Rn
ξ )

(2.12)

is holomorphic.

Proof From Theorem 2.1, we infer then

K̃λ(x, ξ) = |x |2λ−n+2 · Kλ(x, ξ) ∈ S ′(Rn
x ) · (S(Rn

x ) ⊗̂S ′(Rn
ξ )

) ⊂ O′
C (Rn

x ) ⊗̂S ′(Rn
ξ )

due to S · S ′ ⊂ O′
C and [34, Prop. 20 bis, p. 70]. Furthermore, K̃λ depends holomorphically

on λ ∈ C\(−N) since the same holds for |x |2λ−n+2. (One can show that K̃λ has simple poles
at λ = −k, k ∈ N. E.g., it holds Resλ=−1 K̃λ = 1

2 |Sn−1|2 · δ(x, ξ).)

Analogously, also the distribution-valued function

λ 
→ S(x) · K̃λ(x, ξ) = (S(x)|x |2λ−n+2) · Kλ(x, ξ) ∈ O′
C (Rn

x ) ⊗̂S ′(Rn
ξ )

⊂ D′
L1(R

n
x ) ⊗̂S ′(Rn

ξ )

is holomorphic on C\(−N). Finally, FS = 2n/2−1�( n2 ) · Ũn/2−1 since K̃n/2−1 = Kn/2−1.

This completes the proof. ��
Example 2.4 Let us illustrate the difference of the representations forFS in Theorem 2.1 and
Theorem 2.3, respectively, by considering again the forward fundamental solution E of the
wave operator ∂2t − �n . If S = sin(t |x |)/|x |, t > 0 fixed, then (2.12) in Theorem 2.3 yields

Ũλ(ξ) = DL∞ (Rn
x )

〈1(x), sin(t |x |)|ξ |λ−n+2|x |λ−n+1 Jλ(|x | · |ξ |)〉D′
L1

(Rn
x ) ⊗̂ S′(Rn

ξ ).

For −1 < Re λ < − 1
2 and |ξ | ≤ N , N ∈ N, the moduli of the functions fξ (x) =

sin(t |x |)|ξ |−λ|x |λ−n+1 Jλ(|x | · |ξ |) are bounded, independently of ξ, by the integrable func-
tion
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gλ,N (x) = Cλ| sin(t |x |)| · |x |2Re λ−n+1 · (1 + N |x |)−1/2−Re λ ∈ L1(Rn
x ),

Cλ = ‖u−λ(1 + u)1/2+λ Jλ(u)‖L∞((0,∞)).

Therefore, Ũλ(ξ) ∈ L1
loc(R

n
ξ ) for −1 < Re λ < − 1

2 , and Ũλ(ξ) is given, for ξ �= 0, by the
absolutely convergent integral

Ũλ(ξ) = |Sn−1| · |ξ |λ−n+2
∫ ∞

0
ρλ Jλ(ρ|ξ |) sin(tρ) dρ

that we have encountered already in (2.10). By analytic continuation, we thus obtain

Ũλ(ξ) = 2λ+1π(n+1)/2

�
( n
2

) |ξ |2λ−n+2 · χ−1/2−λ(t2 − |ξ |2), λ ∈ C\(−N).

Hencewe deduce fromTheorem 2.3 the following expression for the forward fundamental
solution E of ∂2t − �n :

E = (2π)−nY (t)2n/2−1�
( n
2

)
Ũn/2−1(x) = 1

2π
(1−n)/2Y (t)χ(1−n)/2(t2 − |x |2). (2.13)

(As said above, we interpret E as a continuous function of t with values in S ′(Rn
x ) and

vanishing for t ≤ 0. Furthermore, for t > 0, the composition h∗T of T = χ(1−n)/2 ∈
D′(R1) with the submersive C∞ function h(x) = t2 − |x |2 is well-defined, see (1.4).) The
representation of E in (2.13) was given already in [10, Lemme 4.2, p. 317], see also [18,
Thm. 6.2.1, (6.2.1)′, p. 138] or [31, Ex. 1.6.17, p. 106].

Remark 2.5 Let us eventually observe that we could also employ the kernel

K 0
λ(x, ξ) = Jλ(|x | · |ξ |)

(|x | · |ξ |)λ
for the analytic continuation of the Poisson–Bochner formula, yet only for a restricted class
of distributions S. In fact, by partial Fourier transformation, it follows that

K 0
λ(x, ξ) ∈ DL∞,n(R

n
x ) ⊗̂S ′(Rn

ξ ) where DL∞,n(R
n
x ) = (1 + |x |2)−n/2 · DL∞(Rn

x ).

