ZfDN (2020) 26:123-142
https://doi.org/10.1007/s40573-020-00116-9

ORIGINAL PAPER

®

Check for
updates

Investigating Dynamic Visualizations of Multiple Representations
Using Mobile Video Analysis in Physics Lessons

Effects on Emotion, Cognitive Load and Conceptual Understanding

Sebastian Becker' () - Pascal Klein? - Alexander Go8ling? - Jochen Kuhn'

Received: 23 September 2019 / Accepted: 26 July 2020 / Published online: 17 August 2020
© The Author(s) 2020

Abstract

This contribution presents the results of a replication study on the learning effect of tablet-supported video analysis
compared to traditional teaching sequences using non-digital experimental materials in the subject areas of uniform and
accelerated motion in high school physics lessons. In addition to the replication of the preliminary study results recently
published in this journal (Becker et al 2018, 2019), the investigation of the effect on the cognitive load as well as the
emotional state of the students is another focal point. Compared to the preliminary study, the sample size was significantly
increased from N = 109 to N = 294. The individual effects of the preliminary study could be replicated in this way. For
both topics, a significant reduction of extraneous cognitive load and a positive effect on intervention-induced emotions
could be demonstrated. Moreover, the theoretically founded causal relationship between emotion, cognitive load, and
learning achievement could be empirically verified by means of structural equation modeling.

Keywords Replication study - Video motion analysis - Tablet computer - Physics lessons - Experiment - Conceptual
understanding - Cognitive load - Emotion

Electronic supplementary material The online version of this
article (https://doi.org/10.1007/540573-020-00116-9) contains Jochen Kuhn
supplementary material, which is available to authorized users. kuhn@physik.uni-kl.de

4 Sebastian Becker ' Physics/Physics Education Research Group, Technische
s.becker @physik.uni-kl.de Universitit Kaiserslautern, Kaiserslautern, Germany
Pascal Klein 2 Faculty of Physics/Physics Education Research,
pascal klein@uni-goettingen.de Georg-August-University Gottingen, Gottingen, Germany
Alexander GoBling 3 Institute for School, Educational and Professional Science,

Alexander.Goessling@gmx.de Bielefeld, Germany

@ Springer


https://doi.org/10.1007/s40573-020-00116-9
http://crossmark.crossref.org/dialog/?doi=10.1007/s40573-020-00116-9&domain=pdf
http://orcid.org/0000-0002-2461-0992
https://doi.org/10.1007/s40573-020-00116-9

124 ZfDN (2020) 26:123-142

Untersuchung dynamischer Visualisierungen von multiplen Reprasentationen mittels mobiler
Videoanalyse im Physikunterricht
Wirkungen auf Emotionen, kognitive Belastung und Konzeptverstindnis

Zusammenfassung

In diesem Beitrag werden die Ergebnisse einer Replikationsstudie zu lernwirksamen Effekten der Tablet-PC-gestiitzten
Videoanalyse im Vergleich zu traditionellen Unterrichtssequenzen unter Verwendung nicht-digitaler Experimentiermittel in
den Themenbereichen gleichformige und gleichméBig beschleunigte Bewegung des Physikunterrichts der Sekundarstufe 2
vorgestellt. Neben der Replikation der jlingst in dieser Zeitschrift veroffentlichten Vorstudienergebnisse (Becker et al 2018,
2019) bildet die Untersuchung der Wirkung auf die kognitive Belastung sowie den emotionalen Zustand der Schiilerinnen
und Schiiler einen weiteren Schwerpunkt. Im Vergleich zur Vorstudie wurde der Stichprobenumfang von N= 109 auf N=
294 deutlich erhoht. Einzelne Effekte der Vorstudie konnten auf diese Weise repliziert werden. Fiir beide Themengebiete
konnte weiterhin eine signifikante Reduktion der extrinsischen kognitiven Belastung sowie eine positive Wirkung auf
die interventions-induzierten Emotionen nachgewiesen werden. Dariiber hinaus konnte der theoretisch fundierte kausale
Zusammenhang zwischen Emotion, kognitiver Belastung und Lernperformanz mittels Strukturgleichungsmodellierung

empirisch verifiziert werden.

Introduction

Although physical experiments play a key role in learn-
ing about science (e.g., Haury and Rillero 1994; Haagen-
Schiitzenhofer and Joham 2018), the learning-promoting
potential offered by this learning activity is not sufficiently
exploited (e.g., Woolnough 1979; Volkwyn et al 2008; Hus-
naini and Chen 2019; Kapici et al 2019). The causes of this
discrepancy are manifold, as the learning objectives asso-
ciated with an experimental learning activity can also be
diverse (Hart et al 2000). Johnstone and Wham (1982), for
example, argue that students in an experiment-based learn-
ing situation are cognitively overloaded by the amount of
information they have to keep mentally available. Against
this background, technologies for the digital acquisition and
visualization of measurement data offer novel possibilities
to support learners in experimenting. In contrast, studies
on integrating such digital learning tools in experiment-
based learning processes are still rare, especially for real-
life teaching scenarios (Oliveira et al 2019). In this con-
text, Zydney and Warner (2016) point out the need for em-
pirical studies in order to better coordinate underlying the-
ories and results on learning effects. Due to the increasing
use of mobile technologies both in everyday life and in the
education sector, Mutlu-Bayraktar et al (2019) recommend
that the influence of mobile technologies on cognitive load
in teaching-learning situations should also be systematically
investigated in empirical studies. In this respect, initial stud-
ies have shown positive effects of using mobile devices to
enhance inquiry-based experimental learning with multiple
representations on conceptual understanding (e.g., Becker
et al 2018, 2019, 2020; Klein et al 2018; Kuhn and Vogt
2015; Hochberg et al 2020) and motivation (e.g., Hochberg
et al 2018).
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In our preliminary study on the learning effectiveness
of tablet-supported video analysis compared to traditional
teaching sequences with non-digital experimental equip-
ment, positive effects for the promotion of conceptual un-
derstanding for use in mechanics lessons have already been
demonstrated (Becker et al 2018, 2019). As a result of the
small sample size of this study (see Table 1), a generaliza-
tion of the study findings is questionable. In view of the
need for an evidence-based approach to pedagogical ac-
tions, however, the generalizability of scientific findings is
important for their transfer to school practice. Furthermore,
the interpretation of the results regarding the learning effec-
tiveness remained hypothetical. Referring to the Cognitive
Load Theory (see theoretical background), we argued that
the use of the digital learning tool in a multirepresentational
learning environment leads to a reduction of the extraneous
cognitive load, which, in turn, results in an increased learn-
ing performance. In this view, load reduction leads to more
free cognitive resources that are available to learners for
active knowledge construction, which should increase the
learning outcome. This is particularly true for multirepre-
sentational learning environments, in which the complexity
of information presentation can place an additional load on
learners (van Meter et al 2020; Seufert 2003; de Jong et al
1998).

