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Abstract
Purpose of Review Organosulfur compounds are intentionally added to natural gas as malodorants with the intent of short-
term nasal inhalation to aid in leak detection. Regulatory exposure limits have not been established for all commonly used 
natural gas odorants, and recent community-level exposure events and growing evidence of indoor natural gas leakage have 
raised concerns associated with natural gas odorant exposures. We conducted a scoping review of peer-reviewed scientific 
publications on human exposures and animal toxicological studies of natural gas odorants to assess toxicological profiles, 
exposure potential, health effects and regulatory guidelines associated with commonly used natural gas odorants.
Recent Findings We identified only 22 studies which met inclusion criteria for full review. Overall, there is limited evidence 
of both transient nonspecific health symptoms and clinically diagnosed causative neurotoxic effects associated with prolonged 
odorant exposures. Across seven community-level exposure events and two occupational case reports, consistent symptom 
patterns included: headache, ocular irritation, nose and throat irritation, respiratory complaints such as shortness of breath 
and asthma attacks, and skin irritation and rash. Of these, respiratory inflammation and asthma exacerbations are the most 
debilitating, whereas the high prevalence of ocular and dermatologic symptoms suggest a non-inhalation route of exposure.
Summary The limited evidence available raises the possibility that organosulfur odorants may pose health risks at exposures 
much lower than presently understood, though additional dose-response studies are needed to disentangle specific toxicologic 
effects from nonspecific responses to noxious organosulfur odors. Numerous recommendations are provided including more 
transparent and prescriptive natural gas odorant use practices.

Keywords downstream natural gas · odorants · mercaptans · health effects · community exposure · organosulfur compounds

Introduction

Methane  (CH4), the primary component of natural gas, is 
highly combustible, yet is colorless and odorless. To aid in 
leak detection and promote safety, processed natural gas 

is intentionally odorized using a variety of organosulfur 
compounds. Generally, three chemical classes of organo-
sulfur compounds are used in the natural gas industry in 
North America: alkyl mercaptans such as t-butyl mercap-
tan (TBM) defined by a terminating S-H (thiol) group; 
alkyl sulfides or thioethers such as dimethyl sulfide (DMS) 
defined by a dual-linked sulfur atom; and cyclic odorants Drew R. Michanowicz and Olivia M. Leventhal Contributed equally 

to this work.

 * Drew R. Michanowicz 
 drew@psehealthyenergy.org

1 Center for Climate, Health and the Global Environment, 
Harvard T.H. Chan School of Public Health, Boston, 
MA 02215, United States

2 PSE Healthy Energy, Oakland, CA 94612, United States
3 School of Medicine, University of California, San Francisco, 

CA 94143, United States
4 Earth & Environmental Sciences Area, Lawrence Berkeley 

National Lab, Berkeley, CA 94702, United States

5 Boston University School of Public Health, Boston, MA, 
USA

6 Division of General Medicine Pediatrics, Boston Children’s 
Hospital, Boston, MA 02115, United States

7 Department of Environmental Science, Policy 
and Management, University of California, Berkeley, 
Berkeley, CA 94702, United States

8 Energy Technologies Area, Lawrence Berkeley National Lab, 
Berkeley, CA 94702, United States

http://orcid.org/0000-0002-2538-4819
http://crossmark.crossref.org/dialog/?doi=10.1007/s40572-023-00403-w&domain=pdf


338 Current Environmental Health Reports (2023) 10:337–352

1 3

such as tetrahydrothiophene (THT) that have a sulfur atom 
linked within a saturated CH ring structure. Odorants are 
most often added at the point where gas enters the distri-
bution network but also are required in some high-volume 
transmission pipelines that intersect high population areas 
[1]. Overall, the effectiveness of odorizing natural gas as a 
safety mechanism cannot be overstated; however, no litera-
ture review has been conducted on the toxicological end-
points associated with commonly used natural gas odorant 
compounds and exposures in animals or humans. Given the 
widespread use of these various odorant chemicals in natural 
gas and the growing evidence of urban and indoor natural 
gas leakage [2–4] that can lead to prolonged human expo-
sures, we conducted a scoping review to evaluate the scien-
tific evidence regarding the toxicological and human health 
endpoints of the most widely used natural gas odorants.

This review also includes an introduction to natural gas 
odorant regulations and existing recommended practices 
for natural gas odorant chemical usage. We cross-reference 
reported symptomologies between documented community-
level odorant exposure events to assess symptom patterns 
following acute to sub-chronic low-dose odorant exposures. 
Finally, we provide conclusions and recommendations 
related to improving the current understanding of natural 
gas odorants and human health.

Natural gas odorant usage

In 1937, a natural gas leak at a school in New London, Texas 
caused an explosion that resulted in the deaths of approxi-
mately 300 students and teachers [5]. Because natural gas 
was not routinely odorized at that time, the leak went unde-
tected, and students and staff were unable to evacuate before 
the explosion occurred. One month after the explosion, the 
International Association of Fire Chiefs released an inves-
tigative report citing its top prevention recommendation as 
the required use of “effective malodorants for detection of 
escaping combustible gas due to leaking equipment” [5]. 
As a result, a U.S. federal law mandating the odorization 
of natural gas was put into place and continues to form the 
basis of all current natural gas odorization practices.

According to Title 49, section 192.625 of the United 
States Code of Federal Regulations (CFR) (49 CFR 
§192.625), “a combustible gas in a distribution line must 
contain a natural odorant or be odorized so that at a con-
centration in air of one-fifth of the lower explosive limit is 
readily detectable by a person with a normal sense of smell” 
to enable evacuation of indoor spaces with dangerous natu-
ral gas concentrations. Thus, the application of odorants to 
natural gas are based solely upon the risk of thermal explo-
sivity. In considering the lower explosion limit of methane, 
approximately 4.4% methane by volume, a natural gas leak 
must have enough odorant to be detected via sense of smell 

at one-fifth that concentration or approximately 0.88% by 
volume in ambient air. Notably, no other regulatory guid-
ance is provided related to odorization standards or chemical 
usage. The only mention of exposure related to human health 
is in 49 CFR § 192.625(c)1, which states that “the odorant 
may not be deleterious to persons…”.