Hence, for S ∈ D′
L1,−n

(Rn
x ) = (1 + |x |2)n/2 · D′

L1(R
n
x ), the function

U 0 : C −→ S ′(Rn
ξ ) : λ 
−→ U 0

λ (ξ) = D′
L1,−n

(Rn
x )

〈S(x), K 0
λ(x, ξ)〉DL∞,n(R

n
x ) ⊗̂S ′(Rn

ξ )

(2.14)

is entire and FS = 2n/2−1�( n2 ) ·U 0
n/2−1 if S is rotationally invariant.

If S = sin(t |x |)/|x |, t > 0 fixed, then the assumption S ∈ D′
L1,−n

(Rn) is satisfied and

U 0
λ in (2.14) would yield the same representation of FS as in Example 2.2. If, in contrast,

S = 1, then S /∈ D′
L1,−n

(Rn) and the entire distribution-valued function U 0 in (2.14) does

not exist. Note, however, thatU and Ũ in (2.5) and in (2.12), respectively, remain meaningful
and yield

Uλ = 2n−λπn/2|ξ |2λ−2n+2

�
(
λ − n

2 + 1
) , Re λ > n

2 − 1,
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and

Ũλ = 2λ+2πn�(λ + 1)

�
( n
2

)2 δ, λ ∈ C\(−N),

and F1 = 2n/2−1�( n2 )Un/2−1 = 2n/2−1�( n2 )Ũn/2−1 = (2π)nδ as expected.

3 The fundamental solution of the Euler–Poisson–Darboux operator

Let us turn now to the Euler–Poisson–Darboux operator

Pα(t, ∂t , ∂x ) = ∂2t + 2α + 1

t
∂t − �n (3.1)

acting on the space of distributions defined in the right half-space {(t, x) ∈ R
n+1; t > 0}.

Since Pα(t, ∂t , ∂x ) is strictly hyperbolicwith respect to t, it has a unique fundamental solution
Eα,τ (t, x) ∈ D′(Rn+1) for each τ > 0 fulfilling

Pα(t, ∂t , ∂x )Eα,τ (t, x) = δτ (t) ⊗ δ(x) and supp Eα,τ ⊂ {(t, x) ∈ R
n+1; t ≥ τ }, (3.2)

see [19, Thm. 23.2.2, p. 392], [7, Ch. 6, Thm. and Def. 4.9, p. 379].
Moreover, the strict hyperbolicity of Pα(t, ∂t , ∂x ) implies that Eα,τ depends C∞ on t for

t ≥ τ and that the support of Eα,τ is contained in the propagation cone {(t, x) ∈ R
n+1; t ≥

τ + |x |}. In particular, Eα,τ ∈ C∞([τ,∞)) ⊗̂ E ′(Rn) and the partial Fourier transform Sα,τ

of Eα,τ with respect to x fulfills

Sα,τ = Fx (Eα,τ ) ∈ C∞([τ,∞)) ⊗̂OM (Rn
x ),

i.e., Sα,τ is an infinitely differentiable mapping from [τ,∞) into OM (Rn). By constructing
the Green function of the ordinary differential operator ∂2t + (2α + 1)t−1∂t + |x |2, we next
derive an explicit representation of Sα,τ .

Proposition 3.1 For τ > 0 and α ∈ C, we have

Sα,τ = π

2
Y (t − τ)τα+1t−α

[−Nα(τ |x |)Jα(t |x |) + Jα(τ |x |)Nα(t |x |)]. (3.3)

[Here Nα, α ∈ C, denote the Bessel functions of the second kind.]

Proof Upon Fourier transform with respect to x, (3.2) yields
(
∂2t + 2α + 1

t
∂t + |x |2

)
Sα,τ (t, x) = δτ (t). (3.4)

This ordinary differential equation arises by substitution from Bessel’s equation, and the
vector space of its homogeneous solutions is generated by t−α Jα(t |x |) and t−αNα(t |x |), see
[21, C, 2.162, (9), p. 440] or [15, 8.491.6, p. 971].