However, this hypothetical effect could not be empiri-
cally verified due to a methodological deficit of the previous
study since the instrument used to determine the cognitive
load did not allow a differentiation between the different
types of load. Moreover, no affective variables were col-
lected in the preliminary study that could have indirectly in-
fluenced learning performance. The analysis methods used
also did not take into account the hierarchical data structure,
so that teacher or school effects were not integrated into the
analysis of learning outcomes, which could have led to in-
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Table1 Common and different methodological features of
preliminary and replication study

Preliminary Replication study
study

Sample

Number of cases 109 294

Grade level 11 11

School year 2016/17 2017/18

Federal states RLP, NRW

Subject areas Uniform motion, Accelerated motion

Target variables

Performance Multiple choice concept test
Cognitive load NASA-TLX CLS
Emotion - 5-item scale

Teacher behavior 4-item scale

Data analysis

Performance ANCOVA Multilevel Regression

Analysis
Cognitive load Mann-Whitney
U test

Emotion -

Multilevel Regression
Analysis

Multilevel Regression
Analysis

Correlation
Analysis

Teacher behavior Structural Equation
Analysis
Empirical causal N

analysis

Structural Equation
Analysis

correct significance findings. To remedy these methodolog-
ical deficits and to strengthen the statistical power, a repli-
cation study was conducted with the following objectives.

e Replication of learning-promoting effects of the prelimi-
nary study with increased case numbers

e Empirical verification of the hypothetical cause-effect re-
lationship between extraneous cognitive load and learn-
ing performance

o Quantifying the influence from selected affective vari-
ables

e Consideration of teacher and school effects in the analy-
sis of learning achievement

In order to show the reproducibility of the effects of the
preliminary study, the replication study was carried out un-
der exactly the same experimental conditions. In particular,
the study design, the preparation of the participating teach-
ers, the timing and structure of the teaching sequences, the
design of the learning environments, the achievement tests,
and the learning material were adopted unchanged from the
preliminary study. The target population was recruited from
the same grade level, and the intervention was carried out in
a comparable period of the school year. An overview of the
most important methodological features of the preliminary
and replication study is given in Table 1.

In general, replication studies contribute significantly to
empirical research by confirming previous results or re-

moving limitations of previous studies (Makel and Plucker
2014). They are particularly important for empirical edu-
cational research because of the limited control options in
field studies (Lindsay and Ehrenberg 1993; Guilford 1982).
Although replication studies can promote the transfer of
knowledge gained into classroom practice and ideally ac-
celerate this process, they are rare (Makel and Plucker
2014). Rost and Bienefeld (2019) see replication studies as
an “irreplaceable means of testing and safeguarding scien-
tific knowledge,” which can “do what statistical significance
tests and effect size calculations cannot do” (p. 9).

Against this background, this work aims to provide
a counterpoint to the lack of replication studies in em-
pirical educational research and in this way contribute to
the generalizability of the effects found in the preliminary
study on the one hand, and to empirically verify theoreti-
cally hypothesized causes of the learning-promoting effect
on the other.

Theoretical Background
Cognitive Load Theory

The basic assumption of the Cognitive Load Theory (CLT;
van Merriénboer and Sweller 2005; Sweller 1988) is the
limited capacity of working memory in terms of the amount
of information that can be processed simultaneously and the
time in which information is available for processing. The
limitations of working memory cause a cognitive load on
the learner in learning situations. We follow the current
doctrine (e.g., Sweller et al 2019) and apply a two-facto-
rial model for an intervention-induced cognitive load (see
also Leppink et al 2013) so that the load is composed of
intrinsic load (ICL) and extraneous or learning-irrelevant
load (ECL). ICL refers to the complexity of information
that the learner has to process during the learning process
and is therefore determined by the learning task and the
prior knowledge of the learner regarding the learning con-
tent. ECL refers to learning irrelevant cognitive processes,
which occupy the working memory but do not lead to a rel-
evant learning gain and can be influenced by the design
of the learning procedure, such as how the information is
presented to the learner. Principles can be derived from the
CLT to enable instructors to design instructions that are
conducive to learning (Sweller et al 2019). One fundamen-
tal principle is to keep the learning-irrelevant ECL as low as
possible during the learning process (Leppink 2017; Lep-
pink and van den Heuvel 2015; Sweller et al 1998). A neg-
ative learning effect, which results in an increase of ECL
and has been empirically proven in numerous studies (see
meta-analysis of Ginns 2006), is the split-attention effect.
This effect postulates the necessity of cognitive integration
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processes for the spatial and/or temporal separation of cor-
responding information sources, which leads to an increase
in ECL and should accordingly be avoided in learning envi-
ronments by physically integrating the information sources.

Cognitive Theory of Multimedia Learning

The Cognitive Theory of Multimedia Learning (CTML;
Mayer 1999, 2005; Moreno and Mayer 1999) is based on
the CLT principle of a limited working memory, but, ex-
tending the CLT model, it meets three basic assumptions
about information processing in working memory. First,
the CTML postulates two separate channels of working
memory in which auditory-verbal and visual-imagery infor-
mation is processed (Dual-Channel Assumption). Second,
the CTML assumes that the capacity of each channel is
limited in terms of the amount of information that can be
processed simultaneously (Limited Capacity Assumption).
The third assumption is that the active engagement of the
learner with the learning object itself is a necessary condi-
tion for the formation of a coherent mental model (Active
Processing Assumption). From this theoretical approach,
principles for the design of multimedia learning environ-
ments that promote learning can be derived (e.g., Mayer and
Moreno 2003). In the following paragraphs, design princi-
ples are presented that can be fulfilled by the use of tablet-
supported video analysis in teaching-learning situations in
order to positively influence the learning process. The first
of these is the contiguity principle, which is based on the
avoidance of the split-attention effect and additionally dis-
tinguishes between the spatial and temporal separation of
information.

Spatial Contiguity Principle

In accordance with this principle, learning environments
should be designed in such a way that corresponding in-
formation is not presented to the learner spatially separated
from each other. In this way, visual search processes that
would bind cognitive resources of the learner without con-
tributing to an increase in learning are avoided.

Temporal Contiguity Principle

This principle is based on avoiding the temporal separation
of corresponding information sources. If this is not taken
into account, the learner has to maintain a mental represen-
tation of the recorded information in the working memory
in order to integrate it with the information that follows
in time. This, in turn, ties up working memory resources
without contributing to an increase in learning.

@ Springer

Another design principle of CTML is the segmentation
or interactivity principle, which refers to dynamic visual-
izations in a multimedia learning environment.

Segmentation or Interactivity Principle

According to this principle, a learning-promoting effect is
achieved by the fact that learners are not presented with
information in a continuous unit but instead in discrete seg-
ments that they can call up one after the other (as required).
This segmentation of the learning content avoids a cogni-
tive overload of the learner, which could otherwise occur
when the learner takes in too much information in too short
a time. In this context, the term “interactivity principle” is
also used by some authors (e.g., Robinson 2004). Interac-
tivity can be understood as a possibility for the learner to
control the presentation of the (multimedia) learning con-
tent. For example, the interactivity of a learning environ-
ment enables the learner to adapt the sequence and display
duration of the information to be processed according to his
own cognitive abilities.

Learning with Multiple Representations

For scientific learning, multiple external representations
(MERs) play a beneficial role, which is well docu-
mented for the natural sciences (Tytler et al 2013) and
for physics (Treagust et al 2017). It is especially important
for conceptual understanding (Verschaffel et al 2010) and
is discussed as a necessary condition for in-depth under-
standing (diSessa 2004). Ainsworth (2006, 2008) created
a conceptual framework that provides an overview of the
prerequisites for the effective use of MERs in teaching-
learning situations and the unique benefits for learning
complex or new scientific content. According to her, in the
design, functions, and tasks (DeFT) taxonomy, learning
with MERs means two or more external representations
(e.g., diagrams, formulas, and data tables) are used si-
multaneously. Specifically, there are three key functions
that MERSs can fulfill (even simultaneously) to support the
learning process. According to the first function, MERs
can complement one another either by providing comple-
mentary information or by allowing for complementary
approaches to process information. The presentation of
MERs with complementary information content may be
advantageous if the presentation of all relevant information
in a single form of representation would lead to cogni-
tive overload of the learner. However, even if different
representations contain the same information, they can
support the learning process by allowing learners to select
the most appropriate form of representation to accomplish
the given learning task in the particular learning situation.
The second function is that simultaneously presented rep-
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resentations can constrain one another’s interpretation in
two ways: The more familiar representation can constrain
the interpretation of the less-familiar one, or the inherent
properties of one representation can trigger the usage of the
other representation, which is considered helpful for the
learning process. According to the third function, the con-
struction of a deeper understanding is fostered if learners
integrate information from different forms of representation
to gain insights that could not have been obtained with just
one form of representation. Although MERs demonstrably
have the potential to support learning processes, their use
in learning situations is also associated with learner de-
mands that can increase learners’ cognitive load and even
negatively affect the learning process (de Jong et al 1998).
Indeed, many studies point toward student difficulties with
MERs (e.g., Ainsworth 2006; Nieminen et al 2010). Con-
sequently, the cognitive load of the learning environment
must be considered and managed carefully. In this context,
technology support can help reduce cognitive load when
learning with MERs, and it can therefore facilitate the
learning-promoting effect of MERs (e.g., Horz et al 2009).

