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Abstract
Purpose of Review Mitochondria play various roles that are important for cell function and survival; therefore, significant 
mitochondrial dysfunction may have chronic consequences that extend beyond the cell. Mitochondria are already susceptible 
to damage, which may be exacerbated by environmental exposures. Therefore, the aim of this review is to summarize the 
recent literature (2012–2022) looking at the effects of six ubiquitous classes of compounds on mitochondrial dysfunction 
in human populations.
Recent Findings The literature suggests that there are a number of biomarkers that are commonly used to identify mito-
chondrial dysfunction, each with certain advantages and limitations. Classes of environmental toxicants such as polycyclic 
aromatic hydrocarbons, air pollutants, heavy metals, endocrine-disrupting compounds, pesticides, and nanomaterials can 
damage the mitochondria in varied ways, with changes in mtDNA copy number and measures of oxidative damage the 
most commonly measured in human populations. Other significant biomarkers include changes in mitochondrial membrane 
potential, calcium levels, and ATP levels.
Summary This review identifies the biomarkers that are commonly used to characterize mitochondrial dysfunction but 
suggests that emerging mitochondrial biomarkers, such as cell-free mitochondria and blood cardiolipin levels, may provide 
greater insight into the impacts of exposures on mitochondrial function. This review identifies that the mtDNA copy num-
ber and measures of oxidative damage are commonly used to characterize mitochondrial dysfunction, but suggests using 
novel approaches in addition to well-characterized ones to create standardized protocols. We identified a dearth of studies 
on mitochondrial dysfunction in human populations exposed to metals, endocrine-disrupting chemicals, pesticides, and 
nanoparticles as a gap in knowledge that needs attention.

Keywords Mitochondrial dysfunction · mtDNA · Environmental chemicals · Oxidative stress · Heteroplasmy

Introduction

The mitochondrion is a fundamental component of the cell 
that plays a vital part in energy metabolism. In addition to 
generating energy, mitochondria are also important in mul-
tiple cell signaling cascades, metabolite generation, the 
homeostasis of various minerals and lipids, calcium storage, 

the immune response, the synthesis of steroids and heme 
groups, and apoptosis [1–5]. Given these diverse functions, 
mitochondria are a critical component of cellular homeo-
stasis and survival.

Despite the various roles they perform within the cell, 
mitochondria are particularly vulnerable to damage. This 
is due in part to their proximity to reactive oxygen species 
(ROS). Oxidative phosphorylation, the main source of ATP 
generation, occurs in the inner mitochondrial membrane [6]. 
During this process, electrons leak from complexes I, II, and 
III and react with oxygen to form superoxide. The superox-
ide radical is then converted to hydrogen peroxide by super-
oxide dismutase, and together, hydrogen peroxide and super-
oxide are considered mitochondrial ROS [7, 8, 9]. Due to the 
proximity of its production, excess ROS can result in dam-
age to mitochondrial biomolecules, induce mitochondrial 
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DNA mutations, alter membrane permeability and structure, 
and change calcium ion  (Ca2+) homeostasis [8, 10, 11]. 
Damage to mitochondrial DNA (mtDNA) is particularly 
concerning, as the mitochondria have reduced DNA repair 
capacity in comparison to the nucleus [12]. This is likely 
due to the reliance on polymerase γ for both replication and 
repair of mtDNA and a limited repair mechanism, primarily 
base excision repair, when dealing with mtDNA damage [13, 
14]. This is significant because persistent mtDNA damage 
can have further downstream effects on the mitochondrion.

Due to their susceptibility to damage, mitochondria are 
highly sensitive to environmental toxicants. The charged dif-
ference between the mitochondrial matrix and the cytosol 
allows for positively charged and lipophilic chemicals to 
accumulate within the mitochondrial matrix [15, 16]. The 
damage caused by these chemicals within the mitochondria 
can manifest in multiple ways. Often, the damage leads to 
the disruption of the mitochondrial electron transport chain 
(ETC), which results in excess generation of ROS, and 
decreased ATP levels [7, 17]. Other types of damage can 
include dysregulation of  Ca2+, changes in membrane per-
meability, and structural damage to the mitochondria [18, 
19]. The different types of damage interact to exacerbate 
detrimental effects and can result in cell death. Hence, the 
goal of this review is to characterize the effect of various 
environmental toxicants on mitochondrial dysfunction, 
focusing on human population research published within 
the past 5 years when available. Tables 1 and 2 summarize 
the literature cited in this review in human populations and 
experimental studies, respectively.