Equation (3.4) implies that Sα,τ has the two initial values Sα,τ (τ, x) = 0 and
( d
dt Sα,τ )(τ, x) = 1. If therefore

Sα,τ = Y (t − τ)
[
C1t

−α Jα(t |x |) + C2t
−αNα(t |x |)],

then the constants C1,C2 are determined by the following system of linear equations:

0 = C1τ
−α Jα(τ |x |) + C2τ

−αNα(τ |x |),
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1 = C1∂τ (τ
−α Jα(τ |x |)) + C2∂τ (τ

−αNα(τ |x |)).
The Wronskian determinant

W (τ ) = det

(
τ−α Jα(τ |x |) τ−αNα(τ |x |)

∂τ (τ
−α Jα(τ |x |)) ∂τ (τ

−αNα(τ |x |))

)

fulfills W (τ ) = Cτ−2α−1, see [21, A, 17.1, p. 72], and the power series of Jα and Nα yield
C = 2

π
. Hence

(
C1

C2

)
= π

2
τ 2α+1

(−τ−αNα(τ |x |)
τ−α Jα(τ |x |)

)

and this furnishes formula (3.3). ��
Formula (3.3) is essentially equivalent with Eq. (5.5) in [8, p. 332], see also [6, pp. 30–32].
In order to evaluate the Fourier transform Eα,τ = (2π)−nFx (Sα,τ ), we use analytic

continuation of the Poisson–Bochner formula according to Theorem 2.3. The representation
of the fundamental solution Eα,τ in Proposition 3.2 below coincides with formula (7.4) in
[10, Lemme 7.1, p. 327] taking into account [10, (5.9), p. 319]. This result of S. Delache and
J. Leray was also obtained (with the same method of proof) in [4, Thm. 2.1, (2.16), p. 501].
Our deduction of Eα,τ is different and seems to be new.

Let us mention that an earlier appearance of this fundamental solution in the form of a
“Riemann function” can be found in [40, p. 361, last line]. In fact, Eα,τ = (τ/t)1/2+α ·
U 2(0, τ ; x, t) where, in Young’s formula, m = n + 1, λ = α, � = (t − τ)2 − |x − ξ |2,
Hm(2) = 2π(n−1)/2�( 3−n

2 ) and hence

U2(0, τ ; x, t) = 1
2π(1−n)/2χ(1−n)/2((t − τ)2 − |x |2) 2F1( 12 − α, 1

2 + α; 3−n
2 ; − (t−τ)2−|x |2

4τ t

)
.

(Note that Hn(α+2) is defined erroneously in [40, p. 357] and that the equation λ = (1−k)/2
in [40, p. 361] should read λ = (k − 1)/2.)

Proposition 3.2 Let τ > 0 and assume that n = 1 or n ∈ N is even. Then the fundamental
solution Eα,τ ∈ S ′(Rn+1

t,x ) of the Euler–Poisson–Darboux operator Pα(t, ∂t , ∂x ) = ∂2t +
2α+1

t ∂t − �n, i.e., the unique solution of (3.2), is given by

Eα,τ (t, x) = 1

2
π(1−n)/2

(τ

t

)1/2+α

Y (t − τ)χ(1−n)/2((t − τ)2 − |x |2)

×2F1
(1
2

− α,
1

2
+ α; 3 − n

2
;− (t − τ)2 − |x |2

4τ t

)
. (3.5)

[As said above, we interpret Eα,τ as a continuous function of t with values in E ′(Rn
x ) and

vanishing for t ≤ τ.Furthermore, for t > τ, the composition h∗T of T = χ(1−n)/2 ∈ D′(R1)

with the submersive C∞ function h(x) = (t − τ)2 − |x |2 is well-defined, see (1.4), and so is
the multiplication with the C∞ function given by 2F1.]
Proof (a) In order to apply Theorem 2.3, let us first check that Sα,τ (t, x) in (3.5) is a C∞
function of x in a neighborhood of 0. In fact, for α ∈ C\Z, we have

Sα,τ (t, x) = π

2
Y (t − τ)τα+1t−α

[−Nα(τ |x |)Jα(t |x |) + Jα(τ |x |)Nα(t |x |)]

= πτα+1Y (t − τ)

2 sin(απ)tα
[
J−α(τ |x |)Jα(t |x |) − Jα(τ |x |)J−α(t |x |)]
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which is an analytic function of |x |2, see [15, Equs. 8.402 and 8.403.1, p. 951]. The same
holds for α ∈ Z by taking limits. Therefore, Theorem 2.3 applies and yields (for t > τ fixed)
Fx Sα,τ = 2n/2−1�( n2 )Ũn/2−1, where

Ũλ(ξ) = DL∞ (Rn
x )

〈1(x), Sα,τ (t, x) · (|x | · |ξ |)λ−n+2 Jλ(|x | · |ξ |)〉D′
L1

(Rn
x ) ⊗̂S ′(Rn

ξ ) (3.6)

for λ ∈ C\(−N).

