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Abstract
Viscoelastic fluids are central in numerous applications from polymer manufacturing to the pharmaceutical industry and
biological research. However, since analytical solutions are generally not available or too complex, it is common practice to
study free-surface viscoelastic flows through numerical simulation techniques. This work proposes the use of the so-called
particle finite elementmethod (PFEM), a Lagrangian approach combining standard FEM techniqueswith a remeshing strategy.
The PFEM is able to efficiently handle mesh distortion and to accurately track the free-surface evolution. Therefore, it is
exploited in this work to deal with large displacements problems in the context of nonlinear viscoelasticity. An implementation
of the Oldroyd-B constitutive model in the PFEM framework is here presented including details regarding how to deal with the
transfer of the internal variables during remeshing events. Additionally, an innovative approach to impose unilateral Dirichlet
boundary conditions ensuring optimal mass conservation is presented. The implementation is verified with two free-surface
highly viscous benchmark flows: the impacting drop and the jet buckling problems. The results show perfect agreement
with those obtained with other numerical techniques. The proposed framework opens the way for using PFEM in various
applications, ranging from polymer extrusion to more sophisticated scenarios involving viscoelastic and viscoelasto-plastic
constitutive laws.

Keywords Numerical modelling · Particle finite element method · Viscoelastic fluid · Oldroyd-B · Impacting drop · Jet
buckling

1 Introduction

Viscoelastic fluids are a class of materials exhibiting an inter-
mediate behaviour between solids and fluids. In contrast to
perfectly elastic solids, they do not possess a permanent
reference state, but rather a fadingmemory of the prior defor-
mations [1]. The elastic stresses generated during the flow are
thus expected to vanish over a certain time scale referred to
as relaxation time λ. For these reasons, they behave very
differently from their Newtonian counterparts, showing a
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wide range of peculiar phenomena (rod-climbing, die swell,
elastic recoiling, vertex inhibition and others) [2] and insta-
bilities [3]. The study of viscoelastic fluids and their flow
is of great interest in various fields, including polymer pro-
cessing, pharmaceuticals, microfluidics, cosmetics, the oil
and gas industry and the food industry. Additionally, many
important biological liquids such as blood [4], synovial fluids
[5] and mucus are viscoelastic.

The mathematical theory to study arbitrary viscoelastic
flows started with the seminal work of the British mathe-
matician James G. Oldroyd in 1950 [6]. Before that date,
only linear viscoelastic constitutive models existed, which
were limited to flows with small displacement gradients.
Oldroyd’s work generalized these models to finite deforma-
tions and arbitrary flows establishing their admissible forms,
respecting the principle of material’s objectivity [7]. Based
on his newly developed theory, Oldroyd was able to derive
the nonlinear equivalent of the Jeffreysmodel, which became
known as theOldroyd-Bmodel [8]. This is regarded as one of
the most simple and popular models to describe viscoelastic
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fluids involving amicrostructure embedded in a solvent (e.g.,
polymer solutions). TheOldroyd-Bfluid equationswere later
re-derived based on a simplified molecular model consisting
of a suspension of Hookean dumbbells in a Newtonian sol-
vent [2]. For all these reasons, the Oldroyd-B model became
a reference in the field of theoretical [7, 8] and numerical
studies of viscoelastic fluids.

Despite its simplicity, when coupled with the equations of
motion for the fluid, theOldroyd-Bmodel gives rise to a com-
plex set of coupled Partial Differential Equations (PDEs).
Except for a few very simple flows, it is usually not possible
to compute that an analytical solution and numerical tech-
niques must be employed. The topic of numerical simulation
of viscoelastic flow has been gaining attention over the past
three decades. An extensive description of the application of
the Finite DifferenceMethod (FDM), Finite VolumeMethod
(FVM), Finite Element Method (FEM) and spectral meth-
ods for the simulation of confined viscoelastic flows can be
found in [9, 10]. Concerning free-surface Oldroyd-B flows,
several works have been carried out in the Eulerian frame-
work, exploiting the FDM [11–16], the FVM [17, 18] or the
FEM[19–21], to compute solutions for benchmarkproblems,
such as the impactingdrop, the jet bucklingflow, thedie-swell
phenomenon and polymer extrusion.Meshlessmethods have
also been thoroughly investigated, because, relying on a
Lagrangian framework, they can effortlessly track the free
surface and avoid dealingwith the nonlinear convective term.
In particular, the Smoothed Particle Hydrodynamics (SPH)
has been employed to reproduce the aforementioned prob-
lems in [22–26]. Also, theMaterial PointMethod (MPM) has
been considered a valuable option to reproduce free-surface
viscoelastic flows in [27, 28]. Recently, in [29], an innovative
approach named Floating Isogeometric Analysis (FLIGA),
has been tested on the die-swell problem and applied for the
2D simulation of the extrusion of a polymeric material.