The Role of Emotions in Learning Processes

The influence of motivational and emotional processes, es-
pecially on technology-supported learning, has been insuf-
ficiently considered in research for a long time. It was
Moreno who first systematically incorporated these factors
into the theoretical model for multimedia learning by, to-
gether with Mayer, extending CTML to include motiva-
tional, affective, and metacognitive factors that influence
information processing. In the resulting Cognitive-Affec-
tive Theory of Learning with Media (CATLM; Moreno
2005; Moreno and Mayer 2007), “motivational factors me-
diate learning by increasing or decreasing cognitive engage-
ment” (p. 151 Moreno 2006). Metacognitive factors, on the
other hand, have an indirect influence on learning success
by moderating the regulation of cognitive processing, moti-
vation, and emotions. Following this line of argument, Plass
and Kaplan (2016) conclude from the inherent connection
between emotion and cognition that all information pro-
cessing in a learning environment is both emotional and
cognitive. For the control of learning processes, it is there-
fore essential to consider the constant dynamic interplay
between cognition and emotion during the individual learn-
ing steps, especially for digitally supported learning situa-
tions, since “digital learning environments offer many more
ways of influencing learners’ emotions” (p. 137 Plass and
Kaplan 2016). In order to describe the effect of emotions in
learning processes theoretically, Plass and Kaplan extended
the CTML by a mutual relationship between emotion and

cognition by including emotions as a separate processing
channel into the ICALM model.

The Integrated Cognitive Affective Model of
Learning

In the Integrated Cognitive Affective Model of Learning
(ICALM), the multimedia learning environment induces af-
fective reactions. Selection processes taking place in the
working memory and organizational processes of visual or
auditory information are influenced by affective variables
such as situational interest or learning motivation and vice
versa. Mental representations are thus linked to the cor-
responding affective variables and are integrated into long-
term memory as emotional schemata. Plass and Kaplan thus
assume that emotional self-regulation mechanisms can oc-
cupy cognitive resources of the working memory in learn-
ing situations and thus result in additional cognitive load.
According to Plass and Kalyuga (2019), one possibility to
describe the influence of emotions on the cognitive load
in this model is to understand the processing of emotions
during the learning process as additional ECL. In princi-
ple, two mechanisms are distinguished for this (Oaksford
et al 1996). On the one hand, emotions can be caused in
learning environments whose regulation binds cognitive re-
sources of the working memory but does not lead to an
increase in learning (Pekrun 2000). An example illustrating
this is the effect of stress generated by pressure to perform
in a learning situation. In such a situation, the working
memory also processes thoughts about a possible failure
so that less cognitive resources are available for an active
knowledge construction (Beilock et al 2004). This effect,
which can occur with both positive and negative emotions,
has been empirically proven in numerous studies, especially
for negative emotions (e.g., Brand et al 2007; D’Mello and
Graesser 2012). The second mechanism describes the emo-
tionally induced processing of information that has no rel-
evant meaning for the achievement of the learning goal.
In this case, the processing puts an additional load on the
working memory but does not lead to an increase in learn-
ing and thus increases ECL. This occurs, for example, if
information irrelevant to learning appears more interest-
ing to the learner by adding certain details, but this leads
to a lower learning performance (seductive details effect,
Harp and Mayer 1998). The processing of these interest-
ing details results in an additional cognitive load that is
irrelevant to learning and whose negative effect on learning
performance overcompensates for the effect of increased at-
tention. In both of the emotionally induced mechanisms of
action described above, resources of the working memory
are thus occupied, which are not available to the learner for
an active knowledge construction in a learning situation.
Recalling the fundamental demand of CLT to keep ECL in
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multimedia learning environments as low as possible, emo-
tional processes should be considered when designing such
learning environments, and the effect on the emotional state
of the learners should be examined.

Learning Effectiveness of Tablet PC-
supported Video Analysis

In the following paragraphs, the learning effectiveness of
the digital tool is founded on the fundamental learning
theories described above. In particular, which elementary
functions of the video analysis application can contribute
to a learning-promoting use of MERs in learning environ-
ments will be shown.

Fulfillment of the Key Functions of the DeFT Framework
The video analysis application automatically provides
learners with multiple forms of representation that include
complementary information regarding the investigated mo-
tion, the real and stroboscopic image, and the associated

motion diagrams (the first key function). The learners
in this study are much more familiar with the diagram
representation form than with the stroboscopic image rep-
resentation form because of the experienced teaching (in
accordance with their curriculum). The interpretation of the
less-familiar stroboscopic image could thus be triggered
by the automatic display together with the familiar motion
diagram (the second key function). Also, the automatic
multicoding of the motion process makes it easier for the
learner to integrate the information from the different MERs
into a coherent mental model of the motion process, which
would not be possible if only one form of representation
were presented (the third key function).

Furthermore, the automatic display of MERs by means
of the video analysis application fulfills the basic design
principles of the CTML described above.

Fulfillment of the Principle of Contiguity The video
analysis application displays real motion sequence and
stroboscopic image time-synchronously as well as one-
dimensional time-position and time-velocity diagrams in

Fig. 1 Screenshots of the video
analysis application Viana; real
image and superimposed strobo-
scopic image (top), x(t) diagram
(middle), and v(t) diagram
(bottom)
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one combined image (see Fig. 1). This avoids a spatial
separation of corresponding information and thus fulfills
the spatial contiguity principle. The learner can also switch
between these images by wiping the screen of the tablet
PC. This intuitive hand gesture, with which learners are
also familiar due to the omnipresence of digital media to-
day, allows different forms of representation to be called up
quasi-simultaneously, which means by a gesture of the hand
without noticeable time delay. Corresponding information
is thus presented to the learner without temporal separation,
and the temporal contiguity principle is fulfilled.

Fulfillment of the Interactivity Principle During the video
analysis, the students themselves can control the transition
between the individual segments (forms of representation)
of the data evaluation (real motion sequence, motion dia-
grams, and the stroboscopic image). For example, to im-
prove the understanding of the motion diagrams, the stu-
dents can again call up the stroboscopic image or vice versa.
The use of the video analysis application fulfills the interac-
tivity principle by allowing this self-control of the learning
process. The interactivity of the application also promotes
the active engagement of the learners with the subject of
learning itself. For example, the origin and spatial orien-
tation of the coordinate system can be manipulated by the
learner at any point in the learning process, and the effects
of this variation on the motion diagrams can be observed
quasi-simultaneously. According to Ainsworth (2006), this
dynamic linking of different forms of representation can
contribute to a reduction of extraneous cognitive load on
learners.

In summary, the visualization features of the video anal-
ysis application regarding MERs meet the design principles
for multimedia learning environments and thereby reduce
ECL (especially via the avoidance of the split-attention
effect) in multirepresentational learning environments; in
turn, this fosters the effective use of MERs in the study’s
learning scenarios.