(b) If −1 < Re λ < − 1
2 , then we see, analogously as in Example 2.4, which is the special

case ofα = − 1
2 , that Ũλ(ξ) ∈ L1

loc(R
n) and that the evaluation in (3.6) furnishes an absolutely

convergent integral for ξ �= 0. Hence we obtain the following for −1 < Re λ < − 1
2 ,

0 < τ < t and ξ �= 0 fixed:

(Ũλ(ξ) = πn/2+1τα+1

�
( n
2

)
tα

|ξ |λ−n+2

×
∫ ∞

0
ρλ+1[−Nα(τρ)Jα(tρ) + Jα(τρ)Nα(tρ)

] · Jλ(ρ|ξ |) dρ.

According to [28, 10.51, 10.52, p. 93] (see also [1, (7.1), p. 45]), this integral yields

Ũλ(ξ) =
√
2π(n+1)/2τα−λ

�
( n
2

)
tα+λ+1

Y (t − τ − |ξ |)|ξ |2λ−n+2(u2 − 1)−λ/2−1/4 p1/2+λ
−1/2+α(u)

where

u = t2 + τ 2 − |ξ |2
2tτ

≥ 1 for t − τ ≥ |ξ |.

The Legendre function p1/2+λ
−1/2+α can be expressed by Gauß’ hypergeometric function, see

[28, p. 279], and this leads to

Ũλ(x) = 2λ+1π(n+1)/2

�
( n
2

) (τ

t

)1/2+α|x |2λ−n+2χ−1/2−λ((t − τ)2 − |x |2)

×2F1
(1
2

− α,
1

2
+ α; 1

2
− λ;− (t − τ)2 − |x |2

4τ t

)
. (3.7)

(c) Since Ũλ is holomorphic inC\(−N), formula (3.7) persists by analytic continuation for
thoseλ ∈ C\(−N)where the right-hand side is, in this form,well-defined, i.e., forλ /∈ 1

2+N0.

Note that 2F1(a, b; c; u) has poles for c ∈ −N0. In particular, if n = 1 or n is even and λ =
n
2 − 1, then the hypergeometric series is regular at c = 1

2 − λ = 3−n
2 and we obtain straight-

forwardly formula (3.5) in the proposition by using Eα,τ = (2π)−n2n/2−1�( n2 )Ũn/2−1(x).
This completes the proof. ��

For odd space dimensions n ≥ 3, Eq. (3.7) in the proof of Proposition 3.2 is still valid, but
the analytic continuation into the point λ = n

2 − 1 needs more care due to the simple poles
of the function c 
→ 2F1(a, b; c; u) at c = −k ∈ N0. The representation of the fundamental
solution Eα,τ in Proposition 3.3 below coincides with formula (7.4) in [10, Lemme 7.1,
p. 327] taking into account [10, (5.10), p. 320]. This result of S. Delache and J. Leray was
also obtained (with the same method of proof) in [4, Thm. 2.2, (2.18), p. 502].

Proposition 3.3 Let τ > 0 and assume that n ≥ 3 and n ∈ N is odd. Then the fundamental
solution Eα,τ ∈ S ′(Rn+1

t,x ) of the Euler–Poisson–Darboux operator Pα(t, ∂t , ∂x ) = ∂2t +
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2α+1
t ∂t − �n, i.e., the unique solution of (3.2), is given by

Eα,τ = 1

2πk+1

(τ

t

)1/2+α

Y (t − τ)

[ k∑
j=0

c j δ
(k− j)((t − τ)2 − |x |2)

+ck+1 Y
(
(t − τ)2 − |x |2) 2F1

(n
2

− α,
n

2
+ α; n + 1

2
; u

)]
(3.8)

where

k = n − 3

2
, c j =

( 1
2 − α

)
j

( 1
2 + α

)
j

j !(−4τ t) j
, u = − (t − τ)2 − |x |2

4τ t

and the Pochhammer symbol (w) j is as in the introduction.
[As in Proposition 3.2, Eα,τ is interpreted as a continuous function of t with values in

E ′(Rn
x ) and vanishing for t ≤ τ.]

Proof (a) From the series expansion in [15, 9.100, p. 1039] and the transformation formula
[15, 9.131.1, p. 1043], we see that

f : C\(−N0) −→ E((−∞, 1)) : c 
−→ fc(u) = 2F1(a, b; c; u)

is a holomorphic function for fixed a, b ∈ C having at most simple poles in c = −k, k ∈ N0.

The formula [15, 9.101.1, p. 1039] furnishes the residues:

Resc=−k fc(u) = lim
c→−k

(c + k) 2F1(a, b; c; u)

=
(
Resc=−k �(c)

)
· lim
c→−k

2F1(a, b; c; u)

�(c)

= (−1)k(a)k+1(b)k+1uk+1

k!(k + 1)! 2F1(a + k + 1, b + k + 1; k + 2; u).