Instead, to the authors’ best knowledge, there are no con-
tributions yet regarding the study of viscoelastic free surface
flow with the Particle Finite Element Method (PFEM) [30,
31]. The PFEM relies on an updated Lagrangian formulation
integratedwith a re-meshing scheme to dealwith large distor-
tions in the computational domains. It combines advantages
both frommeshless methods and standard FEM for continua.
Among its strengths, there is the treatment of large displace-
ment problems, the ability to effortlessly keep track of the
free surface and the ease in the imposition of boundary con-
ditions (with respect to meshless methods). Non-Newtonian
viscous and viscoplastic free-surface flows have been widely
simulated with the PFEM, for example, in landslide flows
[32], glass forming [33], metal moulding and forging [34,
35], fresh concrete flow tests [36, 37] or recently in 3D
concrete printing applications [38–41]. Therefore, even if it
has not been attempted yet, it would appear natural also to
apply the PFEM for the simulation of non-Newtonian vis-

coelastic free-surface fluid flows. The advantages of PFEM
to study viscoelastic fluids over other methods could be mul-
tiple. First of all, differently from meshless methods, PFEM
allows the use of constitutive laws developed in a contin-
uum framework, facilitating the implementation of complex
material behaviours. Secondly, as already mentioned above,
PFEM is particularly suitable for studying problems with
evolving free surfaces or involving fluid–structure interac-
tion, as typically happens in viscoelastic flows. Thus, this
article proposes an implementation of the Oldroyd-B model
in the PFEM framework, proving its efficiency and accuracy
through the simulation of multiple well-established 2D and
3D benchmarks. More in the specific, the article is structured
as follows.

In Sect. 2, the theoretical framework is presented, start-
ing with a general discussion of the continuum assumption
and then describing the governing equations for the fluid. The
standard Newtonian rheological law and the more elaborated
Oldroyd-B viscoelastic constitutive equation are also intro-
duced. Subsequently, in Sect. 3 the numerical discretization
of the equations is reported, with particular focus on how
to integrate in time the constitutive viscoelastic law. In Sect.
4, the PFEM basics are recalled and two specific aspects
are detailed: the transfer of the internal variables and the
imposition of the unilateral Dirichlet boundary condition.
Section5 presents the impacting drop and the jet buckling
flow benchmarks both in 2D and in 3D. They are used to
verify the model through comparison with other works from
the literature. Finally, in Sect. 6, the conclusions are drawn,
addressing potential issues, further developments and future
applications.

2 Governing equations

The mathematical idealization of a homogeneous fluid as a
continuum is based on the assumption that the representative
volume element is small enough with respect to the region
of fluid considered, but still larger than the molecular mean
free path [42]. This allows the definition of the relevant vari-
ables (e.g., velocity, pressure, density) at each point of the
fluid domain, ensuring that their space variation remains truly
continuous. Under this assumption, the response of the fluid
can be studied with a system of PDEs, the Navier–Stokes
equations, accounting for the conservation ofmomentum and
mass. In this work, the Navier–Stokes equations are written
under the hypothesis of weakly compressible fluid.