Research Hypotheses and Research
Questions

This work focuses on the learning effects of the digital tool
in experiment-based learning. The corresponding results of
the preliminary study prove a greater learning-promoting
effect of tablet-supported video analysis compared to tradi-
tional teaching sequences based on measurement and anal-
ysis tools established in school education (stopwatch, tape
measure, and graphing calculator). In this way, positive ef-
fects for the promotion of conceptual understanding could
be demonstrated, the reproducibility of which was exam-
ined in the replication study.

Research Hypothesis 1 Experiment-based teaching se-
quences, based on tablet PC-supported video analysis, lead
to an increased learning gain in terms of conceptual under-
standing compared to traditional teaching sequences. Pos-
itive effects of the preliminary study should therefore be
reproduced.

The theoretical foundation of the learning effectiveness
of tablet-supported video analysis as presented in this pa-
per is based on the reduction of extraneous load through
the multirepresentational visualization possibilities of the
video analysis application used. A further objective of the
replication study is to prove the reduction of the extraneous
load and to empirically verify the theoretical foundation of
the learning effectiveness.

Research Hypothesis 2 Experiment-based teaching se-
quences, based on tablet-supported video analysis, lead to
a significant reduction of the extraneous load compared to
traditional teaching sequences.

Research Hypothesis 3 The theoretically founded causal
relationship between reduction of extraneous cognitive load
and increased conceptual understanding should be empiri-
cally verifiable.

Hillmayr et al (2020) demonstrated in a meta-study that
the use of digital media in regular school lessons across all
examined subjects (biology, chemistry, physics, and math-
ematics) leads to an increase in motivation and a more
positive attitude toward the subject involved. Sung et al
(2016) could also show in a meta-study that the use of
mobile devices in the educational context has a positive
effect on affective variables (e.g., motivation, engagement,
attitude, satisfaction, and preference). Technological sup-
port is therefore inferred to have a positive influence on
the emotional state of learners during the learning process.
With the results of the preliminary study, however, it is not
possible to make a statement about the influence of tech-
nological support on emotional variables. Accordingly, the
replication study also aimed to investigate the influence of
tablet-supported video analysis on emotional variables.

Research Question 1 Do teaching sequences based on
tablet-supported video analysis have a positive influence on
the emotional state of the learners compared to traditional
teaching sequences?

According to the ICALM model, there is a direct re-
lationship between emotions and cognitive load. Another
objective of the replication study was therefore to empiri-
cally test this theoretically founded relationship.

Research Question 2 Can a causal relationship between
intervention-induced emotions and extraneous cognitive
load be empirically verified?
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Study Design

The study design of the preliminary study was adopted
for the replication study. Accordingly, a cluster-random-
ized controlled trial involving high school physics courses
was conducted. As a consequence, whole courses were as-
signed as treatment group (TG) or control group (CG). As
with the preliminary study, the replication study also cov-
ered two subject areas, the uniform motion (UM) and the
accelerated motion (AM). Thus, the two teaching sequences
on the two topics were sequential, starting with the teaching
sequence on the uniform motion.

Experimental Manipulation

The students in the TG first recorded the motion process
with a tablet PC and then analyzed and visualized the mea-
surement data with the video analysis application. The stu-
dents in the CG, on the other hand, used experimental tools
commonly used in traditional school teaching. They ac-
quired the measured values with a stopwatch and tape mea-
sure, entered them into a graphing calculator (TI-84 Plus,
Texas Instruments), and used the calculator to analyze and
visualize the measured values. Great importance was at-
tached to ensuring a fair comparison between the groups.
Thus, for both groups, the experimental setups, the learning
time, the learning content, and the social forms of learning
were identical.

Teaching Sequences

The teaching sequences for both subject areas had the same
structure, which is shown in Fig. 2. In the first lesson of
the sequence, a pre test was carried out in both the CG and
the TG in order to empirically assess the prior knowledge
of the students regarding the respective subject areas. The

subsequent learning phase is divided into an experiment-
based learning phase of four 45-minute lessons and a con-
solidating exercise phase of two 45-minute lessons. Imme-
diately following the respective learning phase, testing was
repeated. In order to achieve the highest possible degree of
comparability of the learning gain in the individual learning
phases, the achievement tests contained identical items at
each test time, but in a different order.

Introductory Lesson

In the first lesson of the intervention, the teachers first
explained the organizational conditions and the procedure
of the teaching sequences to the learners. Subsequently,
the students of the TG received standardized instruction in
video motion analysis with the tablet. The briefing included
an explanation of the measurement method as well as the
functionality and handling of the video analysis application.
Additionally, the students were given the opportunity to fa-
miliarize themselves with the application used by analyz-
ing sample videos. The sample videos are already included
in the library of the video analysis application and have
no contextual connection to the topics of the study. The
teacher provided a short description of the functional range
of the application as operating instructions. The students of
the CG received standardized instruction in data analysis
with the graphing calculator and were familiarized with the
functionality by analyzing a given data set. A short descrip-
tion of the data processing with the graphing calculator was
handed out by the teacher.

Experiment-based Learning Phase
In this learning phase, students in both groups experimented

collaboratively in small groups. The group sizes were set to
a minimum of two and a maximum of three. The students

[ 0
post-1 post-2
pre test
test test
- @@ - @@ - @@
t() k 1 t 1 k { t2

experiment-based
learning (4 lessons)

Fig.2 Structure of a teaching sequence (each lesson lasts 45 minutes)
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were given learning tasks whose central learning object was
the experiment. By means of a standardized experiment in-
struction, the students were guided to an autonomous exe-
cution and evaluation of the measured data, and thus, the
influence of the teacher was reduced as much as possible.
The teachers were also instructed to take a passive role
during the experiment to accompany the learning process
and not to actively intervene. This was intended to ensure
that the learning gain resulted from the independent pro-
cessing of the learning tasks and not from interaction with
the teacher. The experiments were developed under the fol-
lowing two premises. Firstly, the measured values should
be equally well measurable by video analysis and by con-
ventional experimental tools in the same period of time
so that a truly fair comparison between the two groups is
guaranteed. Secondly, experiments should be carried out
with everyday, inexpensive materials. This should ensure
that these experiments can be performed in regular lessons
without great additional financial outlay in order to promote
the transfer to school practice. Thus, only an aluminum rail,
a steel ball, and a piece of rubber were needed for the exper-
iments. It should be noted that the friction between the steel
ball and the rail during the motion was so low that it could
be neglected for the physical description of the motion of
the rolling ball.

Uniform Motion The experimental phase included a total
of two experiments, for whose setup, execution, and eval-
uation the students had two lessons each. The students of
the TG carried out the measurement of the time-dependent
position data of the rolling ball as well as the determination
and visualization of the velocity using video analysis. The
students of the CG measured the position data with a stop-
watch and tape measure, entered the measured values into
the graphing calculator, and determined and visualized the
velocity graphically with the calculator.

Experiment 1 The first experiment had as its central
learning object the conceptual understanding of velocity
regarding a uniform motion in one direction. The students
let the steel ball roll over the aluminum rail lying flat on
the table, once fast and once slow.

Experiment 2 The second experiment focused on the con-
ceptual understanding of velocity in a uniform back and
forth motion. The students rolled the steel ball once in one
direction, stopped it, and then rolled the ball back again in
the other direction. The educational background is that in
physics, velocity is a vectorial quantity that can have a posi-
tive or negative sign, depending on the reference system and
the direction of the motion, which can be associated with
learning difficulties for students (McDermott et al 1987).

Accelerated Motion As before, the students carried out
two experiments in two lessons each. For the measurement
of the time-dependent position data of the rolling ball, the
students of the TG used video analysis, and the students

of the CG used a stopwatch and a tape measure. Velocity
and acceleration were also determined and visualized by
video analysis in the TG, while the CG used the graphing
calculator for this purpose.

