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Abstract
Purpose of Review We reviewed recent peer-reviewed literature on three categories of individual- and household-level inter-
ventions against air pollution: air purifiers, facemasks, and behavior change.
Recent Findings High-efficiency particulate air/arresting (HEPA) filter air purifier use over days to weeks can substantially
reduce fine particulate matter (PM2.5) concentrations indoors and improve subclinical cardiopulmonary health. Modeling studies
suggest that the population-level benefits of HEPA filter air purification would often exceed costs. Well-fitting N95 and
equivalent respirators can reduce PM2.5 exposure, with several randomized crossover studies also reporting improvements in
subclinical cardiovascular health. The health benefits of other types of face coverings have not been tested and their effectiveness
in reducing exposure is highly variable, depends largely on fit, and is unrelated to cost. Behavior modifications may reduce
exposure, but there has been little research on health impacts.
Summary There is now substantial evidence that HEPA filter air purifiers reduce indoor PM2.5 concentrations and improve
subclinical health indicators. As a result, their use is being recommended by a growing number of government and public health
organizations. Several studies have also reported subclinical cardiovascular health benefits from well-fitting respirators, while
evidence of health benefits from other types of facemasks and behavior changes remains very limited. In situations when
emissions cannot be controlled at the source, such as during forest fires, individual- or household-level interventions may be
the primary option. In most cases, however, such interventions should be supplemental to emission reduction efforts that benefit
entire communities.

Keywords PM2.5 . Smoke . Traffic . Intervention . Randomized . Crossover . HEPA .Mask . N95 . Respirator

Introduction

Air quality improvements in wealthy countries have improved
public health [1–4]. Global progress toward clean air, howev-
er, has been uneven. More than 90% of the world’s population
breathes fine particulate matter (PM2.5) above the World
Health Organization’s (WHO) guideline concentration and

air pollution remains a leading cause of disease and premature
death [1]. Even low concentrations pose a threat because there
appears to be no safe exposure threshold [5–7].

It will be decades before the global health impacts of air
pollution can be reduced to acceptable levels [8]. For example,
between 2013 and 2017, China’s ambitious Air Pollution
Prevention and Control Action Plan reduced PM2.5 concentra-
tions by 33% across 74 cities [9–11]. But following that ex-
traordinary improvement, the average PM2.5 concentration in
those cities was 47 μg/m3—or nearly five times the WHO
guideline concentration [10]. We have worked for several
years in Ulaanbaatar, Mongolia, a city with notoriously pol-
luted air [12–16]. Piecemeal efforts by the government and
international organizations to reduce pollution have had little
impact, and citizens have protested and demanded that more
be done [17]. Clearing the air will require radical changes to
the city’s energy supply and infrastructure, so even under
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optimistic scenarios Ulaanbaatar’s air will threaten public
health for many years to come [18].

Given the slow pace of progress in many settings, individ-
uals struggle to protect themselves and their communities
[19–21]. A private campaign in Ulaanbaatar raised approxi-
mately $40,000 (US) in financial and in-kind support to dis-
tribute air purifiers to children’s hospital wards [22], and we
frequently hear stories of families sending children to schools
abroad to escape the pollution. Similarly, some wealthy “pol-
lution refugees” are leaving other highly polluted cities like
New Delhi for places with cleaner air [23].

Some individual- and household-level (IHL) interventions
are now big business, although the marketing claims often
exaggerate the scientific evidence [24–26]. One can purchase
“DIY” air purifiers kits [27], air filtering baby pillows are
being developed [28], and facemasks appear at fashion shows
[29]. During a particularly polluted period in New Delhi, of-
ficials announced plans to distribute five million facemasks to
schoolchildren [30]. One study estimated that a day of “se-
vere” pollution in eight Chinese megacities leads to $200,000
(US) in facemask sales [31]. Another study estimated that a
10% reduction in the number of “heavily polluted” days
across China over a 16-month period would reduce facemask
sales by $187 million (US) [32].

IHL interventions represent a “Band Aid” solution and are
not a viable long-term alternative to emissions reductions. But
some of these interventions may have value—particularly in
high pollution settings, for vulnerable individuals, and/or
when emissions cannot be managed at the source.