2.1 Balance equations

Considering an evolving fluid domain �t in a time inter-
val [0, T ], let us denote with x the position vector at time
t in the local “or current" configuration. Consequently, the
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momentumbalance andmass continuity equations for a com-
pressible fluid read:

ρ
du
dt

= ∇x · σ + ρb in �t × [0, T ], (1)

dp

dt
+ K∇x · u = 0 in �t × [0, T ], (2)

where ρ is the density of the fluid (assumed to be constant
hereafter), σ = σ (x, t) is the Cauchy stress tensor, b is the
vector of the body forces in the local configuration, u =
u(x, t) is the velocity field, p = p(x, t) is the pressure field
and K is the bulk modulus of the material. Additionally,
d(•)
dt = ∂(•)

∂t + c · ∇x(•) represents the material derivative
with respect to time, where c is the convective velocity. In the
following, the Lagrangian description is considered (c = 0);
thus, the convective term vanishes and the material and local
derivatives coincide d(•)

dt = ∂(•)
∂t . The governing equations

can be solved after a suitable set of initial and boundary
conditions is assigned:

u(x, t = 0) = u0 in �0, (3)

u(x, t) = ũ(x, t) on �D × (0, T ), (4)

σ · n = h(x, t) on �N × (0, T ), (5)

p(x, t = 0) = p0 in �0, (6)

where u0, ũ, h, p0 are prescribed known functions and n
is the outward normal to the boundary �t = ∂�t , which
is subdivided into two non-overlapping subsets �D and �N ,
such that �D ∪ �N = �t and �D ∩ �N = ∅.

2.2 Constitutive law

2.2.1 Newtonian rheological law

In fluid mechanics, the Cauchy stress tensor is typically
decomposed into a volumetric and a deviatoric part:

σ = −p I + τ , (7)

where I is the identity tensor and τ is the deviatoric stress
tensor (or extra-stress tensor). The Newtonian fluid is the
most simple mathematical model to account for the presence
of viscous stresses. It postulates a linear relation between the
viscous stresses and the strain rates:

τ (u) = 2ηε̇(u), (8)

where η is the constant Newtonian fluid viscosity and ε̇(u)

is the deviatoric strain rate tensor defined as:

ε̇(u) = 1

2
(∇xu + ∇xuT ) − 1

3
(∇x · u)I . (9)

The Newtonian approximation proves to be effective for a
wide range of fluids in typical conditions, particularly for
fluids composed of small molecules like water and air, even
when subjected to the high strain rates associated with tur-
bulent flows [42].

2.2.2 Viscoelastic constitutive law

It is not uncommon in nature and in industrial applications to
deal with fluids that do not satisfy the Newtonian approxima-
tion, exhibiting a more complex nonlinear behaviour. These
fluids fall under the generic name of non-Newtonian fluids.
Some examples are fluids with shear-dependent viscos-
ity (showing shear-thinning or shear-thickening behaviour),
yield stress fluids, thixotropic fluids (with a time-dependent
viscosity) and viscoelastic fluids. The last class describes
fluids characterized by the presence of a viscous matrix (sol-
vent) embedding an internal microstructure (solution). For
viscoelastic fluids, it is possible to further detail the expres-
sion of the Cauchy stress tensor by splitting the extra-stress
tensor τ in the solvent Newtonian contribution τs and in the
solution non-Newtonian viscoelastic (or polymeric) contri-
bution τ p:

σ = −p I + τ = −p I + τs + τ p. (10)

The solvent contribution represents a standard viscous
behaviour and can be computed as:

τs = 2ηs ε̇(u), (11)

where ηs is the Newtonian solvent viscosity. The viscoelastic
contribution to the extra-stress τ p instead originates from the
microstructure within the material, as it typically happens in
polymer suspensions. For these reasons, it is often referred
to as polymeric stress. The viscoelastic contribution is gov-
erned by a separate evolution equation, named constitutive
equation, which describes the relaxation of stresses over a
certain time scale λ [1]. The constitutive equation can either
directly express the polymeric stress tensor as a function
of the history of the deformation (in differential or integral
form) or describe how a state parameter representative of the
microstructure (e.g., the conformation tensor) evolves over
time. In the following, the first approach is employed and it
is discussed how to derive a differential constitutive equa-
tion for the polymeric stress for the viscoelastic Oldroyd-B
model. This model, which is often adopted for polymer sus-
pensions or emulsions, is popular due to its simplicity and
capacity to capture different phenomena typical of viscoelas-
tic flows.