Experiment 1 The learning content of the first experiment
was the conceptual understanding of acceleration regarding
a motion in one direction with constant acceleration. The
students fixed a piece of rubber under one end of the rail to
obtain a small inclination. They then let the ball roll down
from the raised end, keeping the inclination constant.

Experiment 2 The second experiment concentrated on
the laws of motion in uniformly decelerated motion and
their distinction from uniformly accelerated motion. Hal-
loun (2006) emphasizes in this context the importance of
the learning objective for students to link these types of
motion with the physical quantity of acceleration. For this
purpose, the students rolled the ball up the rail and deter-
mined the time-dependent position of the ball both when
rolling up and down. In this way, the vectorial character
of the physical quantity acceleration should be cognitively
grasped, especially the resulting distinction into an acceler-
ating or decelerating effect on moving bodies.

Exercise Phase In order to stay as close as possible to
the course of a real teaching sequence with the study, the
students worked on exercises after the experiment, which
aimed at consolidating and deepening the declarative and
procedural knowledge acquired in the experiment-based
phase. Exercise booklets were handed out for this pur-
pose, in which the students also entered their solutions to
the tasks. The exercises were carried out collaboratively
in small groups of two to three students. While the CG
worked on traditional, paper-based tasks, the TG analyzed
ready-made videos of the corresponding motion type, but
otherwise, the exercises were designed comparably for both
groups. In order to enable the teachers to take a passive role
in this phase as well, the students were given the opportu-
nity to compare their solutions with sample solutions after
completing the tasks. The exercises were designed similarly
for both groups, so that a fair comparison between the two
groups was also possible in this phase.

Instruction Material

At the beginning of the intervention, the instructions for
carrying out the experiments and the associated learning
tasks were handed out as material in a protocol booklet,
into which the students also entered their results. When
developing the instructional materials in cooperation with
teachers with many years of professional experience, great
importance was attached to the comparability of the mate-
rials for both groups in terms of learning content, forms of
representation used, volume, and level of difficulty. In par-
ticular, the instruction material was designed in such a way
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Table2 Sociodemographic composition of the sample population

Table 3 Sub-concepts of the achievement tests

CG TG Sub-concept Content No. of items

Sample size 136 150 Uniform motion
Average age 15.7 15.6 Gl Velocity as alteration rate 3
Female (in %) 31.9 34.0 G2 Velocity as vectorial quantity 3
Physics advanced course (in %) 40.0 39.0 G3 Reference system 3
Mathematics advanced course (in %) 37.7 38.9 Accelerated motion

Bl Acceleration as alteration rate 3

B2 Acceleration as vectorial quantity 3
that the learners in both groups were able to carry out and g3 Reference system 5

evaluate the experiments in small groups as independently
as possible within the scheduled teaching time and to mas-
ter the exercises.

Methodology
Sample

The data was collected in 18 courses from 11 secondary
schools in different states in Germany between 2017 and
2018. In total, 294 students participated in both test times.
Sociodemographic data was evaluated for 286 students, of
whom 94 are female and 191 are male (one did not complete
the question about gender), with an average age of 15.6
(8D = 0.72). The sociodemographic composition separated
according to TG and CG is shown in Table 2.

Instruments

All instruments used were subjected to confirmatory factor
analysis to empirically confirm the intended factor structure
after checking the necessary prerequisites (KMO, Bartlett’s
Test of Sphericity). The response patterns of the combined
sample at the respective post time point were analyzed with
the software R and the R-package lavaan (version 0.6-3).
The corresponding results and the questionnaires used can
be found in the Electronic Supplementary Material.

Conceptual Understanding

In order to detect the effects in learning achievement re-
garding conceptual understanding, the achievement test in
multiple choice design already evaluated in the preliminary
study was used again. Thus, the structuring into three sub-
concepts (G1, G2, and G3 or B1, B2, and B3) per subject
area was adopted (see Table 3).

Cognitive Load
The cognitive load induced by the intervention was mea-

sured at the post time point of the respective learning
phase with a 10 item questionnaire developed and vali-
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dated by Leppink et al (2013). With this instrument, the
cognitive load can be measured differentiated according to
intrinsic (ICL), extraneous (ECL), and germane cognitive
load (Hadie and Yusoff 2016; Zukié et al 2016). Although
a two-factorial model of cognitive load was used in this
work, the test instrument as a whole was used to ensure the
validity of the measurement. For further analysis, however,
only response patterns of items concerning ICL and ECL
were used. The items were first translated into German
and then adapted to the context and the respective learning
phase (experiment-based and exercise phase). Finally, the
number of possible options per item was reduced from
11 to six in order to maintain consistency with the other
questionnaires used.

Emotions

The emotional state of the learners was captured with a five-
item questionnaire immediately after the respective learning
phase, asking about the learners’ subjective assessment of
positive-activating (pleasure, satisfaction) and negative-de-
activating emotions (boredom, frustration, and uncertainty)
during the learning process. This two-dimensional classi-
fication of achievement emotions is based on the work
of Pekrun (2014). Items were taken from the Achievement
Emotions Questionnaire developed and validated (Pekrun
et al 2002, 2011) and later translated into German.

Teacher Behavior

The behavior of the teacher during the intervention was
assessed at the post time point of the respective learning
phase using a four-item scale already applied in the pre-
liminary study. The students were asked about the teacher’s
commitment, willingness to support, and motivating effect.
By means of a confirmatory factor analysis, a two-factor
structure was identified, evoking a separation into two sub-
scales: willingness to support (WS) and commitment (CM).
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Analysis Methods
Multilevel Regression Analysis

Since it cannot be excluded that the learning process of the
students is influenced by the social group to which they be-
long, the hierarchical data structure with two levels (student
and course level) was taken into account when choosing the
method of analysis. For this purpose, two-level regression
analyses, according to Hox (2010), has been carried out to
detect group effects with 18 clusters on level two. For a mul-
tilevel analytical procedure, however, this number must be
regarded as small. In this case, Hox and McNeish (2020)
recommend the use of specially developed procedures to
avoid bias in the estimates of standard errors and thus im-
prove the accuracy of parameter estimation for small sam-
ple sizes. Consequently, the most common procedure for
parameter estimation in multilevel regression models, the
Full Information Maximum Likelihood Method (FIML),
should be replaced by the Restricted Maximum Likelihood
Method (REML). In this method, the variance components
are first estimated without taking the fixed effects into ac-
count, which results in a more accurate estimation of the
variance components. Then, the fixed effects are estimated
as a function of these variance components. Furthermore,
a correction should be made to the significance tests for
fixed effects. A common procedure for this is the so-called
Kenward-Roger correction (Kenward and Roger 1997). In
this correction procedure, the bias due to low sample sizes
is first estimated at higher levels, and then the standard
errors are corrected for this bias. In addition, the degrees
of freedom are approximated based on the parameter esti-
mates for the model under consideration. If both methods
are combined, simulation studies show a significant reduc-
tion of bias due to small sample sizes at higher levels (e.g.,
Luke 2017). In this case, Hox and McNeish specify based
on the results of simulation studies (McNeish and Stapleton
2016) a minimum number of five to eight clusters in cross-
sectional designs “for estimates to be stable and trustwor-
thy” (p. 218). The multilevel regression analyses for this
contribution were carried out using the software R and the
R-package Ime4 (version 1.1.21). Another advantage of this
analysis method is that the influence of the aggregation in
courses can be quantified and thus assessed by the pro-
portion of variance explained at level two. The associated
measure is the so-called Intraclass Correlation Coefficient
(ICC), for whose calculation the R-package sjstats (version
0.17.7) was additionally used.