Interest in these interventions among researchers continues
to grow. Several reviews and commentaries have been pub-
lished in recent years [33–42], with most discussing one class
of interventions [36•], a narrow range of health outcomes [37,
41], a specific pollution source [42], and/or specifically
targeting clinicians [38–41]. We sought to broadly summarize
the most important recent research findings for three catego-
ries of interventions: air purifiers, facemasks, and behavior
modifications. Our goal was not to conduct a systematic re-
view, but rather to identify contemporary research themes and
areas of overlap, offer suggestions for future studies, and share
some thoughts based on our own research experiences in this
area.

We searched the PubMed andWeb of Science databases by
combining search terms related to air pollution (e.g., particu-
late matter, PM2,5, smoke) with terms related to our three
categories of interventions (e.g., HEPA, mask, windows).
We reviewed the abstracts identified by these searches, select-
ed relevant articles, and then performed reference and citation
searches on them. We were primarily interested in interven-
tion studies targeting PM2.5, the pollutant most consistently
linked with health outcomes, and studies published in 2017 or
later (although some particularly relevant older studies are
discussed). Interventions targeting air pollution from cooking

and/or heating stoves are outside our scope and are discussed
elsewhere [43, 44].

Air Purifiers

People spend most of their time indoors [45]. Because outdoor
air pollution infiltrates into buildings, “indoor air” contains
both indoor- and outdoor-generated pollution [46]. Indoor ex-
posures account for 61% and 81% of the deaths attributed to
outdoor-generated PM2.5 in the USA and China, respectively
[47, 48]. Thus, reducing PM2.5 indoors may also mitigate the
impacts of outdoor-generated particles.

Indoors, particles can be removed by placing air purifiers in
a building’s heating, ventilation, and air conditioning (HVAC)
system or by using portable, stand-alone air purifiers. Most
studies have focused on mechanical filtration with high-
efficiency particulate air/arresting (HEPA) filters, which re-
move at least 99.97% of 0.3 μm particles. Fewer studies have
evaluated other technologies such as electrostatic precipitators
(EPs) or negative ion generators (IGs), both of which produce
ions that attach to particles and promote deposition. Two fac-
tors govern air purifier effectiveness: the efficiency of the
device at removing pollution and the volume of air brought
through the device. Two rating systems are commonly used to
evaluate air purifiers. HVAC filters are given a minimum ef-
ficiency reporting value (MERV) between 1 and 16, while
portable air purifiers are often described by the clean air de-
livery rate (CADR). More details on air purification technol-
ogies were provided in a recent review [36•].

By 2017, there was substantial evidence from randomized
studies in North America and Europe that HEPA filtration—
either in HVAC systems or with portable units—can reduce
PM2.5 concentrations by 50% or more over periods of a few
days to 2 weeks [36•]. Several studies also reported improve-
ments in subclinical cardiovascular health indicators including
systolic blood pressure [49], endothelial function [50, 51], and
systemic inflammation [51, 52]. Our review identified four
main themes in recent research: (1) evaluations of exposure
and health impacts from air filtration in highly polluted set-
tings and over longer durations, (2) studies of personal expo-
sure impacts from filtration, (3) cost-benefit analyses of filtra-
tion, and (4) investigations involving EPs and IGs (Table 1).

Three recent studies in China demonstrated large concen-
tration reductions from air filtration in highly polluted settings.
In Beijing, portable HEPA filter air purifier use for 2 weeks
reduced PM2.5 concentrations from 60 to 24 μg/m3 in the
homes of non-smoking seniors [53, 54]. The air purifiers also
reduced systemic inflammation, but did not affect lung func-
tion, blood pressure, or heart rate variability (HRV) [53]. In a
suburb of Shanghai, 13 h of portable HEPA filtration reduced
mean indoor PM2.5 concentrations from 33 to 10 μg/m3 in the
homes of non-smoking young adults [55]. Filtration was
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associated with improved airway mechanics and reduced
thrombosis risk, with no improvements in spirometry or air-
way inflammation—and a small, marginally significant in-
crease in diastolic blood pressure. In a study of young adults
in Shanghai, use of portable air filters over 9 days reduced
average PM2.5 concentrations in dormitories from 47 to
9 μg/m3, while also reducing stress hormones and improving
indicators of blood pressure, insulin resistance, oxidative
stress, and inflammation [56].