The European Union (E.U.) regulates natural gas odorant 
usage and standardization through a non-profit international 
association of 25-member organizations across 19 countries 
[6]. This body maintains a much more rigorous level of tech-
nical regulation, standardization, and certification of odori-
zation practices compared to North America. For example, 
odorant formulas and concentrations must meet specific 
requirements or standards and routine sampling must be 
done at various points of the distribution system[6]. The 
majority of EU member countries have adopted minimum 
odorant concentrations to meet odorization requirements 
as opposed to olfactive or smell tests [6]. Where available, 
odorant concentrations are measured in gas by three dif-
ferent standardized analytical methods depending upon the 
constituent of interest [6]. Some countries have also begun 
utilizing admixtures of sulfur-free odorants such as ethyl 
acrylate [6]. While much of this review was informed by 
odorization practices common in North America, the EU 
and other parts of the world utilize many of the same sulfur-
based odorants.

In practice, natural gas odorants must possess several 
physical and chemical characteristics to be effective for leak 
detection. According to industry recommended practices, 
odorants must have a strong and distinct odor, a high degree 
of chemical stability to persist in the natural gas system and 
the environment, a high vapor pressure to avoid condensa-
tion, a low freezing point, must not be harmful to persons, 
materials, or pipes, and must not create toxic combustion 
byproducts [7]. To achieve these properties, natural gas utili-
ties around the world typically use blends of various orga-
nosulfur compounds, of which the most commonly reported 
include tert-butyl mercaptan (TBM), isopropyl mercaptan 
(IPM), tetrahydrothiophene (THT), n-propyl mercaptan 
(NPM), and dimethyl sulfide (DMS). From available infor-
mation, TBM is more commonly used in North America, 
whereas THT is the common odorant utilized in the E.U. 
[6–10].

While odorants are reported to be applied to the gas 
stream in low concentrations (1-4 ppm [7,11]; 0-10 ppm 
[12]; 3-40 mg/m3 [6]), a study of the composition of the 
natural gas distribution system in Boston identified large 
variations in the concentration of odorants present at the 
point of use [13], suggesting that the concentrations at 
which odorants are added to natural gas and the result-
ing concentrations at the point of the end-user can vary 
greatly. In addition, physicochemical processes within 
pipelines can decrease odorant concentrations (i.e., odor 
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fade) [10,14]. To address odor fade, utilities may pretreat 
new pipelines or add extra odorant, potentially leading to 
the injection of more odorant than necessary to meet the 
regulatory requirements [15]. However, no formal regula-
tions address odor fade and practices may vary by opera-
tor [7,10]. Overall, variability in both natural gas odorant 
application and human odor detection thresholds can con-
tribute to a wide range in odorant content at the point of 
the end user that can affect natural gas leak detectability 
and odorization efficacy [13].

Unlike the E.U., U.S. federal odorization laws do not list 
specific compounds or concentrations that must be used; 
therefore, odorant use within the U.S. has generally been 
regarded as proprietary. The proprietary nature of chemical 
odorization introduces uncertainty surrounding which odor-
ants are used and at what concentrations. This is particu-
larly the case for the compounds methyl mercaptan (MM) 
and ethyl mercaptan (EM) based on conflicting evidence 
of reported use. Ortiz [8] notes that methyl mercaptan is 
not used as a natural gas odorant due to its low molecular 
weight and high reactivity. This claim is supported by other 
publications including reports from the Agency for Toxic 
Substances and Disease Registry (ATSDR), the National 
Oceanic and Atmospheric Administration (NOAA), and the 
American Chemistry Council (ACC), where methyl mer-
captan is explicitly considered to not be acceptable for use 
as a natural gas odorant [16–18]. These claims, both from 
industry and government sources alike, contradict similar 
documentation from the Department of Health and Human 
Services (DHHS) and other sources affirming methyl mer-
captan use in U.S. natural gas systems [19–22••].

Similarly, ethyl mercaptan is not reported as a commonly 
used natural gas odorant [8], although some odorized natural 
gas materials safety data sheets (MSDS) list ethyl mercaptan 
as an odorant [23,24]. Ethyl mercaptan, however, is com-
monly used as a natural gas odorant in Romania and for liq-
uified petroleum gas (LPG) (e.g., propane) [6,8,20,25–29]. 
Notably, Hazardous Materials Regulations in the U.S. 
require LPG to be effectively odorized using one pound 
of ethyl mercaptan per 10,000 gallons for transportation 
[28,30], though in practice 1.5-2.5 pounds may sometimes 
be used [27]. Overall, methyl mercaptan and ethyl mercap-
tan appear to be used only sparingly if at all as natural gas 
odorants in the U.S. [7–10]. Nonetheless, the literature on 
the acute health impacts of methyl- and ethyl mercaptan have 
been thoroughly reviewed by the National Research Council 
[31] and—in the case of methyl mercaptan—by the ATSDR 
[17,32] leading to the development of exposure guidelines 
for these compounds (Table 1). For these reasons, methyl- 
and ethyl mercaptan were excluded from this review. Thus, 
this review focuses on the most common and consistently 
reported natural gas odorants—TBM, IPM, THT, NPM, and 
DMS [7–10].

Natural gas odorant exposure guidelines

Various international regulatory bodies set general and 
workplace exposure guidelines to protect human health 
based upon available scientific evidence. For example, the 
US Environmental Protection Agency (USEPA) provides 
Reference Concentrations (RfC) or non-hazardous inhala-
tion exposure levels for numerous chemicals.). Similarly, 
the California Office of Environmental Health Hazard 
Assessment (OEHHA) sets acute and chronic reference 
exposure levels for numerous compounds intended for 
use in community health assessments. For occupational 
settings, occupational exposure limits can be set by the 
Occupational Health and Safety Administration (OSHA), 
the National Institute for Occupational Safety and Health 
(NIOSH), and the American Conference of Governmental 
Industrial Hygienists (ACGIH; see Table 1). OSHA can set 
permissible exposure limits (PELs) limiting the concentra-
tion of a chemical substance or physical agent individuals 
may be occupationally exposed to over an 8-hour period 
(the typical length of a work shift) [33]. Similarly, NIOSH 
and ACGIH set recommended exposure limits (RELs) and 
threshold limit values (TLVs), respectively, for exposure 
to hazardous substances or conditions in the workplace 
[34]. Other relevant occupational exposure limits can be 
informed by the German Research Foundation (DFG, 
Deutsche Forschungsgemeinschaft) Commission for the 
Investigation of Health Hazards of Chemical Compounds 
in the Work Area, better known as the MAK Commission 
[35].