Mitochondrial Biomarkers for Environmental 
Health

Given the importance of the mitochondria and its suscep-
tibility to damage, there is a growing need for sensitive 
biomarkers to detect mitochondrial dysfunction from envi-
ronmental toxicants (Fig. 1). One of the most common bio-
markers used in human population studies is changes in the 
mtDNA copy number (mtDNAcn). mtDNAcn is the num-
ber of mitochondrial genomes in a cell, and is positively 
correlated with the size and the number of mitochondria 
[20]. Each cell contains hundreds to thousands of mito-
chondria, each of which contains many copies of the mito-
chondrial genome. mtDNAcn can change depending on the 
energetic demands of the cells. For instance, muscle cells 
contain around 7000 copies of mtDNA per cell, which is 
higher compared to that of cells with a lower metabolic 
capacity [21]. Under environmental stressors, significant 
changes in mtDNAcn may indicate a biological response to 
excess ROS production and mtDNA damage and dysfunc-
tion [22, 23]. In fact, changes in mtDNAcn are associated 

with neurodegenerative, cardiovascular, and chronic kidney 
diseases, making them a relevant biomarker of mitochon-
drial dysfunction [24, 25, 26]. Moreover, measurement of 
mtDNAcn uses relatively simple techniques, making it an 
accessible biomarker for large human population studies [24, 
27]. However, the mtDNAcn biomarker has some limita-
tions. Conflicting associations have been observed in human 
population studies between chemical exposures and mtD-
NAcn which may be attributed to population characteristics, 
as well as the exposure concentration and duration. Further-
more, both an excess and a dearth of mtDNA can represent 
mitochondrial dysfunction, so consistency in the direction 
of effect across studies may not be informative. Addition-
ally, significant variations between individuals and within 
an individual’s cell-specific mtDNAcn have been detected, 
which may be due to the various biological states that can 
lead to either an increase or a decrease in mtDNAcn [30•]. 
In particular, the magnitude and duration of oxidative stress 
and damage within the mitochondria may lead to varying 
responses in mtDNAcn. For instance, mitochondrial insult 
may initially result in mtDNA replication to compensate for 
the damage, leading to an increased copy number. However, 
it is also possible that past a certain threshold, the mito-
chondria are no longer able to compensate for the damage, 
leading to mitochondrial membrane permeability and apop-
tosis, which results in a decrease in the copy number [28, 
29]. These different reasons give rise to the concern than the 
mtDNAcn values may be over interpreted [30•].

Heteroplasmy is another mitochondrial biomarker that 
describes the proportion of mutated mtDNA within a cell 
and may be used to indicate the severity of damage to the 
mitochondria [31, 32]. While a small amount of hetero-
plasmy (< 1%) in the mtDNA is normal, when the mtDNA 
undergoes damage, it may alter mitochondrial gene expres-
sion, leading to a higher proportion of mutations [32]. 
Hence, toxicant-induced mitochondrial damage may lead 
to a higher mtDNA mutation load, i.e., increased hetero-
plasmy, making it a relevant biomarker. In fact, recently 
published literature has demonstrated that heteroplasmy 
can be measured in human populations and is associated 
with changes in birth outcomes, respiratory functions, 
blood pressure, and depressive symptoms [33••, 34–36]. 
Heteroplasmy can also provide insight into mtDNA func-
tion through examination of heteroplasmic sites in cod-
ing regions [37]. However, for a biochemical defect to be 
detected, the proportion of mutated DNA must exceed a 
threshold level, and each cell, tissue, organ, and person has 
its own individual threshold, making it hard to compare 
across different populations [32, 38]. As a consequence, 
not many studies use heteroplasmy as a biomarker to meas-
ure the response to environmental toxicant exposure.