Two recent studies evaluated air purifier efficacy over rela-
tively long durations. Chuang and colleagues [57•] enrolled 200
homemakers in Taipei into a study of MERV 11 filtration in
window air conditioning units. Participants were randomly
assigned to a filtration intervention or sham control group for
1 year, and then to the opposite group for the second year.
Filters reduced indoor PM2.5 concentrations from 22 to 13 μg/
m3 and were associated with reductions in blood pressure, sys-
temic inflammation, and oxidative stress. Our Ulaanbaatar
Gestation and Air Pollution Research (UGAAR) study is a ran-
domized controlled trial designed to evaluate the impacts of por-
table HEPA filter air purifier use during pregnancy on fetal
growth and childhood development [58•, 59]. Air purifiers re-
duced indoor PM2.5 concentrations during pregnancy by 29%
(from 25 to 17 μg/m3), with greater PM2.5 reductions in colder
months. In addition, effectiveness was greater when air purifiers
were first deployed (40% reduction) than after approximately
5 months of use (15% reduction). Overall, participants reported
using air purifiers for 64% of the study period. The intervention
led to an 85 g (95% CI: 3, 167 g) increase in mean term birth
weight.

Three recent studies suggested that air filters have less im-
pact on personal exposures than on indoor concentrations. In
Detroit, Morishita and colleagues [60] measured PM2.5 expo-
sure and blood pressure changes among 40 non-smoking par-
ticipants in a low-income senior residential facility. Air puri-
fiers, which were placed in participants’ bedrooms and living
rooms, reduced indoor PM2.5 concentrations by 52%with low
efficiency filtration and by 59% with HEPA filtration.
Personal PM2.5 exposure reductions were smaller: 30% with
low efficiency filtration and 52% with HEPA filtration. The
authors did not report the amount of time participants spent
inside their homes. Air filtration was associated with signifi-
cant reductions in systolic blood pressure and marginally sig-
nificant reductions in diastolic blood pressure. In Beijing,
Zhan et al. [61] found that 48 h of portable HEPA filtration
in six residences reduced average bedroom PM2.5 concentra-
tions from 49 to 9 μg/m3, but average personal exposure was
higher during filtration. The authors attributed the lack of
exposure reductions to time spent in other microenviron-
ments. A crossover study of 43 children near Shanghai indi-
cated that 2 weeks of bedroom HEPA filtration reduced aver-
age indoor PM2.5 concentrations by 68% but reduced average
personal exposure by only 27%. Although the children’s time-

activity patterns were not reported, the authors attributed the
more modest reductions in personal exposure to time spent in
other locations [62].

Three recent studies suggest that the economic benefits of
filtration would often exceed purchase and operation costs,
particularly if the filtration is targeted to susceptible subpop-
ulations [63, 64•, 65]. Fisk and Chan [63] modeled the impacts
of portable and HVAC air filter use for 10 days during the
2003 southern California wildfires. When used in all homes,
the economic benefits of reduced mortality outweighed costs
for HVAC filtration, but not for portable air purifiers.
However, both interventions were more cost effective when
targeted elderly residents, a group at elevated risk of mortality
during fire smoke events. In a second study, these authors
quantified the costs and economic benefits of reduced
particle-related mortality from long-term user of portable
and HVAC filtration in US homes and workplaces [64•].
Benefits exceeded costs in all scenarios, with cost-benefit ra-
tios ranging from 3.9 to 133. Investigators in Detroit modeled
the impact of enhanced HVAC filtration in homes and schools
on exposure to outdoor-generated PM and asthma-related out-
comes [65]. They found that installing enhanced filters in
schools would be cost effective, while enhanced filters in
homes of asthmatic children would be more expensive and
less cost effective. These studies probably underestimated to-
tal benefits because they focused on a narrow range of health
outcomes and only considered the impacts of outdoor-
generated pollution.