Overall, community-level, and occupational exposure 
limits are lacking for commonly used odorants or rely upon 
surrogate compounds (e.g., n-butyl-mercaptan as a surro-
gate for tert-butyl-mercaptan) (Table 1). Although THT, 
DMS, and NPM have at least one occupational exposure 
limit guideline, it is important to note that these limits are 
inappropriate for broader community exposure guidance due 
to different exposure scenarios and varying susceptibilities 
within the broader population. Outside of the regulatory 
agencies above, the Texas Commission on Environmental 
Quality (TCEQ) recently developed interim short-term and 
long-term effects screening levels (ESLs) for commonly 
used natural gas odorants with the intent to protect human 
health in the general public as well as to prevent nuisance 
odors and harmful effects in vegetation. However, these 
ESLs have not been finalized and long-term ESLs are based 
on the occupational benchmarks where available; or in case 
of TBM and IPM, are based on unspecified surrogate com-
pounds [36,37]. To date, it appears that these ESLs have only 
been used for air permit requirement purposes. And while 
these ESLs are not ambient air standards, they do “represent 
concentrations in outdoor air below which adverse effects on 
health or welfare are not expected” [37,38]. Until finalized 
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however, it remains unclear how these interim ESLs were 
developed or what surrogate compounds were used.

Methods

We conducted a scoping literature review by searching Pub-
Med and Web of Science databases for literature related to 
the health hazards, risks, and impacts of DMS, THT, TBM, 
NPM, and IPM exposure. The search was conducted on 
February 21, 2022; a complete list of search terms can be 
found in Online Resource 1. Resulting articles were initially 
screened by title and then by abstract. We included titles 
that indicated that the article was an in vivo (i.e., human 
or animal) or in vitro study of an odorant of interest. If the 
odorants were not explicitly named in the title, but the title 
indicated it was a human, animal, or cell culture-based study, 
then abstracts were screened to determine the odorants stud-
ied. The abstracts were screened according to the following 
inclusion criteria:

(1) English language
(2) Odorant of interest
(3) Original study
(4) External exposure to odorants of interest (as opposed 

to biological breakdown product or modeling study)
(5) Includes biological endpoint

Studies that included co-exposure to other sulfur com-
pounds were included during our screening process. In addi-
tion to the primary PubMed and Web of Science searches, 
we also identified relevant studies that were cited by the 
articles included in the final review. When relevant cita-
tions were inaccessible (due to either language, age, or 
being unpublished), summaries from the citing article were 
included herein.

Results

Our search yielded a total of 1,585 unique articles, of which 
119 remained after titles were screened for relevance. After 
abstracts were screened for our inclusion criteria and addi-
tional studies were included, a total of 22 articles were iden-
tified, of which ten were human exposure studies, eleven 
were animal studies, and one was a cell culture study. 
Despite a long history of efficacy as a leak detection sys-
tem, studies of organosulfur exposure in humans have gen-
erally been limited to accident-related community exposure 
events and low sample-size case reports in occupational set-
tings following chemical spills. One prominent community 
exposure event at the Aliso Canyon underground gas storage 
facility in Porter Ranch, California was not included in our 

primary literature search or article citations but was included 
in our review given its high-profile nature and motivation 
to perform this review. The results of our literature search, 
screening process, and a complete list of articles included in 
our review are provided in Online Resource 1. We discuss 
the results of these studies below first by specific odorant 
and then from a multi-pollutant perspective.

Dimethyl sulfide (DMS)

Human studies

One case of occupational exposure to DMS occurred in a 
paper manufacturing plant in Japan when two men entered 
a storage tank and immediately collapsed. One was deceased 
when found and the other died one and a half days later. 
Though MM and DMS were both potentially present, blood 
analysis revealed DMS as the primary inhaled gas [39••]. 
Autopsy results and accompanying animal investigations 
suggest that the cause of death was due to asphyxia due 
to displacement of atmospheric oxygen by the DMS gas 
[39••]. Other human exposure studies of DMS in the litera-
ture have concurrent exposures to other sulfur compounds 
(e.g., hydrogen sulfide  (H2S), MM, etc.) [40•–42•] that were 
not disentangled and are subsequently discussed below with 
other multi-pollutant exposure events.

Animal studies

The majority of animal studies were acute exposure stud-
ies that used death as their primary endpoint. One study 
that focused on behavioral changes in rats found that a 0.5g/
kg dose of DMS resulted in decreased motor activity when 
administered both orally and intraperitoneally, as well as 
reduced body temperature when placed in a 5°C environ-
ment after intraperitoneal administration of DMS [43]. 
Another study that reported symptoms of acute exposure in 
rats found that DMS increased secretions from the eyes and 
nose as well as voluntary and respiratory muscle paralysis 
starting at 0.56% v/v DMS [44]. DMS resulted in mortal-
ity in 15 minutes at 5% v/v [44]. In another acute exposure 
experiment in rats, intraperitoneal DMS injection produced 
a median effective dose  (ED50) for coma of 817 mg/kg 
(dose producing coma in 50% of rats) and median lethal 
dose  (LD50) of 537 mg/kg (dose producing death in 50% 
of rats). Rats at higher doses also displayed ataxia, either 
alone or accompanied by subsequent loss of the righting 
reflex as well as an increased heart rate and respiration rate 
[45]. Another acute inhalation exposure study in rats found 
a 4-hour median lethal concentration  (LC50) of 40,250 ppm 
[46]. Similarly, an acute inhalation study in mice found that 
100% of mice became immobile within one minute and died 
within eight minutes of exposure above 6.8±1.3% v/v DMS 
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[39••]. However, another study that looked at short-term 
oral exposure to smaller doses (up to 250 mg/kg/day for 14 
weeks—equivalent to an intake of 17.5 g/day by a 70 kg 
adult) did not report any adverse effects for all dose levels 
[47,48]. It should be reiterated that concentrations of odor-
ants used in these animal studies are significantly greater 
than would be expected from a distribution-grade natural 
gas leak, and not all controlled studies assessed exposures 
through inhalation. For example, the maximum DMS con-
centration reported in the E.U. gas system was 10 mg/m3 
for 100% natural gas, indicating that exposure to a small gas 
leak at 0.1% gas would have an equivalent maximum DMS 
concentration of 0.01 mg/m3.