The mitochondrial respiratory chain is made up of five 
transmembrane enzyme complexes that work together with 
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electron transfer carriers, ubiquinone, and cytochrome c, to 
produce ATP during oxidative phosphorylation. These com-
plexes may be a target of environmental toxicants that alter 
their expression, concentration, or maximum activity [39]. 
During the process of oxidative phosphorylation, the com-
plexes aid in the maintenance of an electrochemical gradient 
through a series of redox reactions. This electrochemical 
gradient generates the mitochondrial membrane potential 
and is an essential component of energy production. Either 
through the disruption of the complexes, perturbation of 
the electron transfer carriers or proteins, and/or damage to 
the membranes, external chemicals can alter the membrane 
potential, which may affect ATP and induce cell death [40, 
41]. Changes in both the activity of the respiratory chain 
complexes and membrane potential are useful biomarkers 
because they help elucidate the mechanisms of toxicant-
induced mitochondrial dysfunction. However, these meas-
urements often require large quantities of fresh samples, 
which are beyond the capabilities of most cohort studies. 
Furthermore, a significant limitation is that the probes often 
used to measure these changes can be affected by the cel-
lular membrane potential, mitochondrial pH, and changes in 
ATP production [41–44]. Nonetheless, more techniques are 
being developed to measure these mitochondrial bioenerget-
ics functions in humans [45••].

Changes in oxidative phosphorylation, among other 
mitochondrial defects, often have downstream effects that 
are also commonly measured as biomarkers. The oxida-
tion of guanine in mtDNA and the subsequent formation of 
8-hydroxy-2′-deoxyguanosine (8-OHdG) is one of the main 
forms of free radical–induced DNA lesions [46]. High con-
centrations of mitochondrial 8-OHdG are indicative of oxi-
dative DNA damage, and therefore are a common biomarker 
used to measure mitochondrial dysfunction [47]. Exposure 
to environmental toxicants can often lead to higher concen-
trations of ROS within the mitochondria and is associated 
with higher concentrations of 8-OHdG. The assays used to 
measure 8-OHdG are well established and are widely used 
to represent mitochondrial dysfunction in human popula-
tions. However, 8-OHdG is also detected in nuclear DNA, so 
mtDNA often needs to be separated prior to quantification. 
Additionally, there have been discrepancies between chro-
matographic and immunoassay approaches used to measure 
8-OHdG within human samples [49].

Ca2+ levels play an important role in membrane potential 
regulation, ROS homeostasis, and oxidative phosphorylation 
within the mitochondria [50]. As a consequence, impaired 
mitochondrial  Ca2+ transfer alters the production of ATP 
and downregulates mitochondrial metabolism, while high 
concentrations of mitochondrial  Ca2+ suggest a disruption 
of the electrochemical gradient [50, 51]. Toxicant-induced 
overload of  Ca2+ concentrations is associated with oxida-
tive stress, a collapse in membrane potential, and eventually Ta
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cell death [52]. While  Ca2+ levels in in vitro models are 
commonly used to measure mitochondrial dysfunction, an 
important consideration is that this assay is unable to dif-
ferentiate if toxicant-induced effects were a cause or conse-
quence of the phenotype [39]. Additionally, there have been 
discrepancies in the  Ca2+ levels measured using fluorescent 
dyes and genetically encoded calcium indicators, which may 
be attributed to the fact that mitochondria from different cell 
types uptake  Ca2+ in different concentrations, making it hard 
to cover the full range using one type of sensor [48].

In addition to these measures of mitochondrial dysfunc-
tion, the alteration of cardiolipin is an emerging mitochon-
drial biomarker. Cardiolipin is a mitochondrion-exclusive 
phospholipid and plays an important role in mitochondrial 
protein transport, membrane morphology, cellular sign-
aling, and bioenergetics [53, 54•]. While there has yet 
to be research examining associations between chemical 
exposure and cardiolipin levels, studies have found asso-
ciations between cardiolipin alterations and diseases in 
human populations [54•, 55]. This suggests that it might 
be a relevant biomarker to account for when examining 
mitochondrial dysfunction.

Additionally, the presence of circulating cell-free mito-
chondria in blood may serve as an alternative matrix for 
the biomarkers discussed above. Cell-free mitochondria are 
the presence of whole and functioning mitochondria out of 
the cell, which has been detected within human blood [56•, 
57]. In addition to whole mitochondria, cell-free mtDNA 

fragments are also detected in human blood, either encap-
sulated within extracellular vesicles or free-circulating. 
While the mechanisms and functions of cell-free mito-
chondria are relatively unknown, elevated levels of plasma 
cell-free mtDNA are associated with stress, inflammatory 
diseases, cancers, and sepsis in human populations [58•, 
59, 60]. The emergence of standardized ways of measuring 
this biomarker may allow for wider use when looking at 
associations with toxicant-induced mitochondrial damage. 
The use of mitochondrial biomarkers in human population 
and experimental studies has provided great insight into the 
impact of environmental agents on mitochondrial function 
and health.