Structural Equation Modeling

To empirically verify the hypothetical causal relationships
between emotion, cognitive load, and learning achievement,

and to investigate the influence of teacher behavior, the
method of structural equation modeling (see e.g., Kline
2011; Joreskog 1978) was applied. All necessary analysis
steps were performed with the software R and the R-pack-
age lavaan (version 0.6-3). Structural equation modeling
is a statistical technique that requires a large sample size.
A recommendation frequently given in the academic liter-
ature is a minimum sample size of N = 200 (e.g., Kline
2011; Barrett 2007), but based on simulation studies, other
authors estimate a sample size of N = 100-150 as ac-
ceptable (e.g., Anderson and Gerbing 1984; Muthén and
Muthén 2002). Since the given data was ordinally scaled
and not multivariate normally distributed, the model pa-
rameters were estimated using the Diagonal Weighted Least
Squares (DWLS) method. Since the sample size achieved
in this study can be considered small for structural equation
analysis, the DWLS method was used in its robust variant,
which is more suitable for small samples. In this variant,
the DWLS procedure is used to estimate the model param-
eters, but the standard errors are corrected, and a mean and
variance-adjusted test statistic is used.

Results

Since this work focuses on the learning effect of the digital
tool in the experiment-based learning processes, the results
for the experimental phase are shown and discussed here.
However, the results for the exercise phase can be found in
the Electronic Supplementary Material.

Preliminary Analyses
Group Differences Before the Intervention Began

In order to identify significant differences that existed be-
tween the groups before the intervention began, the Mann-
Whitney U test was conducted for course selection, prelim-
inary grades, and prior knowledge (two-sided, significance
level 5%). The results are shown in Table 4. There are

Table4 Test for significant group differences

TG CG U test
Variable M(SD) M(SD) P
Course choice
Physics 1.61 (0.49) 1.60 (0.49) 0.900
Mathematics 1.61 (0.49) 1.62 (0.49) 0.800
Preliminary grade
Physics 2.26 (1.20) 2.63 (1.41) 0.040
Mathematics 2.54 (1.25) 3.01 (1.37) 0.004
German 3.05 (1.09) 3.25(1.15) 0.100
Conceptual understanding
Pre test 4.66 (2.09) 3.92(1.99) 0.004

@ Springer



134

ZfDN (2020) 26:123-142

significant group differences for the preliminary grades in
physics (p = 0.040) and mathematics (p = 0.004) as well
as prior knowledge (p = 0.004). In order to control these
group differences statistically, a sample balanced in these
covariates was generated with the method of Propensity
Score Matching (PSM; e.g., Rosenbaum and Rubin 1983;
Guo and Fraser 2010) prior to the following comparative
analysis.

Propensity Score Matching

PSM allows causal statements on intervention effects to be
made, even in empirical studies in which complete random-
ization was not sufficiently successful (Fan and L. Nowell
2011). For all potential confounding variables, the so-called
propensity score (PS) is determined for each individual re-
spondent using a logistic regression model, and thus, each
respondent in one group is assigned one or more respon-
dents in the other group with the same or very similar PS
values. The data set of this paired population can then be
analyzed using conventional statistical methods. After the
matching process, the population was balanced in all covari-
ates (see Table 5), but the sample size was reduced from
N =286 to N =262. However, this was still sufficient for
the statistical analysis procedures intended in this work, so
that all further analyses will be based on the data set of the
paired sample.

Table 5 Test for significant group differences after PSM

TG CG U test
Variable M(SD) M(SD) p
Course choice
Physics 1.66 (0.47) 1.64 (0.48) 0.700
Mathematics 1.66 (0.48) 1.65 (0.49) 0.900
Preliminary grade
Physics 2.34 (1.20) 2.61 (1.40) 0.157
Mathematics 2.71(1.22) 3.00 (1.37) 0.101
German 3.05 (1.13) 3.24 (1.16) 0.157
Conceptual understanding
Pre test 4.31(1.94) 3.95 (2.01) 0.198

Multilevel Regression Analysis

i

Performance variables Cognitive load variables Emotional variables

Uniform gAccelerated
motion i motion

Fig. 3 Schematic illustration of the analysis process

EmOneg
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Multilevel Regression Analysis

For the comparative analyses between the treatment group
and the control group, the cognitive performance variables,
the cognitive load variables, and the emotional variables re-
garding the respective subject areas were subjected to mul-
tilevel regression analysis as shown in Fig. 3.

Conceptual Understanding

In a first step of the multilevel regression analysis, the ICC
value was determined. For both topics, it could be found
that only a small proportion of the variance is localized at
the course level (ICCg; = 9.4%, ICCg, = 7.2%, ICCgs =
12.1%; ICCg; = 1.8%, ICCg; = 3.8%, ICCp3 = 9.4%).
Fig. 4 gives an overview of the group-dependent mean val-
ues and standard errors of the relative test scores, differen-
tiated by the sub-concepts. In order to reveal significant dif-
ferences in learning gain between the two groups, the next
step was to examine whether there was an interaction effect
between the time of testing and group affiliation regarding
the different sub-concepts. The results are shown in Table 6.
Significant effects in favor of the TG were demonstrated
for two sub-concepts (G3: p = 0.002,n, = 0.020,/ - =
0.879; B2: p < 1072, 7% = 0.053,1 — B = 0.974) in fa-
vor of the CG for one sub-concept (B1: p = 0.012, 7 =
0.023,1 — B = 0.654). For comparison, the effects of the
preliminary study are shown in Table 7.

Cognitive Load

For ICL, as for the achievement variables, only a small
part of the variance is localized above the student level
[ICCicL, = 3.6% (UM)/9.8% (AM)]. This is also true for
ECL with respect to the accelerated motion (ICCgcp =
7.4%), but regarding the uniform motion, a comparatively
higher proportion of the variance is explained on level two
(ICCgcL = 24.9%). The examination for group differences
(see Table 8) yielded a significantly lower extraneous load
for the TG for both subject areas (UM: p = 0.013,7% =
0.034,1 - B =0.831; AM: p = 0.003, 5> = 0.090, — 8 =
0.979). In addition, however, the intrinsic load regarding
the accelerated motion was significantly lower for the TG
(p =0.029,7%> =0.041, 1 — B = 0.748).

Emotions

The proportion of variance explained at level two is esti-
mated to be low for positive emotions for both subject areas,
but higher than for cognitive load and achievement variables
[ICCEmoy,, = 10.1% (UM)/15.1% (AM)]. While for the sub-
ject area of accelerated motion this also applies to negative
emotions (ICCEmoncg = 14.3%), the proportion of the ex-
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Fig.4 Scores of the achievement tests differentiated by sub-concepts and group
Table 6 Effects of the replication study on experiment-based learning Table 8 Test for group differences in cognitive load
Sub-concept  ICC F )4 n? 1-B Cognitive IcC F p n’ 1-8
load
Uniform motion (N = 244) oa
Gl 0.094 1429 0233 - - Uniform motion (N = 233)
G2 0.072 040 0.842 3 B ICL 0.036 .545 0.472 - -
G3 0.121 9805 0.002 0.020 0.879 ECL 0.249 7.920 0.013 0.034 0.831
Accelerated motion (N = 168) Accelerated motion (N = 164)
BI 0.018 5563 0012 ~0.023%  0.654 ICL 0.098 6.564 0.029 0.041 0.748
B2 0.038 15.318 <103 0053 0.974 ECL 0.074 15.806  0.003 0.090 0.979
B3 0.094 0.074 0.787 - -
* The negative sign indicates an effect in favor of the control group Table 9 Test for group differences in emotional states
Emotions ICC F P n? 1-8
Table 7 Effects of the preliminary study on experiment-based learning Uniform motion (N = 228)
Sub-concept  ICC F p n? 1-B Emopos 0.101 1.814 0.199 - -
Uniform motion (N = 109) Emoy, 0.243 8.737 0.010 0.046 0.927
G2 _ _ 0.026 0.036 051 Accelerated motion (N = 160)
G3 _ _ <1073 0.093 0.91 Emops 0.151 2.439 0.150 - -
Accelerated motion (N = 70) Emoy, 0.143 9.303 0.013 0.057 0.878
Bl - - 0.022 0.050 0.46
B2 - - 0.001 0.138 0.90

plained variance for the subject area of uniform motion is
comparatively higher (ICCgpo,,, = 24.3%), as it is for ECL.
A group comparison (see Table 9) showed that the students
in the TG developed significantly lower levels of negative-
deactivating emotions in the teaching sequences of both
subject areas (UM: p = 0.010, 7> = 0.046, 1 — 8 = 0.927;
AM: p =0.013,7*> =0.057,1 - 8 = 0.878).