A biochemical pathway for DMS toxicity has also been 
suggested based upon its ability to inhibit rat hepatic dimeth-
ylnitrosamine demethylase [49]. Dimethylnitrosamine dem-
ethylase is a mixed function oxidase that metabolizes a large 
array of lipophilic drugs and endobiotics [50,51]. In another 
study, DMS exhibited a small inhibitory effect on rat mito-
chondrial respiration [52]. In another study, DMS served as 
a functional substrate for methionine sulfoxide reductase A, 
a key antioxidant enzyme, and reduced oxidative stress and 
increased lifespan in C. elegans (roundworms) and Drosph-
ila (fruit flies) [53]. While the impact of DMS in human 
cells is not elucidated in these studies, they suggest possible 
biological pathways for DMS exposure to influence human 
biology and alter metabolism of select pharmaceuticals.

tert‑Butyl mercaptan (TBM)

Human studies

In 2008, TBM intended for natural gas odorization leaked 
from a storage tank following a lightning strike at the Gulf 
South natural gas pumping station in Prichard, Alabama 
[54]. The health effects from airborne exposure to the mer-
captan were not investigated until 2012, when a contami-
nated spring was discovered. Ambient TBM concentrations 
were measured only at the outfall of the spring reaching a 
maximum of 230 ppb. While no other ambient sampling 
took place, odor complaints of nearby residents were docu-
mented over a 6-month period [54]. 37% of the study popu-
lation living within a 2-mile radius sought medical care for 
perceived odor-related symptoms, with self-reported symp-
toms including nausea, dizziness, headaches, general weak-
ness, nasal congestion, sinus infection, shortness of breath, 
cough, wheezing, asthma exacerbation, skin irritation, and 
eye, nose and throat irritation among other complaints. Odor 
severity and the occurrence of self-reported symptoms were 
greater among residents living within a one-mile radius as 
compared to residents living within a two-mile radius [54]. 
While definitive exposure levels could not be determined, 
concentrations were likely significantly lower in the 2-mile 

radius compared to the source (230 ppb) based solely upon 
general dispersion and dilution dynamics. Overall, this study 
provides some evidence that long-term exposure to TBM at 
very low concentrations can induce psychological, gastroin-
testinal, dermal, cardiovascular, and respiratory symptoms 
that have the potential to exacerbate underlying health condi-
tions such as asthma.

Animal studies

In an animal study, TBM was classified as “practically 
non-toxic" due to its relatively high 15-day post-inhalation 
 LC50 of 22,200 ppm/4h in rats and 16,500 ppm/4h in mice 
[55]. However, concentrations of TBM at near lethal levels 
resulted in muscle weakness, ataxia, increased respiration 
and restlessness, partial skeletal muscle paralysis, sedation, 
and cyanosis in both rats and mice [55]. TBM exposure 
also resulted in mucous membrane irritation and increased 
respiration, similar to the symptoms reported in the human 
exposure event in the Eight Mile community of Prichard, 
Alabama [54,55].

Isopropyl mercaptan (IPM)

Our review did not find any IPM human exposure or animal 
studies. The only study investigating potential health effects 
of IPM was a cell culture study that found that the reac-
tion products of selenite with IPM (and other thiols) inhibit 
amino acid incorporation and protein synthesis [56]. While 
interesting, this study does not provide information on the 
toxicity of IPM on its own. The paucity of literature on IPM 
is particularly notable given its relatively frequent use as a 
natural gas odorant (second most common) [7–9].

n‑Propyl mercaptan (NPM)

Human studies

There have been two major community NPM exposure 
events, both of which resulted from the degradation of etho-
prop, an organophosphate acetylcholinesterase inhibitor 
insecticide [22••,57••]. NPM is both a manufactured pre-
cursor and a degradation product of ethoprop, and is slowly 
released into the environment following the application of 
the insecticide. The first exposure event occurred in 1989 in 
Dorris, California after ethoprop was applied to 145 acres 
of potato fields [57••]. Soon after its application, nearby 
residents began complaining of a number of health effects 
including headache (odds ratio [OR] = 5.08), diarrhea (OR = 
3.80), runny nose (OR = 5.31), nausea (OR = 3.39), vomiting 
(OR = 1.86), sore throat (OR = 3.58), burning/itching eyes 
(OR = 5.64), fever (OR = 3.59), difficulty breathing (OR 
= 3.44), hay fever attacks (OR = 3.50), and asthma attacks 
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(OR = 6.0) [57••]. Survey data also noted that the stronger 
the perceived odor and the longer the exposure duration, the 
greater the number of health effects reported [57••]. Ames 
and Stratton [57••] considered direct exposure to ethoprop 
unlikely because the compound was incorporated into the 
soil and therefore attributed observed symptoms to NPM 
exposure, though no in situ air monitoring was performed.

The second NPM exposure event occurred in 2006 when 
a shipment of ethoprop degraded at a wastewater treatment 
plant in Fairburn, Georgia and resulted in the release of 
NPM into the air [22••]. Air samples taken during the inci-
dent resulted in non-detects (albeit with a 0.5 ppm limit of 
detection) even though residents reported the odor lingering 
for several weeks [22••]. During the event, the ATSDR rec-
ommended an outdoor NPM action level—the concentration 
below which no permanent health effects are expected to 
occur—of 0.5 ppm based on chemically functional similari-
ties between NPM and methyl mercaptan. Notably, the 0.5 
ppm action level is two to four orders of magnitude greater 
than the NPM odor detection threshold (0.013-1.6 ppb 
[58,59]; see Table 1) and equal to both the limit of detec-
tion for the monitoring instrument deployed and the NIOSH 
15 min recommend exposure limit, which are typically not 
appropriate for general population exposures [22••]. Symp-
toms reported were similar to those in the Dorris, California 
exposure event and included headache (74%), burning eyes 
(58%), cough/sore throat (54%), nausea/vomiting (49%), 
and difficulty breathing (45%). 41% of people reported other 
symptoms such as chest congestion or tightness, skin irrita-
tion, diarrhea, and fatigue, with most people reporting mul-
tiple symptoms [22••]. Despite numerous reports of symp-
toms, it was concluded that the site was “not a public health 
hazard because all air samples were below the action level 
and long-term health impacts were not expected” [22••]. 
Nonetheless, both studies must be interpreted with caution 
due to significant overlap between the reported symptoms 
and those caused directly by ethoprop exposure and other 
similar acetylcholinesterase inhibitors [22••,57••,60].

Animal studies

Analysis of medical records of dogs and cats from the 
Fairburn, Georgia exposure event showed an increase in 
frequency of gastrointestinal symptoms in dogs and eye 
inflammation in cats following the chemical release; how-
ever, both of these clusters of symptoms were reported in 
geographically separate locations [22••,61]. Furthermore, 
the researchers did not know the home range of each pet, 
so exposure to NPM of each animal could not be estimated 
[61]. Despite the limitations of the companion animal study, 
the results complement the evidence from the human expo-
sure events that NPM is associated with symptoms of nau-
sea/vomiting, diarrhea, and eye irritation [22••,61].