Finally, three recent studies reported potentially deter-
minantal effects from other air purifier technologies. In
China’s Hunan province, removal of HEPA filters from
HVAC systems in offices and dormitories led to large in-
creases in PM2.5 concentrations but did not alter bio-
markers of cardiopulmonary risk among 89 young adults
[66]. But removal of EPs from HVAC systems led to small
decreases in ozone concentrations and several cardiovas-
cular risk biomarkers, indicating potential adverse effects
from ozone produced by EPs. In Beijing, Liu and col-
leagues [67•] conducted a randomized crossover study of
IGs in the dormitories of 56 healthy university students.
One week of IG use reduced indoor PM2.5 concentrations
but increased negative ion concentrations. Negative ions
were associated with an increase in malondialdehyde, a
biomarker of systemic oxidative stress, which offset the
benefits of PM2.5 reductions resulting in no net effect of
IG use on malondialdehyde. There were also no effects of
IG use on measures of lung function, vascular tone, arterial
stiffness, or inflammation. In a similar study of 44 children
in Beijing classrooms, Dong et al. [68] reported that 5 days
of IG use decreased PM2.5 and BC, improved lung function
and reduced airway inflammation, but did not alter blood
pressure. However, the study also found that negative ions
were associated with detrimental effects on HRV.
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Facemasks

Unlike air purifiers, facemasks have the potential to reduce
exposure in multiple indoor and outdoor locations. We use
the term “facemask” to include a range of materials worn on
the face including improvised masks (t-shirts, handkerchiefs,
bandanas, etc.) [69], procedure or surgical masks, and air pu-
rifying respirators designed for occupational settings [70].

Occupational health and safety organizations typically
evaluate and certify respirators used in workplaces [71].
For example, in the USA, the National Institute for
Occupational Safety and Health categorizes particle-
filtering respirators by three categories of oil resistance
and three levels of efficiency (95, 99, and 99.97%) at re-
moving 0.3 μm particles [71]. The most common of these
is the N95 (or equivalent, e.g., FFP2 in Europe and KN95
in China) [72]. Facemask effectiveness is governed by both
the material’s filtration efficiency and the mask’s facial fit,
and in workplaces respirators are typically fit tested on
workers. In contrast, respirators marketed for use in com-
munity settings do not typically undergo testing or certifi-
cation. The costs of facemasks vary widely. Typical costs
for procedure masks and N95 respirators are < $0.50 US
and $2 US, respectively, while reusable respirators
marketed for protection against community air pollution
can cost up to $50 US.

To our knowledge, only two studies published prior to
2017 evaluated the health benefits of facemask use in com-
munity settings [73, 74]. Both were conducted in Beijing and
provided evidence that short-term use of N95 respirators can
reduce the effects of air pollution on blood pressure and HRV.
Recent studies have added to this limited literature on health
impacts, while others evaluated the exposure benefits of a
broader range of facemask materials and designs.

Since 2017, three additional studies of N95 masks and
health outcomes have been published. In Shanghai, Shi and
colleagues [75] conducted a randomized crossover trial in
which 24 healthy young adults wore N95 respirators dur-
ing one of two 48-h periods. Participants were instructed
on how to wear respirators to achieve a good fit. Respirator
use was associated with reduced mean systolic blood pres-
sure and improved HRV. Yang and colleagues [76] per-
formed a randomized crossover study in Beijing’s subway
system to evaluate short-term cardiovascular benefits from
both respirators and noise-canceling headphones.
Participants underwent extensive respirator fit testing.
Both interventions were associated with improved HRV
and decreased heart rate, but there were no associations
with blood pressure. Most recently, Guan and collaborators
[77•] studied the influence of N95 masks on airway inflam-
mation and endothelial function among 15 healthy young
volunteers in Beijing. The notable difference from previ-
ous work was the double-blind design with sham

facemasks (facemasks with filters removed). The authors
did not provide information on fit testing. After partici-
pants walked a defined route along a busy road for 2 h
while wearing a facemask, the investigators measured
health outcomes four times over a 24-h period. The proce-
dure was repeated 1 month later using the opposite mask
configuration. Compared with sham facemasks, the real
facemasks attenuated pollution-induced effects on airway
inflammation. There were no effects on systemic oxidative
stress, and one arterial stiffness indicator was significantly
elevated after participants wore the real facemasks. This
may have been due to facemasks increasing respiration
resistance or inducing deeper breathing leading to changes
in airway deposition.