Known Mitochondrial Disruptors

Much of our present knowledge on the critical role of 
mitochondria in health comes from the few chemicals 
whose mechanisms of toxicity on the mitochondria are well 
characterized. Acute poisoning from these highly specific 
mitochondrial toxicants leads to nausea, headaches, seizures, 
cardiac failure, and, in extreme cases, death. Cyanide is a 
potent mitochondrial inhibitor that binds to complex IV, 
specifically the a3 portion of cytochrome oxidase, within 
the ETC [61]. From there, cyanide competes with oxygen 
and binds to the Fe-Cu center which inhibits activity and 
energy production [62]. Rotenone, a pesticide and insecticide, 

Fig. 1  Common biomarkers 
used to identify and measure 
mitochondrial dysfunction. 
mtDNA mitochondrial DNA, 
 Ca2+ calcium ions, 8-OHdG 
8-oxo-2′-deoxyguanosine
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is another mitochondrial inhibitor that affects the electron 
transfer from the Fe-S centers in complex I. This leads to the 
inhibition of oxidative phosphorylation and consequently a 
limited production of ATP, which further induces apoptosis 
in cells. Moreover, rotenone-induced apoptosis is closely 
related to mitochondrial ROS formation which may cause 
mitochondrial damage [63, 64]. Azidothymidine is an 
anti-HIV drug that accumulates within the mitochondrial 
intermembrane space where it disrupts the ATP/ADP 
translocator and enhances the production of ROS [65, 66]. 
Doxorubicin is an anticancer drug that also generates ROS; 
however, it does so by interacting with complex I and the 
proteins involved in oxidative phosphorylation [67, 68]. The 
resulting oxidative stress then goes on to cause mitochondrial 
injury and apoptosis. Lastly, exposure to benzene, a common 
industrial chemical and environmental toxicant, consistently 
increases mtDNAcn and alters mitochondrial pathways, 
possibly in response to the oxidative stress caused by benzene 
within the mitochondria [69–72]. Among all these classic 
mitochondrial disruptors, a common theme is disruption of 
energy production and oxidative stress. Understanding the 
well-established mechanisms of mitochondrial disruption 
caused by these chemicals has allowed researchers to 
investigate the role of other ubiquitous and well-known 
toxicants on mitochondrial dysfunction.

Polycyclic Aromatic Hydrocarbons

Polycyclic aromatic hydrocarbons (PAHs) are a class of 
compounds that are common byproducts of incomplete com-
bustion. They are frequently detected following incineration 
of industrial, domestic, and agricultural products and emis-
sions from vehicles [73]. Once emitted, PAHs may bind to 
or form small particles in the air which subsequently lead 
to human exposure. PAHs are highly lipophilic toxicants 
and therefore readily accumulate in the mitochondria due to 
their high lipid content [74]. In fact, PAHs are also shown 
to preferentially bind to the mtDNA at 40–90 times greater 
than nuclear DNA [74, 75]. Moreover, the mitochondrial 
cytochrome P450 system may bioactivate PAHs to make 
them more toxic in the organelle [76]. PAHs may also be 
activated through mitochondrial aldo–keto reductase and/or 
manganese superoxide dismutase which causes the produc-
tion of ROS [77]. In vitro studies have shown that exposure 
to PAHs triggers mitochondrial oxidative damage in blood 
lymphocytes and affects the mitochondrial redox machin-
ery which leads to higher concentrations of ROS [78]. This 
excess generation of ROS and associated oxidative stress 
within the mitochondria may act as a regulator of the mtD-
NAcn [29, 79], leading to mtDNAcn changes in populations 
exposed to PAHs.