The same animal toxicological study that investigated 
TBM also looked at NPM and calculated 15-day post-
inhalation  LC50 for rats (7,300 ppm/4h) and for mice (4,010 
ppm/4h) [55]. The authors classified NPM as slightly toxic. 
The authors also reported that NPM inhalation at near-lethal 
concentrations for both rats and mice resulted in similar 
symptoms as TBM (muscle weakness, ataxia, increased res-
piration and restlessness, partial skeletal muscle paralysis, 
sedation, cyanosis, and mucous membrane irritation) [55].

In another study cited by Fairchild and Stokinger [55], but 
inaccessible, a 4-hour rat  LD50 of 4,100 ppm was found for a 
thiol mixture of 24% NPM, 55% butyl mercaptan, and 21% 
amyl mercaptan [62]. Inhalation of thiols was considered a 
moderately severe hazard due to resulting pneumonitis and 
tracheitis [62].

Tetrahydrothiophene (THT)

Human studies

Two reports of human exposure of tetrahydrothiophene 
(THT) have been documented with overlapping symp-
toms including headache, nausea, and shortness of breath 
[63•,64••]. The first report was for two separate occupa-
tional exposures—a 73-year-old (Case A) and a 53-year-
old (Case B)—both of whom were natural gas odorization 
workers employed at the same facility. There were no direct 
measurements of THT during the relevant occupational 
exposures settings, but THT concentration during odoriza-
tion was estimated to be between 3-4 ml/m3 as determined 
by a technical consulting service retained by the statutory 
accident insurance institution [64••]. The 73-year-old male 
performed odorization activities one to three times per week 
from 1968-1971, with each event lasting approximately an 
hour. Odorization activities took place in a small chamber 
with no ventilation or personal protective equipment. The 
53-year-old performed odorization tasks from 1970-1982 
in the same facility, over which time improvements to THT 
containers and personal protective equipment eventually 
likely limited exposure. Both men reported symptoms of 
nausea, vomiting, headache, mucosa irritation, rhinitis, 
and difficulty breathing during work exposure [64••]. Both 
men also reported acute dermal irritation presenting with 
eczematous, and reddened scaly skin alterations following 
acute exposure. Their symptoms gradually worsened over 
the course of their odorizing activities, with some persisting 
during non-work hours. After cessation of odorizing activi-
ties, both Case A and Case B showed improvements; how-
ever, chronic shortness of breath and respiratory impairment 
persisted. Neither had a pertinent family history, nor evi-
dence that any of their medical problems were pre-existing 
conditions, though Case B did report a history of smok-
ing. Nonetheless, it was concluded by the study authors that 
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their chronic obstructive pulmonary disease (COPD) was a 
direct result of chronic occupational exposure to THT and 
as a result, both patients’ diagnoses were accepted by their 
respective insurance institutions and were granted compen-
sation. Study authors concluded that in the light of severe 
central nervous system disorders observed in animal studies, 
the nausea, vomiting, headaches, loss of appetite reported 
by the exposed workers likely represent transient symptoms. 
Both the improvement of symptoms after cessation of THT 
exposure and the temporal relationship between long-term 
THT exposure and the development of severe respiratory 
symptoms suggested a causative association.

The second exposure event occurred in Hong Kong, when 
70 adolescent-aged school children from two nearby schools 
were taken to hospitals for assessment and observation asso-
ciated with exposure to a THT spill on a nearby barge [63•]. 
Reported symptoms included headache, dizziness, nausea, 
and shortness of breath, with improvements observed after 
leaving the site of exposure [63•]. Ambient concentrations 
of THT during the exposure event were not reported, and 
unfortunately, no other details were made available.

Animal studies

No animal studies met our review inclusion criteria; how-
ever, Baur and Bittner [64••] cited multiple unpublished or 
inaccessible studies as well as non-English studies related 
to animal toxicity and THT. Given the importance of this 
weight of evidence in supporting their causal inference 
claims, we included a summary of their review below.

Following acute inhalation exposures, animals have pre-
sented a wide range of effects including general dysfunc-
tion of the central nervous system (hyperactivity, motor 
hyperreflexia, sedation, narcosis), irritation of eye and nose 
mucosa, dyspnea associated with hyperinflation and severe 
lung damage, peripheral vasodilation, and, when combined 
with adrenalin, cardiac arrhythmia, and bradycardia [65–72]. 
Chronic inhalation tests with mice and rats showed lacri-
mation, hypersalivation, liver dysfunctions and behavior 
disorders (hyperactivity, temporary aggression followed by 
depression) [70,73]. A study of the effect of THT exposure 
on pregnant rats found a no observed adverse effect concen-
tration (NOAEC) of 234 ml/m3 for maternal toxicity (nose, 
eye, and skin irritation, agitation) and of 1,910 ml/m3 for 
adverse fetal effects [74]. Oral uptake additionally induced 
damage to liver, kidneys, and intestines [66].

Multi‑pollutant exposure events

In addition to single odorant exposure events, there are mul-
tiple health effects studies where exposure to multiple sulfur-
containing compounds occurred. A cross-sectional hygienic 
survey conducted in pulp mills detected DMS (0-15ppm), 

MM (0-15ppm),  H2S (0-20 ppm), and dimethyl disulfide 
(DMDS) (0-1.5ppm); workers exposed to these chemicals 
reported chronic headaches more often than controls [42•]. 
Although workers in the exposed group also reported a lack 
of mental concentration, restlessness, and a lack of vigor 
more frequently than the control group, the differences were 
not statistically significant [42•]. One study looked at the 
combined health effects of various sulfur pollutants released 
from pulp mills, including DMS,  H2S, MM, DMDS, and 
sulfur dioxide on adults living in areas polluted with these 
compounds [41•]. Occurrence of cough, headache, and eye 
and nasal symptoms were higher among adults living in 
moderately polluted (4 km from one pulp mill) and severely 
polluted (0.5 km from one pulp mill and 3 km from another) 
communities as compared to those living in non-polluted 
communities (>100 km away) [41•]. In a similar study, a 
survey questionnaire of residents living near a cellulose 
paper plant that emitted DMS,  H2S, MM, and other unspeci-
fied air pollutants found that 27% of residents who perceived 
the odor reported headache, 19% reported disturbed sleep, 
and 30% experience nausea, vomiting, stomach discomfort, 
and palpitations [40•]. Each of these studies shared headache 
as a symptom; however, the extent of which reported symp-
toms can be attributed to exposure to odorants, as opposed 
to exposure to other compounds such as  H2S, is unknown.