Several other recent studies of facemasks evaluated the
exposure reduction potential of various facemask materials
and designs. Two studies used mannequins and two enrolled
human volunteers, but all emphasized the importance of facial
fit on performance. Using a mannequin, Shakya and col-
leagues [78] found that cloth masks filtered 15 to 57% of
diesel particles. A surgical mask had 79% efficiency, similar
to the N95 masks tested. The authors noted that the best
performing cloth mask conformed to the mannequin’s con-
tours while the less effective cloth masks did not provide a
good fit. Pacitto et al. [79•] studied nine facemasks available
in Spain at prices ranging from 1 to 44 Euros (approximately
$1.10 to $50 US). Mask effectiveness in removing PM2.5

ranged from 14 to 96%, with lower effectiveness for black
carbon and particle number count. The authors noted that
mask costs were related more closely to esthetics than
effectiveness.

Cherrie and colleagues [26] evaluated particle penetra-
tion through nine facemasks that are commercially avail-
able in China, then selected four masks for additional test-
ing on human volunteers. A key finding was that despite
being made of highly efficient particle-filtering materials,
two of the four masks performed poorly during human
volunteer testing because of inadequate fit. A similar study
evaluated 17 facemasks—ranging in sophistication from
improvised masks to an N99 mask—used for protection
against volcanic ash, which is composed of larger and
more easily filtered particles than urban air [69]. Certified
masks (N95 and N99) performed best (filtration efficien-
cies > 98%), followed by surgical masks (89–91%) and
improvised mask materials (< 44%). Four of the masks—
including an N95 respirator, a surgical mask designed to
filter PM2.5, a standard surgical mask, and a basic “flat
fold” dust mask—were then tested on human volunteers
for quantification of total inward leakage (TIL) [80]. The
TIL of the N95 mask was 9%, compared with 22 to 35%
for the other masks. Study participants rated the N95 as the
most protective due to sturdiness and fit, but also as un-
comfortable and difficult to breathe through.
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Behavior Modifications

Staying Indoors and Closing Windows

Air pollution dose is influenced by concentration and breath-
ing rate, so changing locations and activities may be beneficial
[33]. During pollution episodes, government and public health
agencies often recommend reducing outdoor activities, partic-
ularly for susceptible groups [81, 82].

The level of protection provided by residences and other
buildings varies depending on window opening, air condition-
ing use, use of air purifiers, building age and condition, and
other factors. In seven US communities, we found mean
PM2.5 infiltration efficiencies (Finf, the fraction of outdoor
PM2.5 concentration that penetrates indoors and remains
suspended) ranging from 0.49 to 0.74 in the heating season
and 0.43–0.90 in the non-heating season [46]. Several recent
studies in Chinese cities estimatedmeanFinf in the heating and
non-heating seasons of 0.54–0.79 and 0.70–0.91, respectively
[83–85].

To our knowledge, only two studies—both conducted in
Taipei—directly evaluated the health benefits of keeping win-
dows closed and both were published prior to 2017. In a 2009
study, 40 healthy university students underwent hourly blood
pressure and heart rate measurements during four 48-h mon-
itoring sessions [86]. The researchers asked participants to
stay home and keep gas stoves turned off, and to keep win-
dows open during the first two measurements and closed dur-
ing the last two measurements. Indoor PM2.5 concentrations,
blood pressures, and heart rates were higher when windows
were open than when windows were closed. The same re-
searchers later enrolled 300 healthy adults and compared three
exposure conditions: windows open, windows closed without
air conditioning, and windows closed with air conditioning
[87]. Closing windows had little effect on PM2.5 concentra-
tions, but levels were 44% lower when air conditioning was
used (26 vs 14 μg/m3). HRV improved both when windows
were closed and when air conditioning was turned on, while
oxidative stress and systemic inflammation markers decreased
only when air conditioners were turned on. Unfortunately, the
investigators did not randomize treatment order or report out-
door PM concentrations.

In a 2019 study, Reisen and colleagues [88] reported
measurements of outdoor and indoor PM2.5 concentrations
at 21 residences in Australian community impacted by
smoke from prescribed burns and bushfires. Seven of the
homes were monitored during smoke plume events. There
were no personal exposure measurements. Residents com-
pleted a diary on indoor pollution source activities and
window opening. The authors found that during smoke
plume events hourly peak PM2.5 concentrations were re-
duced by 12 to 76% when windows and doors were closed.
But the authors also reported that leaving windows closed

after a smoke event had ended trapped PM2.5 indoors and
increased indoor concentrations.