Structural Equation Modeling

Measurement Model

Based on the confirmatory factor analyses of the response
patterns of the instruments used, a measurement model was
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generated to operationalize the latent variables positive-ac-
tivating emotions (Emoy,), negative-deactivating emotions
(Emoye,), intrinsic (ICL) and extraneous (ECL) cognitive
load, and learning gain regarding the sub-concepts G3 and
B2 as well as the teacher behavior variables willingness to
support (WS) and commitment (CM).

Structural Model

The direct causal relationship between emotion, cognitive
load, and learning achievement, which is based on the
CLT and ICALM models, was transferred into a struc-
tural model. Teacher behavior was then integrated into the
model as an additional influencing variable, as it cannot be
excluded that this may influence the induced emotions as
well as the extraneous load. Thus, the structural model is
based on the following hypotheses:

o The higher the level of negative emotions, the higher the
extraneous load.

e The higher the level of positive emotions, the lower the
extraneous load.

e The higher the extraneous load, the lower the learning
achievement.

o Teacher behavior influences induced emotions and extra-
neous load.

o The higher the teacher’s commitment, the greater his or
her willingness to support.

The resulting structural model is illustrated in Figs. 5
and 6 as a path diagram with color-coded significant paths
for the two subject areas.

.894***
Teacher commitment

Uniform Motion

The resulting model with 47 free parameters fits the given
data well, p(x?) = 0.044, CFI = 0.981,TLI = 0.976,
RMSEA = 0.033, SRMR = 0.049. The significant path
coefficients are listed in Table 10.

Accelerated Motion

The resulting model with 47 free parameters fits the
given data well, p()(z) = 0.146,CFI = 0.997,TLI =
0.996, RMSEA = 0.030,SRMR = 0.072. The significant
path coefficients are listed in Table 11.

Discussion
Replication of Effects of the Preliminary Study

For the subject area of uniform motion, the positive effect
with respect to the sub-concept “reference system” (G3)
was again demonstrated with good test power. Effect size
and test power are lower in the replication study than in
the preliminary study, which can possibly be attributed to
the more advanced analysis method, since it also takes the
hierarchical data structure into account. One possible expla-
nation for this replicated positive effect is the interactivity
of the video analysis application, which allows students to
proactively manipulate the origin and spatial orientation of
the coordinate system at any point in the learning process.
By referring back to fundamental learning theories (CLT,

:

- 7y N

positive emotions  )e—>» negative emotions

Fig.5 Structural model with color-coded significant paths for the uniform motion
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Fig. 6 Structural model with color-coded significant paths for the accelerated motion

Table 10 Significant path coefficients for uniform motion

Outcome Predictor b se z D B

G3 ECL -0.324 0.136 -2.381 0.017 -0.325
ECL Emoyeq 0.704 0.071 9.941 <107 0.779
ECL WS -0.235 0.065 -3.603 <1073 —-0.280
WS CM 0.941 0.098 9.644 <1073 0.894
N =226; b=unstandardized estimate, S =standardized estimate

Table 11 Significant path coefficients for accelerated motion

Outcome Predictor b se z D B

B2 ECL -0.417 0.156 -2.672 0.008 -0.393
ECL Emope, 1.130 0.197 5.746 <107 0.983
WS CM .839 0.071 11.787 <107 0.891

N = 157; b=unstandardized estimate, 8 =standardized estimate

CTML), the active engagement with the learning object and
thus the construction of knowledge is promoted. On the
other hand, the dynamic linking of the coordinate system
and the motion diagrams, according to Ainsworth (2006),
contributes to the reduction of extraneous load, leading to
an increase in learning achievement.

For the subject area of accelerated motion, the positive
effect with respect to the sub-concept “acceleration as a vec-
torial quantity” (B2), which was demonstrated with high
test power in the preliminary study, could be replicated
with even higher test power. The effect size in the replica-
tion study was lower than in the preliminary study, which,
again, could be a consequence of the analysis procedure.
The interactivity of the video analysis application and the
dynamic linking of coordinate system and motion diagrams

can also be used to explain this effect. To understand accel-
eration as a vectorial quantity, it is essential to distinguish
a positive from a negative acceleration. The sign, however,
depends on the selected coordinate system, so that the above
mentioned advantages of active manipulation and dynamic
linking of the coordinate system could also have a learning
effect on the understanding of this sub-concept.

In contrast, effects that could only be detected with a low
test power in the preliminary study were no longer sta-
tistically detectable for the replication study. In particular,
even a negative effect was identified in the replication study
with regard to sub-concept “acceleration as alteration rate”
(B1), whereas a positive effect was found in the preliminary
study. This shows the necessity of taking test powers into
account to assess the statistical significance, and thus, the
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validity of study results, especially in empirical educational
research (Shadish et al 2002).

It is noticeable that the students of the TG showed a sig-
nificantly higher learning gain regarding the sub-concept
“vectorial character of the physical quantity” in the subject
area accelerated motion but not in the subject area uni-
form motion. One possible explanation lies in the students’
greater prior knowledge regarding this sub-concept, as can
be seen from the higher test scores in the pre test for both
groups. As already explained in the theoretical background,
ICL is co-determined by the prior knowledge of the stu-
dents, so that it can be assumed that ICL for learning tasks
concerning this sub-concept was lower for the subject area
uniform motion than for the subject area accelerated mo-
tion. It can also be assumed that ECL only has a significant
influence on learning performance when ICL is high (Paas
et al 2003; Zheng 2018). It can be concluded that the load-
reducing effect of video analysis only in the subject area of
accelerated motion could have had a significant influence
on learning performance with respect to this sub-concept
since ICL was higher than in the subject area of uniform
motion.

In summary, the positive effects of the preliminary study
regarding the conceptual understanding could be replicated
for two sub-concepts, and the learning-promoting effect
could be attributed to the interactivity of the video anal-
ysis application as well as the dynamic linking of coordi-
nate system and motion diagrams. This supports research
findings that have already empirically proven a positive ef-
fect of video analysis on conceptual understanding for other
topics in mechanics (Hochberg et al 2020; Wee et al 2015;
Hockicko et al 2014).

Intervention-induced Cognitive Load

By using the test instrument developed by Leppink et al
(2013), it could be demonstrated that the extraneous cog-
nitive load for the technology-supported experiment-based
learning process is significantly lower for both subject ar-
eas. Thus, the theoretically derived argumentation that the
visualization of multiple forms of representation by means
of the video analysis application fulfills the design prin-
ciples for multimedia learning environments and that this
leads to a reduction of the extraneous load is empirically
supported. In addition, it can be noted that for the subject
area of accelerated motion, the learners of the TG estimated
the intrinsic load to be significantly lower. Since the prior
knowledge of the learners also contributes to the intrinsic
load, and the experiments were identical, and the learning
tasks were comparable for both groups, a possible explana-
tion could lie in the higher prior knowledge of the learners
of the TG regarding sub-concept G3 of uniform motion.
Furthermore, the previous experiences from the execution
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of the experiments on uniform motion might have influ-
enced the learners’ assessment, so that the students of the
TG found the learning tasks on accelerated motion less
complex than did the students of the CG.