One additional multi-pollutant exposure event that was 
not part of the primary literature search is worth noting: 
the Aliso Canyon underground natural gas storage facility 
blowout in the town of Porter Ranch in Southern California 
[75]. During the 118 day leak from October 2015 to Febru-
ary 2016, the Los Angeles County Department of Public 
Health received over 700 health complaints associated with 
exposure to emissions from the leaking well [76]. Southern 
California Gas Company, the operator of the Aliso Canyon 
facility, disclosed that a mixture of TBM and THT were 
added to the natural gas stored at Aliso Canyon [75,77]. 
During the leak, a projected 81% (6,278) of households in 
the nearby Porter Ranch reported symptoms including eye, 
nose and or throat irritation, headache/migraine, respira-
tory complaints (e.g., cough, tightness in the chest, diffi-
culty breathing, shortness of breath, worsening of asthma 
or COPD), stress, dizziness lightheadedness, nausea vomit-
ing, nosebleeds, skin rash/irritated skin, diarrhea, and fever 
[75,78••]. This value may be an underestimate as affected 
residents were temporarily relocated over the course of the 
leak [78••,79]. OEHHA stated that self-reported health 
symptoms, with the exception of fever, were attributable 
to odorants in natural gas [80,81]; however, no measure-
ments of mercaptans exceeded the 5 ppb detection limits of 
monitoring equipment (5 – 172 times greater than known 
odorant thresholds) [78••,80]. Similarly, the Los Angeles 
County Department of Public Health stated that exposure 
to concentrations of mercaptans below monitoring detection 
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limits could cause symptoms reported by residents includ-
ing eye, nose and throat irritation, coughing, shortness of 
breath, nausea, headaches, and dizziness [77]. Symptoms 
from exposure to mercaptans are dependent on frequency 
and duration of exposure and are not expected to result in 
long-term health effects [77].

Numerous other confounding factors also likely con-
tributed to reported symptoms following the Aliso Canyon 
accident. In addition to TBM and THT, there were a num-
ber of co-pollutants emitted during the release that may 
have also contributed to ambient odors (e.g.,  H2S, benzene, 
petroleum hydrocarbons, well-control chemicals, etc.) and 
introduced independent health effects or synergistic effects 
that exacerbated or compounded health effects consistent 
with mercaptan exposure [75]. Nonetheless, the attribution 
of symptoms to odorant exposures at concentrations below 
ambient monitoring instrument detection limits (~5 ppbv), 
yet above human odor detection thresholds (e.g., <0.1 ppbv; 
see Table 1) reflects the malodor potency of this class of 
compound. This potency gives organosulfur compounds its 
utility as a malodorant in natural gas systems. However, this 
potency becomes a liability during accidental release events 
whereby very low-level chronic exposures (e.g., >0.1ppbv) 
can induce a wide range of debilitating symptoms on the 
public in part due to the wide range of susceptibilities to 
noxious odors. These types of widespread exposure events 
can also trigger sympathetic nervous system responses 
(stress response), and henceforth condition a subject to asso-
ciate odors and specific harms, such as asthma exacerbation 
[82].

Summary of symptoms prevalence associated 
with organosulfur exposure

Frequency and odds ratios of symptoms reported in each of 
the seven community-level exposure events are presented 
in Table 2; however, not all symptoms were measured or 
surveyed for each event [22••,54,57••,83]. Ideally, self-
reported health effects studies should have reported odds 
ratios or similar risk indicators to better isolate effects from 
exposures. Unfortunately, each study employed a slightly 
different exposure assessment survey method, and some 
studies were confounded by the presence of multiple odor-
ant compounds or other non-sulfur pollutants. Moreover, 
no study formally measured ambient concentrations (or uti-
lized sampling protocols at detectable limits that were sig-
nificantly greater than typical odorant detection thresholds) 
near affected populations. Nonetheless, some trends were 
observed across these events including symptom prevalence 
within exposed groups.

We ranked symptom prevalence across the seven com-
munity-level exposure events as shown in Table 2. Over-
all, headache was the most reported symptom and was also 

the only symptom measured and reported in all community 
exposure studies. Headache was most prevalent for two of 
the events, and second most reported for two other events. 
Mucous membrane (nose, throat, and eye) irritation was the 
next most prevalent set of symptoms. Notably, eye irritation 
was always more prevalent than nose and throat irritation 
and was the most prevalent symptom reported in association 
with the Finnish pulp mill exposure event [41•]. In many 
cases, respiratory complaints (i.e., difficulty breathing) 
were at similar prevalence levels to eye, nose, and throat 
irritation. Asthma attacks resulted in the highest odds ratio 
related to NPM exposure during the event in Dorris, Cali-
fornia—higher than any other symptom reported during that 
event. Asthma exacerbations were only formally measured 
in one other event, the TBM exposure event in Eight Mile, 
Alabama, with only 15% of respondents reporting asthma 
exacerbations but exposures were to TBM not NPM. The 
other NPM exposure event in Fairburn, Georgia also noted 
a significant burden of breathing difficulty (45.5% preva-
lence), but ultimately it is difficult to parse the severity of 
respiratory effects across study surveys. Although the studies 
of NPM and TBM did not directly measure exposure con-
centrations—instead using proximity as a proxy for expo-
sure—the study of chronic occupational exposure of THT 
was estimated at 3-4 ml/m3 (3-4 ppm) which is below the 
occupational German maximum workplace exposure limit 
(50 ppm assuming a 40-hour work week [35]), but well 
above the interim TCEQ long term ESL of 50 ppb [64••]. 
These limited studies suggest that low-level chronic expo-
sures can contribute to various degrees of respiratory tract 
inflammation, though no studies have conducted long-term 
follow-ups from any of the community exposure events. 
Other symptoms such as cardiovascular conditions, nose-
bleeds, and trouble sleeping were not consistently reported 
across exposure events therefore limiting the generalizability 
and apportionment of these symptoms to odorant exposures.