The potential protection provided by buildings must be
balanced with other factors including indoor pollution sources
[89], heat [90], and impacts on physical activity [91•]. A 2018
study in Beijing estimated that increasing building air-tight-
ness, without adding mechanical ventilation and/or filtration,
would reduce the infiltration of outdoor pollution but amplify
the impact of indoor emissions, leading to higher indoor PM2.5

concentrations [89].

Travel Modes and Routes

Travel can disproportionately impact exposure to traffic-
related air pollution (TRAP) [92, 93]. TRAP concentrations
are highly variable and several cities have online tools to help
commuters select routes with less air pollution. Travel mode
can also be important because it influences travel route and
duration, breathing rate, and the degree of protection from
ambient pollution.

Three review papers published in 2017 or 2018 concluded
that, compared to active commuters, drivers generally encoun-
tered higher concentrations of TRAP [91, 94, 95]. However,
active commuters often had higher inhaled doses due to in-
creased minute ventilation and longer trip durations [91•, 95].
Incorporating the benefits of physical activity, Cepeda and
colleagues [91•] found that median life expectancy losses
were up to 1 year lower among active commuters, indicating
that the benefits outweighed the negative effects of pollution.

There were several randomized crossover studies of route and
cardiopulmonary health published prior to 2017. Results from
studies of cyclists were mixed [96–99], while a study of individ-
uals with asthma in London found that walking for 2 h on
Oxford Street induced greater reductions in lung function than
walking in Hyde Park, where pollution levels were lower [100].

Our review identified three recent crossover studies of trav-
el routes and health in addition to several recent studies of
exposure. Participants in London aged 60 years and older
walked for 2 h either along Oxford Street or in Hyde Park,
then in the opposite location 3 to 8 weeks later [101]. Personal
exposures to TRAP and noise were significantly higher on
Oxford Street. Walking in Hyde Park led to improvements
in several cardiopulmonary markers, while walking on
Oxford Street was less beneficial. In a study of 32 healthy
adult cyclists in Sacramento, Park and colleagues [102] asked
participants to complete one ride each on a low- and high-
traffic route. UFP concentrations were nearly three times
higher on the high-traffic route. Lung function measures im-
proved while cycling on the low-traffic route and either de-
creased or were unchanged during the high-traffic ride.
Unfortunately, the specific routes were not uniform across
participants and the authors did not indicate whether route
order was randomly assigned. In Vancouver, Cole et al.
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[103] conducted a randomized crossover study in which 38
adults cycled for 1 h on both a downtown and residential
route. Median exposures to PM2.5 and UFP were 30% and
53% higher, respectively, on the downtown route. Reactive
hyperemia index (RHI, a measure of endothelial function)
decreased after cycling downtown and increased after cycling
in the residential area. But changes in RHI were not associated
with air pollutants and the authors speculated that the differ-
ences between routes may have been due to other exposures
such as physical exertion, noise, or stress. Other measures of
lung function, systemic inflammation, and oxidative stress
were not associated with route.

Several other recent studies reported on the effect of route
on TRAP exposure only, with most focused on cyclists. These
studies consistently found routes with less vehicle traffic were
associated with lower BC concentrations, with less consistent
evidence of reductions in UFP or PM2.5 [104–110]. A study in
Fort Collins, Colorado, a city with relatively low levels of air
pollution, also found that by selecting an alternative route
drivers significantly reduced cumulative exposures to BC
and carbon monoxide by 15%, but PM2.5 exposures were
unchanged [110].

Vehicle Ventilation and Filtration

By 2017, there was substantial evidence that in-vehicle con-
centrations of UFP and other traffic-related particles are influ-
enced by opening windows, recirculating cabin air, and/or the
use of enhanced filtration [111–115]. These findings have
been reinforced by recent studies, some of which documented
considerable variation in particle concentrations under differ-
ent ventilation conditions [115–117]. For example, Kumar
and colleagues [117] drove pre-planned routes in 10 cities
and measured in-vehicle PM2.5 concentrations with windows
open and fan off (windows open), windows closed with fan on
(fan on), and windows closed with recirculation mode on (re-
circulation). Relative to recirculation mode, PM2.5 concentra-
tions were up to 385% higher with fan on and up to 1020%
higher with windows open.