(3.9)

Here we have used Pochhammer’s symbol (w) j as defined in Sect. 1.
Furthermore, the Taylor series of Pfc=−k fc(z) up to order k is given by

Pfc=−k fc(u) =
k∑
j=0

(a) j (b) j
(−k) j j ! u

j + O(uk+1). (3.10)

(b) Let us next investigate the holomorphic distribution-valued function

T : {c ∈ C; 2c − 3 /∈ N0} −→ S ′(Rn
x ) : c 
−→ Tc = 2−c|x |−2c−n+3χc−1((t − τ)2 − |x |2)

for fixed 0 < τ < t and near a point c = −k, k ∈ N0. On the one hand, χ−k−1 = δ(k) (see
[18, (3.2.17)′, p. 74]) implies

T−k = 2k |x |2k−n+3δ(k)((t − τ)2 − |x |2). (3.11)

On the other hand, for Re c > 0, we have

dχc−1(s)

dc
= d

dc

(Y (s)sc−1

�(c)

)
= Y (s)sc−1

�(c)
· [log s − ψ(c)]
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and in particular

dχc−1(s)

dc

∣∣∣∣
c=1

= Y (s) · [log s − ψ(1)] ∈ L1
loc(R

1
s ).

For k ∈ N0, this implies

dχc−1(s)

dc

∣∣∣∣
c=−k

= ∂k+1
s

(
dχc−1(s)

dc

∣∣∣∣
c=1

)
= ∂k+1

s

(
Y (s) · [log s − ψ(1)])

= ∂ks
(
s−1+ − ψ(1)δ

) = (−1)kk! s−k−1+ − ψ(k)δ(k),

see [31, p. 50] for the last equation. Here s−k−1+ = Pfc=−k−1 Y (s)sc ∈ S ′(R1
s ) and ψ(k) =

�′(k)/�(k). So eventually, we obtain

dTc
dc

∣∣∣∣
c=−k

= 2k |x |2k−n+3
[
(−1)kk! s−k−1+

(
(t − τ)2 − |x |2)

−(
ψ(k) + log(2|x |2)) · δ(k)((t − τ)2 − |x |2)]. (3.12)

(c) As we have observed above, the distribution-valued function Ũλ is holomorphic in
C\(−N) and thus is regular at λ = n

2 − 1. In fact, setting n = 2k + 3, k ∈ N0, a = 1
2 − α,

b = 1
2 + α, c = 1

2 − λ and u = −[(t − τ)2 − |x |2]/(4τ t) and assuming 0 < τ < t fixed, we
obtain

Resλ=n/2−1 Ũλ = −23/2π(n+1)/2

�
( n
2

) (τ

t

)1/2+α

T−k · Resc=−k fc(u) = 0

since T−k = 2kδ(k)(−4τ tu) by (3.11) and Resc=−k fc(u) vanishes of order k + 1 at u = 0
by (3.9).

Similarly, using [30, Prop. 1.6.3, p. 28] we conclude that

Ũn/2−1 = Pfλ=n/2−1 Ũλ = 23/2π(n+1)/2

�
( n
2

) (τ

t

)1/2+α

Pfc=−k[Tc(x) · fc(u)]

= 23/2π(n+1)/2

�
( n
2

) (τ

t

)1/2+α[ dTc
dc

∣∣∣∣
c=−k

· Resc=−k fc(u) + T−k(x) · Pfc=−k fc(u)
]
.

Equations (3.9/3.12) yield

dTc
dc

∣∣∣∣
c=−k

· Resc=−k fc(u) = (−1)k+1
( 1
2 − α

)
k+1

( 1
2 + α

)
k+1

2k+2(k + 1)!(τ t)k+1

×Y
(
(t − τ)2 − |x |2) 2F1

(n
2

− α,
n

2
+ α; n + 1

2
; u

)

and Eqs. (3.10/3.11) yield

T−k(x) · Pfc=−k fc(u) = 2kδ(k)((t − τ)2 − |x |2) ·
k∑
j=0

(a) j (b) j
(−k) j j ! u

j .

Upon using the identity

s jδ(k)(s) = (−k) jδ
(k− j)(s) ∈ D′(R1

s ), j, k ∈ N0, j ≤ k,
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this results in

T−k(x) · Pfc=−k fc(u) = 2k ·
k∑
j=0

(a) j (b) j
j !(−4τ t) j

δ(k− j)((t − τ)2 − |x |2).

Finally, we make use of Eα,τ = (2π)−n2n/2−1�( n2 )Ũn/2−1 in order to conclude the repre-
sentation of Eα,τ in (3.8). This completes the proof. ��
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