Notably, dermal irritation or rashes were relatively preva-
lent across the seven events and were observed in controlled 
studies as well. In two of the events, nearly half of respond-
ents reported some degree of dermal irritation. Of the symp-
toms reported, the high prevalence of skin and eye irritation 
provides evidence that organosulfur compounds may mani-
fest a direct toxicological effect through cutaneous absorp-
tion rather than through inhalation. While the etiology of 
skin irritation therein is ultimately unclear (e.g., contact der-
matitis, atopic dermatitis, or other inflammatory response), 
previous research has shown associations between atopic 
dermatitis and certain air pollutants with a hypothesized 
mechanism whereby reactive oxygen species are generated 
by environmental exposures that cause damage to proteins 
in the stratum corneum [84].

Acute symptoms reported in case studies of known and 
isolated THT exposures included headache, dizziness, 
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nausea, vomiting, headache, skin and mucous membrane 
irritation, and difficulty breathing and provide additional 
evidence of a consistent collection of symptoms from acute 
THT exposure [63•,64••]. Bauer and Bittner [64••] estab-
lished a causal link between these symptoms and THT 
exposure noting that exposed workers experienced tran-
sient neurotoxic effects as determined by symptom cessa-
tion following exposure attenuation [64••]. Most notably, 
THT is only odorant that has a documented causal link 
between long-term exposure and clinically diagnosed COPD 
[64••]. The causal link was supported by three contributing 
pieces of evidence: severe central nervous system disorders 
observed in animal studies, the temporal relation between 
exposure and occurrence of respiratory symptoms as well 
as the initial improvement after exposure termination, and 
the fact that both subjects developed COPD after long-term 
high THT contact.

No community exposure events were found for IPM, and 
likewise very little human, animal, or cell studies were found 
for IPM. Symptoms related to DMS exposure were difficult 
to isolate given the nature of the multi-pollutant studies and 
the presence of MM and  H2S, which are known to cause 
symptoms similar to other odorants including headache, diz-
ziness, nausea, vomiting, mucous membrane irritation, and 
difficulty breathing [19,85,86]. Furthermore, no symptoms 
were reported for the DMS occupational exposure event that 
resulted in the death of two workers [39••]. However, animal 
studies suggest that DMS may cause symptoms similar to 
those reported for other odorants [44]. In general, reports 
from these seven community-level exposure events and case 
studies show a consistent symptomatology associated with 
low dose sub-acute and chronic exposures to TBM, NPM, 
THT, and DMS with few clear differentiating trends between 
individual compounds and symptoms.

Discussion

For each of the commonly used natural gas odorants inves-
tigated (except IPM), this review indicates that odorants can 
induce a range of adverse symptoms; however, very little 
information exists related to associated exposure concen-
trations, or symptom etiology. Few studies have measured 
in situ ambient concentrations of odorants during exposure 
events; available concentration data ranges from below mon-
itored detection limits for community-scale events to very 
high doses for occupational settings and controlled animal 
studies. Importantly, monitoring equipment deployed during 
accidental release events has limits of detection orders of 
magnitude greater (5-500 ppb, depending on the study) than 
typical human olfactory thresholds (typically <0.1 ppb), 
rendering them unable to detect airborne concentrations at Ta
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levels approaching human olfactory detection. This further 
obfuscates differentiation between olfaction and sensory irri-
tation or any potential toxicological effects.

Consistency in symptom constellations does not imply 
definitive symptom etiologies, and could be result of specific 
toxicological processes, transient malodor responses, and/or 
an overreactive sympathetic nervous system response. Malo-
dors for example, such as those produced by organosulfur 
compounds, can negatively impact mood, stress levels, and 
cognition, as well as elicit symptoms including headaches, 
dizziness, nausea, vomiting, sleep disorders, and irritation 
of the eyes, nose, and throat [82]. These symptoms may 
arise from a sympathetic nervous system response (stress 
response), past experience with the odor, and/or condition-
ing between an odor and specific harms, such as asthma 
flares [82]. As noted by Behbod et al., [54] because mer-
captans have extremely low odor thresholds, their disagree-
able odors alone could be responsible for the genesis of the 
reported symptoms, as opposed to a specific toxicological 
effect. In line with previous recommendations, studies are 
still needed to better elucidate the distinction between tran-
sient malodor responses and/or generalized stress responses 
and any toxicological effects of odorant exposure.

Most notably, THT is only odorant with evidence linking 
long-term exposure and clinically diagnosed COPD, though 
this study involved only two cases from a single natural gas 
odorization facility [64••]. Nonetheless, Baur and Bittner 
[64••] determined a causal link between THT exposure 
and symptom presentation noting that exposed workers 
experienced transient neurotoxic effects as determined by 
symptom cessation following exposure attenuation [64••]. 
The estimated ambient THT level within the occupational 
setting was 3-4 ml/m3 (3-4 ppm)—an exposure level signifi-
cantly lower than the 40hr/week MAK occupational standard 
of 50 ppm (Table 1) [35]. Study authors recommended a 
more detailed investigation and evaluation of the literature 
related to THT to support the development of a health based 
TLV, which has not been stipulated in the U.S. or elsewhere 
[64••].

Although odorant exposures to the general population 
can result from major natural gas release events, more sig-
nificant exposures may result from smaller leaks in down-
stream distribution infrastructure and behind-the-meter 
(i.e., within buildings). In the indoor environment, natural 
gas leaks from pipes, pilot lights, and a variety of appli-
ances including stoves, space heaters, and water heaters 
have been characterized. Leaks can occur with during both 
appliance (e.g., gas stove) operation and while appliances 
are off [3,13,87,88]. Sargent et al., [2] found that an esti-
mated 2.5 ± 0.5% of natural gas entering the Boston region 
is leaked to the atmosphere, noting that emissions are corre-
lated with seasonal end-use consumption (i.e., increased use 
during the winter heating season) implying that emissions 

may be significantly underestimated in indoor spaces from 
leaking residential end-use appliances. Given the implica-
tions posed by Sargent et al., [2] that indoor gas leaks may 
be much more common than previously understood, mul-
tiple questions arise related to odorization of natural gas: 
1) are chronic, low dose exposures to natural gas odorants 
more prevalent than previously understood; 2) do smaller 
leaks contain too little odorant to be detected due to too 
little odorant to reach general odorant thresholds, either 
from odor fade, odor masking, olfactory dysfunction, or 
olfactory habituation; 3) do many of these leaks contain 
enough odorant to be detected, but are ignored for various 
reasons (i.e., not believed to be serious enough to seek a fix, 
financial or other constraints, etc.); 4) what are the effects 
of multiple odorants in natural gas on odorant detection and 
health effects; and, 5) what are the potential health effects 
of odorant degradation bi-products in residential natural gas 
supplies?