In contrast, the evidence that vehicle ventilation or filtration
influence health is much more limited. Prior to 2017, we are
aware of one study that directly addressed this issue. In that
non-randomized study, the use of a vehicle’s air conditioning
system improved air quality and modified the effects of PM2.5

on HRV [118]. More recently, in a non-randomized study, Yu
and colleagues [119, 120] found that using high-efficiency
cabin air filters in taxis with windows closed reduced mean
PM2.5 and ultrafine concentrations by 37% and 47%, respec-
tively, but did not alter oxidative stress indicators.

That study and several others published recently also em-
phasized the trade-offs between closing windows and
recirculating cabin air to reduce particle concentrations and
avoiding high levels of CO2, which can cause drowsiness

and cognitive impairment [115, 120–125]. Hudda and Fruin
[125] conducted a modeling study to identify vehicle and trip
characteristics associated with elevated CO2 concentrations in
passenger vehicles. They concluded that most one- or two-
occupant trips of average duration would not exceed
2500 ppm (ppm) of CO2, a threshold that has consistently
been found to impair mental performance. However, for mul-
tiple passenger or long-distance trips, the authors suggested
that recirculation mode should be periodically interrupted to
avoid having CO2 concentrations exceed 2500 ppm.

Discussion

The peer-reviewed literature on individual- and household-
level interventions has expanded considerably in recent years.
There is compelling evidence from randomized studies that
HEPA filter air purifier use over days or weeks can reduce
PM2.5 concentrations and improve subclinical cardiopulmo-
nary health. There have been fewer studies of facemask use
in non-occupational settings, but there is evidence that well-
fitting N95 respirators can reduce PM2.5 exposure, with sev-
eral randomized crossover studies also indicating that short-
term use improves subclinical cardiovascular health. The ef-
fectiveness of other types of masks and face coverings in
reducing exposure is highly variable, depends largely on fit,
and is unrelated to cost. At present, there is no direct evidence
that these masks provide health benefits. Some behaviors—
such as traveling on less polluted routes, driving with win-
dows closed, or using enhanced vehicle filtration—may re-
duce exposure, but there is little evidence that these changes
benefit health.

Despite their potential benefits, these interventions all have
limitations. For example, portable air filters may be prohibi-
tively expensive for some families. In our studies, some par-
ticipants expressed concern about electricity costs and noise
[58•]. In addition, air filters are less effective at higher air
exchange rates [58•] or for individuals who spend time in
other locations [60–62]. In some studies, participants were
asked to stay indoors, keep windows closed, or use air filters
continuously, so published results may represent best case
scenarios [57•, 61, 62]. The benefits of reduced PM2.5 con-
centrations from electrostatic precipitators and negative ion
generators may be offset by the harmful effects of ozone and
negative ions, respectively [67•, 68]. Respirators designed for
occupational use may be unavailable or prohibitively expen-
sive in some settings [69, 126•], a good facemask fit may be
unachievable for children and some adults [127–129], and a
poor fitting facemask may give a false sense of security [38].
Higher efficiency masks, such as N95, can be uncomfortable
and may make breathing difficult [77•, 80]. This may be par-
ticularly problematic for those with compromised cardiorespi-
ratory health, a group that is vulnerable to air pollution and
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therefore among the most likely to benefit from exposure re-
ductions [41, 42]. Masks marketed for use in community set-
tings are not subject to testing or certification, and mask cost
does not predict effectiveness [79•]. Staying indoors and clos-
ing windows may be less effective without air conditioning
[87], may amplify the impact of indoor emissions [89], and
must be weighed against other hazards such as heat and de-
creased physical activity [90, 91•, 130]. The viability of alter-
nate route selection as an exposure mitigation strategy for
active commuters, particularly pedestrians, may be limited if
the lower exposure route substantially increases the journey
distance [131, 132]. Recirculating cabin air in vehicles can
elevate CO2 concentrations, particularly on multi-passenger
and/or long trips [125].