The literature examining the associations between 
PAH exposure and mtDNAcn within human populations 
is inconclusive. Higher urinary PAH metabolites were 
associated with higher mtDNAcn in peripheral blood samples 
of asphalt workers [80] and in leukocytes of coke oven 
workers [77]. Urinary PAH metabolites were also positively 
associated with increased peripheral blood mtDNAcn in 
an urban population in China [81]. Prenatal exposure to 
PAHs measured through maternal urinary metabolites was 
associated with increased mtDNAcn in cord blood in China 
[82]. Conversely, other studies have also shown negative 
associations between PAH exposure and mtDNAcn. 
Increased urinary PAH metabolites were associated with 
decreased mtDNAcn in college student sperm samples [83] 
and leukocytes of non-smoking women [84]. Occupational 
exposures to PAHs in different coke oven workers showed 
significantly lower mtDNAcn in peripheral blood compared 
to the control groups [85•, 86, 87]. This relationship was also 
detected in the blood of individuals that lived in homes with 
a higher PAH concentration in their house dust [88]. The 
differences in mtDNAcn may be attributed to varied exposure 
levels between the different studies; however, because 
exposures to PAHs were measured in different matrices, we 
cannot directly compare across studies.

Particulate Air Pollutants and Black Carbon

Air pollution is a complex mixture that consists of a variety 
of physical and chemical components depending on the 
sources [89]. While airborne PAHs are due to combustion 
of fuel sources, the presence of other chemical substances, 
gases, or particulate matter within the air is attributed 
primarily to vehicle exhaust and industry emissions. In this 
section, we will focus on the compounds, other than PAHs, 
that have clearly displayed toxic effects on the mitochondria. 
Mitochondria are susceptible to air pollutants particularly 
due to their lack of repair capacity and their enhanced 
vulnerability to ROS. Experimental studies have shown 
that exposure to air pollutants leads to oxidative stress, 
changes in mitochondrial membrane potential, and decreases 
in mtDNAcn in cells [90–92] and lower mtDNAcn, lower 
mitochondrial consumption rate, and mitochondrial 
structural abnormalities in mice [92, 93].

Air pollutants are some of the most well-studied 
exposures in relation to mitochondria in humans. 
Studies have shown that increased prenatal exposure to 
particulate matter (PM) was associated with increased 
levels of mitochondrial urinary 8-OHdG in maternal and 
umbilical cord blood, suggesting oxidative stress within 
the mitochondria [94]. Moreover, during the air quality 
intervention for the Beijing Olympic Games, a reduction in 
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ambient air pollutant levels led to a significant decreased in 
urinary 8-OHdG levels in schoolchildren [95].

Similar to PAHs, particulate air pollutants have a varied 
effect on mtDNAcn, possibly as a response to the excess 
ROS within the mitochondria. Increased  PM2.5 (PM with 
a diameter of 2.5 µm or less),  PM10 (PM with a diameter 
of 10 µm or less), and black carbon (BC) exposure was 
associated with a decrease in mtDNAcn in the blood of an 
elderly Flemish truck driver population and leukocytes of an 
elderly Belgian population [96–98]. Moreover, studies have 
also shown that prenatal exposure to  NO2,  PM10, and  PM2.5 
are associated with decreased placental mtDNAcn [84, 98, 
99, 100] and cord blood mtDNAcn [101, 102]. Other studies, 
however, have shown that occupational PM exposure was 
associated with increased whole-blood mtDNAcn in steel 
workers [103, 104] and BC exposure was positively asso-
ciated with whole-blood mtDNAcn in older adults [105]. 
Exposure levels, duration of exposure, and life stages of the 
participants in these studies are highly varied, which may 
contribute to differences in study findings. Lastly, in addi-
tion to changes in mtDNAcn,  PM2.5 and  NO2 have shown to 
be positively associated with mtDNA methylation in blood 
and placenta [104, 106•, 107] and DNA methylation in 
mitochondrion-related genes in umbilical cord blood [108]. 
Moreover,  PM2.5 was associated with an increase in het-
eroplasmy on genes coding for NADH dehydrogenase and 
subunits for ATP synthase in mtDNA [109].  PM10 exposure 
was also associated with transcriptomic pathways related 
to mitochondrial genome maintenance, ETC, and tricar-
boxylic acid (TCA) cycle in whole blood, suggesting that 
the pathways were upregulated to compensate for the PM-
induced damage [110]. Prenatal exposure to  PM2.5 has also 
been shown to be positively associated with a decrease in 
mitochondrial function in blood and placenta [106•, 107].