Study limitations

Our review was limited to organosulfur compounds that have 
documented use as natural gas odorants and English-written 
peer-reviewed studies of associated health effects. Due to the 
lack of transparency in odorant disclosure, odorants other 
than the five we identified may be used in natural gas but 
were not represented in our review. We also did not include 
gray literature, government reports, industry reports, or tox-
icity assessments beyond the exposure events from the loss 
of containment event at the Aliso Canyon Underground Gas 
Storage Facility in Porter Ranch, California and at the waste-
water treatment facility in Fairburn, Georgia. The number of 
toxicological- and health-related studies in our review may 
therefore be under representative due to our search strategy, 
and the potential for relevant industry or regulatory docu-
mentation to exist outside the peer reviewed literature.

Conclusions and Recommendations

Natural gas odorants have been critical for the detection of 
leaks that have saved lives and property while supporting 
the wide-spread availability of natural gas as a distributed 
source of energy. However, odorants that are intended to 
be transiently inhaled for leak detection and public safety 
may pose a risk to human health at exposures much lower 
than currently suspected. Overall, our review found limited 
evidence of both transient non-specific self-reported health 
symptoms and clinically diagnosed causative neurotoxic 
effects associated with odorant exposure. Additional weight 
of evidence is required to disentangle potential specific toxi-
cological effects from transient malodor responses and/or 
generalized stress responses.
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Few peer-reviewed toxicological and epidemiological 
studies have been conducted on commonly used odorants, 
especially at chronic, low-dose levels. The peer reviewed 
literature largely focuses on acute toxicity at high doses, 
and retrospective studies of lower-level odorant exposures in 
humans have been limited to accidental community exposure 
events and low sample-size case reports in occupational set-
tings typically involving chemical spills. However, acciden-
tal environmental releases of odorants across documented 
community- and occupational exposure events are illustra-
tive and do indicate a consistent symptom constellation 
ranging from mild to moderately debilitating including (in 
ranked order of prevalence) headache, eye irritation, nose 
and throat irritation, respiratory complaints such as short-
ness of breath and asthma attacks, and dermal irritation and 
rash. Of these, respiratory irritation and asthma exacerba-
tions may be most debilitating whereas the high prevalence 
of eye irritation and skin rashes may indicate direct effects 
on exposed tissues in addition to exposure via inhalation.

Given its widespread use and intended purpose as an 
inhalant malodor, there is a surprising lack of established 
health and exposure benchmarks including but not limited 
to PELs, RELs, or TVLs. Recently, the TCEQ has devel-
oped interim short-term and long-term ESLs for the general 
public for commonly used odorants that generally ranged 
from 100-2,000 times lower than occupational limits where 
comparisons were available. Based on limited data on end-
use natural gas odorant concentrations, detectable behind-
the-meter leaks likely contain odorants at concentrations 
multiple orders of magnitude less than the long-term interim 
TCEQ ESLs. Furthermore, current federal regulations on 
combustible gas odorization state that, “The odorant may 
not be deleterious to persons…” [89] without further con-
text related to ambient exposure limits. Although potential 
exposures may seem below the level of concern based upon 
these guidelines, current evidence indicates that organosul-
fur exposures can induce a range of debilitating symptoms at 
concentrations above human odor detection thresholds (e.g., 
<0.1ppb) and below ambient monitoring instrument detec-
tion limits (~5 ppb) suggesting that the short-term ESLs 
(4.9-500 ppb) proposed by the TCEQ would likely not pro-
tect against similar symptom onset.

Certain occupational settings may produce exposure 
regimes similar to or greater than the community exposure 
events reviewed here (e.g., among gas utility and commer-
cial kitchen workers) [64••], yet few exposure- or health 
effect estimate studies have evaluated occupational settings. 
Additional research should also focus on the risks of odorant 
exposure among potentially susceptible populations, such 
as people with asthma, pregnant people, and children, as 
well as the potential health impacts of IPM given its fre-
quent use and lack of research on its safety. This may require 
improvements in continuous monitoring equipment so that 

low concentrations relevant to chronic exposures can be 
measured.

Current hazardous material regulations provide guidance 
for the concentration of ethyl mercaptan acceptable for use 
as an odorant in LPG in the U.S., indicating that similar 
guidelines could exist for natural gas systems. Odorant con-
centration guidelines exist for other countries such as the the 
E.U. and United Kingdom, whereby “gas shall be odorized 
with 80% TBM and 20% DMS at an odorant injection rate 
of 6 mg/m3 which cannot vary by more than +- 2 mg/m3” 
[90]. To ensure the safety of individuals and populations 
exposed to natural gas leaks, we recommend that guidance 
on acceptable odorants and their concentrations be adopted 
following requisite study to determine odorant exposure lev-
els that minimize symptom onset while maintaining malo-
dor efficacy. Industry should also be required to publicly 
disclose the identities and concentrations of odorants added 
to natural gas and concentrations delivered to end users. We 
also recommend disclosure of odorant type and storage to 
first responders in the event of an environmental release. 
Emergency preparedness for the general public in the event 
of spills and leaks can also be improved, including ensuring 
that natural gas users are aware of the smell of natural gas 
and understand proper responses to natural gas leaks.

To improve understanding and management of natural 
gas odorants with respect to human health, we recommend 
the following: 1) require disclosure of odorants used and 
develop corresponding health-based concentration standards 
for odorizing natural gas beyond the lenient 1/5th explosion 
risk end-point only; 2) studies are needed to better eluci-
date the distinction between malodors and any toxicological 
effects of odorant exposure including effects on potentially 
susceptible populations or subgroups with pre-existing res-
piratory conditions, or those that may exhibit some forms of 
odorant hypersensitivity or anosmia; 3) explicit risk assess-
ments should be undertaken to develop occupational- and 
general exposure limits for commonly used odorants beyond 
the use of surrogate compounds; 4) improved real-time orga-
nosulfur or methane sensor detectors are needed with detec-
tion limits at very low concentrations with applications akin 
to smoke detectors or carbon monoxide detectors, particu-
larly for high occupancy buildings, commercial kitchens, gas 
utility work sites, and settings where individual may suffer 
from a degree of anosmia; 5) increasing the concentration 
of odorants added to certain natural gas distribution systems 
could potentially improve leak detection of smaller natural 
gas leaks to help address methane leakage from a climate 
standpoint, though this could introduce additional occupa-
tional hazards or equity and environmental justice issues.
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