Our review identified several gaps in the literature. With few
exceptions, researchers evaluated IHL intervention use over
short durations and measured only subclinical health endpoints.
We support calls for studies of long-term use and clinically
relevant outcomes [133, 134]. In addition, little is currently
known about the long-term developmental impacts from use
of these interventions by pregnant women. In our UGAAR
birth cohort study, we found that portable air purifier use im-
proved fetal growth [59•], and we are currently investigating
whether exposure reductions during pregnancy alter develop-
mental trajectories and provide benefits that extend into child-
hood [135]. There is anecdotal evidence that N95 and equiva-
lent masks are often unavailable in the most polluted locations,
so we recommend health studies of the face coverings that are
available and used in those settings. In addition, while a small
number of studies evaluated comfort and “wearability” of
facemasks among children [128, 129], we are unaware of any
studies of the exposure or health benefits of facemask use
among children in community settings. The standard advice
during pollution episodes is to remain indoors and reduce out-
door activities. This advice is largely based on studies showing
that infiltration efficiencies for outdoor PM2.5 and other pollut-
ants are < 1. But there is surprisingly little direct evidence that
these behavior changes provide any benefits. Thus, there is a
need for carefully designed studies to evaluate the effectiveness
of this routinely suggested behavior change, particularly for
health. We recommend the use of randomized designs when
feasible, but researchers will need to carefully consider the in-
herent ethical challenges [136]. For example, as evidence of air
purifier effectiveness continues to accumulate, it may become
unethical to withhold them from control participants in random-
ized studies.

A common criticism of IHL interventions is that they shift
the burden of environmental protection from governments to
individuals [126•]. Polluting industries may also promote
these interventions to avoid or delay government regulations.
For example, we question the motives of a Mongolian coal
company that has promoted the use of facemasks in
Ulaanbaatar. We strongly agree that governments are

responsible for air quality management, and IHL interventions
can never replace sound environmental and public health pol-
icies that address emissions over the long term [126•].
However, when evaluating the merits of these interventions,
one should consider that 90% of the world’s population
breathes pollution above the WHO guideline concentration
[1] and that, historically, policy-driven improvements in air
quality took decades [8]. Given this slow grind toward clean
air, and the ubiquity of the problem, it is unsurprising that
individuals try to protect themselves. In addition, some
sources of air pollution—such as forest fires—cannot be di-
rectly controlled at the source so risks must be mitigated at the
household level [136]. Climate change will increase the rela-
tive impact of forest fires on air quality [137], and an increas-
ing number of agencies recommend the use of air purifiers
during fire smoke events [138].

A second frequent criticism of these interventions is that
they may exacerbate environmental injustice [126•].
However, this criticism assumes that the costs of these inter-
ventions are borne by users, which has typically been the case
[139]. Air purifiers and facemasks could potentially be distrib-
uted by public health or environmental organizations in a way
that reduces inequities. A recent study in Beijing suggested
that air filtration can exacerbate or alleviate exposure ineq-
uities, depending on how filtration is used [140•]. PM2.5 con-
centrations in 97 city districts were inversely correlated with
mean income and percentage of high school graduates, and
the authors argued that governments should provide air puri-
fiers in disadvantaged areas to reduce inequities. Numerous
papers have discussed emissions reduction strategies to im-
prove equity [141–143], but the potential for targeted IHL
interventions to improve equity has received little attention.

We believe that the research community should rigorously
evaluate these interventions so that public health officials can
make evidence-based recommendations that enable the public
to make informed choices. In addition, as we have described
previously, randomized “intervention studies” do more than
test interventions; these studies provide large exposure gradi-
ents with which to study exposure-health relationships, gen-
erate compelling evidence of causality, and provide results
that are easily communicated [136].

Conclusions

There is now substantial evidence that HEPA filter air puri-
fiers reduce indoor PM2.5 concentrations and improve subclin-
ical cardiopulmonary health indicators. Several studies have
also found subclinical cardiovascular health benefits from
well-fitting respirators, while the exposure benefits of other
facemasks is highly variable and health benefits have not been
tested. Similarly, some behavior changes may reduce expo-
sure but evidence of health benefits remains very limited. Risk
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mitigation at the household level may be the primary option
when emissions cannot be controlled at the source, such as
during forest fires, or in communities like Ulaanbaatar where
acceptable air quality is seemingly many years away. In most
cases, however, individual- and household-level interventions
should be supplemental to government policies targeting pol-
lution emissions that benefit entire communities.
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