Intervention-induced Emotions

It could be shown that the emotional state of the learners
differs significantly between technology-supported and tra-
ditional experiment-based learning processes. Thus, tech-
nology support leads to a weaker formation of negative-de-
activating emotions. This consistently extends the research
results of Hillmayr et al (2020) and Sung et al (2016), which
could prove a positive influence on motivational variables
in technology-supported learning environments by the pos-
itive effect on emotional variables. However, it should be
noted that the positive effect is limited to negative-deacti-
vating emotions. In contrast, no significant group difference
could be demonstrated for positive-activating emotions.

Cause-effect Relationships Between Emotions,
Cognitive Load, and Learning Achievement

For both subject areas, a positive cause-effect relationship
between negative-deactivating emotions and extraneous
cognitive load could be statistically proven by structural
equation modeling. Thus, the greater the formation of
negative emotions during the experiment-based learning
process, the greater the extraneous load. This is in ac-
cordance with the ICALM model, which postulates an
influence of negative emotions on the learning process by
additionally binding cognitive resources, and thus, impair-
ing the active knowledge construction. This assumption
is also supported by current research results (Brand et al
2007; D’Mello and Graesser 2012).

For positive-activating emotions, no influence on cogni-
tive load could be proven. According to Pekrun (2014), pos-
itive emotions support the use of flexible learning strategies
and self-regulated learning, which implies a positive influ-
ence on cognitive load. One possible explanation for the
absence of this influence is the strong control of the inter-
vention. To ensure a fair comparison between TG and CG,
the learning process was pre-structured for the students and
left no room for other learning strategies so that there was
no need for self-regulatory mechanisms for the students.

For both topics, a negative cause-effect relationship be-
tween extraneous cognitive load and learning achievement
was found for the sub-concepts for which a positive ef-
fect in favor of the TG was identified. In conclusion, the
reduction of extraneous cognitive load as theoretically hy-
pothesized can be regarded as a cause for the increased
learning achievement. A direct influence of teacher behav-
ior on learning achievement could not be found, which in-
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dicates that the positive effects found are independent of
the instructing teacher. However, an influence on the extra-
neous load was detected for the uniform motion. A possible
explanation could be that the students in this subject area
are using tablet-supported video analysis for the first time
independently when experimenting. A lack of support from
the teacher seems to increase the extraneous load of the
students, although the teachers took a passive role in the
learning process. This is also supported by the fact that in
the following subject area, where the students were already
familiar with the measurement methodology, no influence
of the teacher’s behavior could be proven.

Conclusion

With regard to the ongoing digitization, especially in the
field of science education, this work aimed at contributing
to closing the large research gap regarding replicable re-
sults on the learning effectiveness of digital learning tools
in real-life teaching scenarios. Thus, it was possible to repli-
cate the positive effects of the use of tablet-supported video
analysis in a replication study for two essential topics in
the teaching of mechanics, uniform, and accelerated mo-
tion. Increasing the sample size compared to the prelimi-
nary study could increase the statistical power, contributing
to the generalization of the results. The effects that could be
replicated in this way were demonstrated in both the pre-
liminary and replication study with high test power, which
indicates that the occurrence of these effects is indepen-
dent of the sample population. Using multilevel regression
analysis could also show that the course affiliation, and
thus, the instructing teacher, has only a minor influence on
the effects observed. This also indicates the generalizability
of the replicated effects. This work thus contributes to the
transfer of the findings into school practice and to the ev-
idence-based implementation in regular physics lessons. It
should be noted that for both extraneous load and negative-
deactivating emotions, the proportion of explained variance
at course level is higher for uniform motion than for accel-
erated motion. One possible explanation for this difference
is that at the beginning of the intervention on the subject of
uniform motion, students are confronted with a new type of
measurement methodology in the classroom and are there-
fore uncertain at first what to expect. In this situation, the
teacher’s behavior may have a greater influence on the emo-
tional state of the learners and thus the cognitive load than in
the teaching sequence for accelerated motion, in which the
students are already familiar with the measurement method-
ology.

A second objective of the replication study was to
empirically support the theory-based foundation of the
learning effectiveness in terms of the reduction of cogni-

tive load. It was possible to demonstrate with high test
power that the extraneous cognitive load during the exper-
iment-based learning process in the technology-supported
teaching sequences is significantly lower than in the tradi-
tional teaching sequences. By means of structural equation
modeling, the theoretically hypothesized direct causal rela-
tionship between load reduction and learning achievement
could be empirically verified. This supports the theory-
guided argumentation that the learning-promoting effect
of the digital tool results from the reduction of the load
irrelevant to learning. The learner thus has more free cogni-
tive resources available for active knowledge construction,
which increases the effectiveness of the learning process
and ultimately leads to a deeper conceptual understanding.
This supports the theoretical foundation of effectiveness of
tablet-based video analysis derived from multimedia learn-
ing theories and contributes to an expansion of the research
basis by providing a possible explanation for the positive
effects on learning achievement already proven in several
studies (Becker et al 2018, 2019; Hochberg et al 2020;
Klein et al 2018). Furthermore, it could also be shown that
basic theoretical design principles for multimedia learning
environments can also have a learning-promoting effect in
real multirepresentational teaching scenarios.

Additionally, it was shown that the use of technology
also has an impact on the emotional state of the learn-
ers. Thus, learners who were supported by technology
when experimenting showed a significantly lower level of
negative-deactivating emotions. Using structural equation
modeling statistically proved that, in accordance with the
ICALM model, a higher level of negative emotions leads
to an increase in extraneous load. The study results thus
reveal an indirect learning effect on the influence of digital
learning tools on the emotional state, which has so far
received little attention, and contribute to closing the large
gap between the ubiquity of emotions in learning processes
and the focus of educational research on mostly cognitive
variables, which exists according to Pekrun and Stephens
(2010) and Plass and Kaplan (2016).

Outlook

Due to the product orientation of the study, the question re-
mains open to what extent and at what point in the learning
process the learners use the available forms of representa-
tion individually or in combination. To clarify this question,
a process-oriented research methodology such as eye track-
ing is suitable. This would make it possible to capture the
interaction of the learners with the forms of representation
provided by the video analysis application with a high tem-
poral resolution. In addition to the allocation of attention to
certain forms of representation, transitions between them
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could also be investigated, which would provide insight
into the integration of different forms of representation in
the solving of a physical problem using the digital tool. In
this way, the learner’s use of the dynamic link between the
coordinate system and the motion diagrams could also be
resolved, which is a possible reason for the learning effec-
tiveness of the digital tool. Theoretical models of the effec-
tiveness of technology support in learning with MERs (e.g.,
Rau 2017) could thus be empirically supported or even ex-
tended. Against the background of a not yet completed ex-
tension of traditional multimedia theories to experiment-
based learning processes, the process-oriented investigation
of the interaction of learners with MERSs is a promising re-
search desideratum.

Furthermore, based on the study findings, no statement
can be made about the effectiveness of long-term use in
regular school lessons. However, due to the comparable ef-
fectiveness for two chronologically consecutive, differently
complex subject areas, it can be assumed that the positive
effects of this method for more complex topics in the teach-
ing of mechanics will at least be maintained, which shows
the great potential of tablet-supported video analysis for
sustainable use in physics lessons. In view of the ongoing
digital transformation in education, we encourage other re-
search groups to build on the results of the study presented
here and to explore the potential of this digital learning
tool for other (more complex) topics in mechanics as well
as a sustainable long-term use in regular physics lessons.
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