Heavy Metals

Heavy metals, specifically cationic metals, are shown to 
preferentially accumulate within the mitochondria through 
the calcium transporter due to their similarity to the  Ca2+ 
ion [111]. Moreover, the mitochondrial membrane con-
tains unsaturated lipids which enhance its susceptibility to 
metals, such as arsenic (As), compared to other organelles 
[112]. Human population studies have shown that exposure 
to manganese (Mn), aluminum (Al), and lead (Pb) in the 
prenatal period has resulted in an increase in mtDNAcn 
in cord blood, and exposure to Pb was associated with an 
increase in maternal mtDNAcn [113•, 114, 115•, 116]. Con-
versely, exposure to thallium and As was associated with a 
decrease in mtDNAcn in cord blood leukocytes, and magne-
sium (Mg) exposure was associated with decreased maternal 
and cord blood mtDNAcn [116–118]. Smith et al. (2021) 

also reported a non-linear relationship between prenatal 
Mg exposure and cord blood mtDNAcn, as well as between 
barium, Pb, and mercury (Hg) exposure and maternal mtD-
NAcn. Interestingly, they did not find any significant asso-
ciations between As, cadmium (Cd), cesium, Mn, selenium, 
and zinc exposure and mtDNAcn [116].

Much of the literature examining the effect of metals on 
mitochondrial dysfunction details experiments conducted in 
in vitro and animal models, and therefore, this section of the 
review, as well as for the following chemical classes, will 
focus on elucidating mechanisms behind this toxicity that 
might be relevant to humans. The most common dysfunc-
tion induced by heavy metals is the production of elevated 
mitochondrial ROS. The Fenton reaction, where transition 
metals such as iron and copper (Cu) catalyze the genera-
tion of hydroxyl radicals from hydrogen peroxide, has been 
commonly implicated in the production of ROS [119, 120]. 
Cu, Cd, Pb, Mn, Hg, As, and Al have all shown to increase 
ROS which in turn triggers mitochondrial dysfunction and 
subsequent apoptotic and autophagic death in both in vitro 
systems and rodent models [62, 111, 121–129]. In human 
populations, high Cd exposure was associated with higher 
8-OHdG and citrate (a urinary metabolite associated with 
mitochondrial metabolism) levels [130].

In addition to producing excess ROS, Cu, Cd, and As 
decreased the transmembrane potential and ATP levels in 
human cell lines and rats [111, 122, 124, 128, 131, 132]. 
This is possibly through the inhibition of ADP, which 
induces ion permeability of the inner mitochondrial 
membrane [133]. Once the membrane potential is lost, 
cytochrome c is released and caspases may be activated, 
leading to apoptosis of the mitochondria [128, 134]. In addi-
tion, Cd treatment also inhibits mitochondrial respiratory 
chain enzymes within human osteoblasts [122] and leads 
to organelle swelling causing the inhibition of respiration 
in rats [135].

Another mechanism of toxicity for other heavy metals 
such as Pb, Mn, As, and Hg is via  Ca2+-dependent signal-
ing pathways. Mitochondria have been implicated as major 
sites for  Pb2+ and  Mn2+ accumulation [127, 136], following 
which both  Pb2+ and  Mn2+ can substitute for  Ca2+ in the 
 Ca2+ uniporter and TCA cycle dehydrogenases, respectively, 
and cause  Ca2+ dysregulation in the mitochondria [62]. This 
in turn induces  Ca2+ efflux, which leads to decreased NADH 
levels in the mitochondria and eventually apoptosis.

Endocrine‑Disrupting Chemicals

Endocrine-disrupting chemicals (EDCs) are a class of com-
pounds that modulate hormone action primarily by mimick-
ing naturally occurring hormones, binding to their respective 
receptors and changing downstream pathways [137]. There 
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are a wide variety of chemicals that are classified as EDCs, 
including phthalates, parabens, and bisphenols. These are 
commonly used as plasticizers in consumer products but are 
also used in pharmaceuticals, cosmetics, and personal care 
products [138]. As EDCs affect different cellular processes, 
including those related to energy production and utilization, 
it is thought that EDC disruption of energy homeostasis may 
be associated with mitochondrial dysfunction [139•].

Exposures to phthalates and bisphenols have been shown 
to be associated with changes in mtDNA methylation [140]. 
Specifically, EDCs such as alkylphenol 4-nonylphenol (NP), 
di(2-ethylhexyl) phthalate (DEHP), monoethylhexyl phtha-
late (MEHP), and bisphenol A (BPA) are associated with 
elevated oxidative stress through increased ROS production, 
changes in redox homeostasis, and production of extracel-
lular superoxide [139•, 140–146]. This in turn affects the 
mtDNAcn as described for toxicants above. Human studies 
have shown that exposure to phthalates is positively asso-
ciated with mtDNAcn in sperm and bisphenol S (BPS) is 
positively associated with mtDNAcn in children [147•, 148].

In addition to oxidative stress, studies have shown that 
BPA exposure was associated with a decrease in mito-
chondrial respiratory complex activity and consequently 
a decrease in mitochondrial membrane potential and ATP 
production in human lymphoblasts and rat models [146, 149, 
150]. BPA and BPS may also alter the expression of regu-
latory genes related to mitochondrial energy metabolism, 
mitochondrial fusion and division, and mitochondrial fatty 
acid metabolism in rats [145, 149, 151]. Additionally, DEHP 
exposure is associated with mitochondrial ultrastructural 
abnormalities in quail [141].

Pesticides

Pesticides are a large class of chemical compounds with 
a wide range of properties that lend themselves to differ-
ent modes of action when inducing mitochondrial toxicity. 
Organophosphate (OP) and organochlorine (OC) pesticides 
are classes of chemicals that are highly lipophilic and can 
therefore easily enter and accumulate within the mitochon-
dria similar to PAHs. In fact, OP pesticides with hydropho-
bic properties have an increased mitochondrial translocator 
protein–binding affinity [152]. Once in the mitochondria, 
both OP and OC pesticides have been shown to reduce the 
mitochondrial membrane potential, produce mtDNA dam-
age, promote oxidative damage, and reduce mitochondrial 
ATP in cell lines and zebra fish [152, 153, 156]. In addition 
to these other mechanisms, Budnik et al. (2013] also showed 
that exposure to OC pesticides was significantly associated 
with elevated serum levels of circulating mtDNA, suggest-
ing decreased integrity of mtDNA in exposed individuals. 
Additionally, prenatal exposure to benzothiazoles, a class 

of compounds that are used as fumigants, is associated with 
changes in mtDNAcn in cord blood [158]. In this study, 
investigators observed a positive association with exposure 
measured in the first trimester, which was then reversed in 
the third trimester.

Paraquat and atrazine, two widely used pesticides, 
induce mitochondrial toxicity through very similar mech-
anisms. Both paraquat and atrazine produce ROS which 
induces mitochondrial toxicity [159, 160]. Both compounds 
adversely affect the electron transfer within the ETC to form 
a superoxide anion which forms an excess of ROS in vari-
ous animal systems [159–163]. Exposure to paraquat and 
atrazine has also been shown to decrease mitochondrial 
membrane potential in pigs and mice [160, 164]. In addi-
tion to these mechanisms, atrazine has been shown to acti-
vate the mitochondrial unfolded protein response, as well as 
increase mitochondrial damage and vacuolar degeneration, 
and decrease mitochondrial cristae and volume density in 
Caenorhabditis elegans [163].

Nanomaterials

Nanomaterials are particles that range from 1 to 100 nm that 
may be formed naturally or engineered. Nanomaterials are 
found in numerous consumer products including cosmetics, 
tires, and electronics. Once in the body, due to their small 
size, nanomaterials are easily transported across cell mem-
branes where they can accumulate within the mitochondria 
[165, 166•] and lead to the disruption of the mitochondrial 
membrane potential and structure [166•, 167]. Nanomateri-
als are distinct from the previous classes of chemicals in that 
they are primarily physical rather than chemical stressors. 
Studies have shown that exposure to silver nanoparticles, 
hydroxyapatite nanoparticles, cadmium telluride quantum 
dots, graphene, fullerene, and carbon nanotubules leads to 
a significant decrease in mitochondrial membrane potential 
and ADP-induced depolarization through increased perme-
ability of the mitochondrial inner membrane and induction 
of mitochondrial permeability transition [168–172] in both 
human and rat in vitro systems. Exposure to nanomaterials 
also leads to increased intracellular  Ca2+ levels and over-
production of ROS in human cells [171, 172, 173]. They 
are also associated with a change in levels and activities of 
enzymes of the ETC [171, 174]. In addition to the changes 
within the ETC, the presence of iron-rich nanoparticles and 
graphene oxide in mitochondria is associated with deformed 
cristae and ruptured membranes in human heart samples and 
zebra fish models [175, 176]. This in vitro evidence sug-
gests that nanoparticles are associated with mitochondrial 
toxicity, and therefore could be important for human health 
effects. Hence, more research in human populations is key 
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towards understanding the mitochondrial health impacts of 
nanoparticles.

Conclusion

A large body of human population and experimental 
research suggests that multiple classes of environmen-
tal toxicants can induce mitochondrial stress and disrupt 
mitochondrial function (Fig. 2, Tables 1 and 2). Several 
chronic diseases are characterized by system- or organ-
specific mitochondrial dysfunction. As discussed through-
out, disparate toxicants can induce common types of mito-
chondrial damage and responses. For instance, excess 
production of ROS, a ubiquitous response across different 
chemical classes, is commonly tied to other mitochondrial 
biomarkers and dysfunction such as alterations of mito-
chondrial membrane permeability, calcium homeostasis, 
and ATP production [177–179]. Moreover, the presence of 
excess ROS within the mitochondria can induce a positive 
feedback loop in the mitochondrial environment, leading 
to more ROS release [180, 181]. Superfluous ROS may 
affect the normal functioning of mitochondria, cells, and 

organisms and is tied to cardiovascular diseases [182], 
autism spectrum disorder [183], neurodegenerative dis-
eases [181, 184], obesity [185], and diabetes [178]. 
Another common response to the different forms of mito-
chondrial damage is a decrease in mitochondrial energet-
ics, as demonstrated through reduction in ATP levels and 
oxygen consumption. This decrease has also been asso-
ciated with the onset of chronic kidney diseases [186], 
heart diseases [187, 188], neurodegenerative diseases 
[189–191], liver diseases [192], and diabetes [193]. Lastly, 
persistent mtDNA damage caused by chemical exposure 
may inhibit replication, RNA transcription, and mitochon-
drial function. Therefore, it is associated with neurodegen-
erative diseases [194, 195], cardiovascular diseases [196, 
197], liver diseases [198], inflammatory diseases [199], 
kidney diseases [200, 201], and obesity [202].

A wealth of experimental evidence indicates the ability 
of environmental toxicant exposures, such as PAHs and air 
pollutants, to induce mitochondrial dysfunction. However, 
there is a greater need for more studies examining the role 
of additional chemicals such as heavy metals, EDCs, pes-
ticides, and nanomaterials in mitochondrial dysfunction 
within human populations. Understanding the associations 

Fig. 2  The environmental toxicant–induced mitochondrial dysfunc-
tion pathways discussed within this review. Blue boxes outlining the 
environmental toxicants represent associations shown in both human 

populations and experimental models, whereas red boxes represent 
associations found only in experimental models
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between toxicant exposure and mitochondrial dysfunc-
tion in humans may help elucidate potential mechanisms 
through which these chemicals induce toxicity. Moreover, 
recognizing these mechanisms may aid in the development 
of therapeutics that target the mitochondrial dysfunction 
and prevent disease advancement [203, 204].

As described within this review, most of the human 
population studies linking exposure to mitochondrial dys-
function used blood or placental mtDNAcn as a biomarker. 
While changes in mtDNAcn can suggest mitochondrial 
dysfunction and may be associated with health outcomes 
[25, 96], they are not a perfect representation of mitochon-
drial content or biogenesis and there is inherent variability 
in copy number associated with the cell type composi-
tion within a tissue or biospecimen [30•]. Furthermore, 
the inconsistent directionality of changes in mtDNAcn 
may make it difficult to interpret the nature of the adverse 
effects. Additional research is needed to untangle the 
complex impacts of toxicants on mtDNAcn and their sig-
nificance within human populations. Therefore, with the 
advent of new techniques and biomarkers such as cell-free 
mitochondria [56•, 205] and cardiolipin levels in blood 
[206], there is a need to apply these novel approaches and 
generate a standardized protocol to continue to character-
ize the mechanisms behind and consequences of toxicant-
induced mitochondrial dysfunction.
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