First, let us consider the linear 1D equivalent of the
Oldroyd-Bmodel, which is also known as the Jeffreys model
[43], represented in Fig. 1. The model consists of a dashpot
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Fig. 1 Jeffreys viscoelasticmodel: aMaxwell elementwith spring stiff-
nessG anddashpot viscosityηp in parallelwith a purely viscous dashpot
of viscosity ηs

connected in parallel with a Maxwell element (a damped
spring). The former represents the viscous response of the
solvent, and it is associated with a Newtonian viscosity of
ηs . TheMaxwell element instead is characterized by a spring
stiffness G and a dashpot viscosity of ηp and represents the
viscoelastic contribution to the stresses due to the presence
of the diluted polymer chains. From this model, it appears
evident that the extra-stress τ is given by the sum of two con-
tributions, as already anticipated in Eq. (10), one is coming
from the Newtonian solvent and the other from the viscoelas-
tic diluted polymer chains.

Focusing now on the polymer contribution only, it is pos-
sible to write two equations stating the internal equilibrium
of the stresses and compatibility of deformations inside the
Maxwell element:

GεG = ηp ε̇p, (12)

ε = εp + εG . (13)

Let us proceed by differentiating equation (13) with respect
to time to get an expression for the strain rate in the polymer
ε̇p = ε̇ − ε̇G . Substituting this result in the first equation (12)
and operating some rearrangement of the terms (exploiting
also τp = GεG), an equation depending only on the elastic
strain in the spring or equivalently on the polymeric stress is
obtained:

λε̇G + εG = λε̇ −→ λτ̇p + τp = ηp ε̇, (14)

where λ = ηp
G is the polymer relaxation time. The valid-

ity of this result is, however, limited to purely shear flows
in the assumption of small displacements. As was shown in
Oldroyd [6] and later in [44], for a proper generalization to
arbitrary flows and finite strains it is not sufficient to simply
replace the scalar quantities with tensors, but it is also nec-
essary to add some terms ensuring that objectivity and the
principle of frame indifference are respected. In particular,

this is achieved by replacing the ordinary time derivative of
the polymeric stress tensor with an adequate frame-invariant
derivative. The most common choice is to introduce in the
tensorial form of Eq. (14) the upper-convected time deriva-
tive, obtaining the frame-invariant Oldroyd-B model (or
upper-convected Jeffreys model [43]), which reads:

λ
�
τ p + τ p = 2ηp ε̇, (15)

where
�
τ p is the upper-convected time derivative, defined for

any second-rank tensor embedded in a moving fluid (with
velocity u) as:

�
A = ∂A

∂t
+ u · ∇A − A · ∇u − (∇u)T · A, (16)

where the first term is the intrinsic variation of the tensor field
in time, the second term is the convective derivative account-
ing for Galilean invariance (i.e., invariance with respect to
an inertial observer moving with the same velocity of the
flow u), while the last two terms ensure the objectivity with
respect to an observer rotating and deforming with the flow
[1].

3 Numerical solution

As said above, the Navier–Stokes equations can be solved
in closed form only in very few cases. As soon as their
most general form is considered or complex geometries are
involved, no analytical solution can be determined. Even
more, if theNavier–Stokes equations are used in combination
with complex nonlinear constitutive laws, as in the case of
viscoelastic flows, it becomes mandatory to rely on numer-
ical approaches. Among the many discretization techniques
for fluid dynamic problems, there is the well-known finite
element method, which will be exploited in the following to
compute an approximate numerical solution to the Navier–
Stokes equation.

3.1 Discretization and integration of the equations
of motion

The first step to compute a FEM solution consists of asso-
ciating to the boundary value problem an equivalent weak
form. Following the standard Galerkin approach, the spaces
of the trial functions are introduced on the domain�t , for the
velocity Su and for the pressure S p [45]. For the velocity, it
is also defined the space of the test functions Su0 , which van-
ish on the Dirichlet portion of the boundary. On the contrary,
S p suffices also as a test space, since there are no explicit
boundary conditions on the pressure.
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The weak form of the momentum balance is obtained by
multiplying equation (1) for the generic vector test func-
tion w ∈ Su0 and integrating over the computational domain
�t . Analogously, the weak form of the mass conservation is
achieved by multiplying equation (2) for the generic scalar
test function q ∈ S p and again integrating over�t . The weak
formulation of the problem, therefore, consists of computing
u ∈ Su and p ∈ S p that satisfy:

∫

�t

w · ρ
∂u
∂t

d�t

=
∫

�t

w · (∇x · (τ s + τ p − p I) + ρb)d�t ∀ w ∈ Su0 ,

(17)
∫

�t

q
∂ p

∂t
d�t +

∫

�t

qK (∇x · u) d�t = 0 ∀ q ∈ S p. (18)

It is worth highlighting that Eq. (17) is written for the gen-
eral case of a viscoelastic fluid, but the Newtonian fluid is
easily retrieved as a subcase when τ p = 0. From the weak
forms, it is possible to obtain a finite-dimensional problem
by introducing an isoparametric finite element discretization
of the velocity and pressure fields:

ui (x, t) =
ne

∑

a=1

Nu
a (x)Ui,a(t), (19)

p(x, t) =
ne

∑

a=1

N p
a (x)Pa(t), (20)

where ne represents the number of nodes in the element, U i

is the vector of nodal velocities in the i-th direction, P is
the vector of the nodal pressures and Nu

a , N
p
a are the shape

functions for the velocity and the pressure, respectively. The
integrals in Eqs. (17) and (18) can then be evaluated sep-
arately over each element, leading to the semi-discretized
in-space balance equations:

Mu
∂U
∂t

= Fext − KηU + DT P, (21)

M p
∂ P
∂t

+ K DU = 0, (22)

where Mu and M p are the velocity and the pressure mass
matrices, Kη is the viscous matrix, Fext is the vector of the
external forces and D is the discrete gradient operator (see
[46]).

Subsequently, the time history can be subdivided into a
finite set of time steps 
t and the equations are enforced
only at discrete time instants. A forward Euler scheme is
used to approximate time derivatives. The fully discretized
counterparts of Eqs. (1) and (2) at the generic discrete time

instant tn read:

Mn
u
Un+1 − Un


tn
= Fn

ext − Fn
int, (23)

Mn
p
Pn+1 − Pn


tn
= −K DnUn, (24)

where the vector of the internal forces has been introduced
Fint = KηU − DT P . The forward Euler scheme is explicit;
therefore, the stable time step should be chosen to respect
stability conditions. In particular, at each time increment, the
stable time step is estimated based on:


t = β min
e

(

he
c

,
h2e
ν

)

, (25)

where β is a scaling safety factor, he is a characteristic size
of the element in the current configuration, c is the speed of
propagation of a dilatational pressure wave in the material
and ν is the kinematic viscosity, defined as ν = η/ρ. In
Eq. (25) the first term is the standard Courant–Friedrichs–
Lewy (CFL) condition, while the second term is the viscous
diffusion stability condition [47]. It can also be rewritten as

t = β he

ν/he
= β he

cdiff
, where cdiff = ν/he acts as a diffusion

propagation velocity, to highlight the similaritywith theCFL.

3.2 Integration of the viscoelastic constitutive law

To solve Eqs. (23) and (24), it is necessary to compute
at each time step the vector of the internal forces Fint =
KηU−DT P , which requires the evaluation of the viscoelas-
tic contribution entering in Kη. This translates to the task of
computing the polymeric stress tensor τ p from Eq. (15). In
the specific, let us rewrite Eq. (15) by expanding the upper-
convected derivative:

λ(
∂τ p

∂t
+u·∇τ p−τ p ·∇u−(∇u)T ·τ p)+τ p = 2ηp ε̇. (26)

Equation (26), including also the convective term u · ∇τ p,
represents the general form of theOldroyd-B constitutive law
cast in an Eulerian form. Being a PDE, Eulerian solvers will
be required to discretize in space thegradient of the polymeric
stress tensor to evaluate the convective contribution. A possi-
bility to carry out this operationwould be to switch to amixed
three-field τ p − u − p formulation, where a finite element
approximation is provided also for the polymeric stress ten-
sor and the constitutive equation is re-written in weak form.
In this case, an extension of the LBB-compatibility condition
must be respected for the choice of the finite element spaces
for the stress, velocity and pressure shape functions. Some
works discretizing the weak form of the constitutive law in
the Eulerian framework with FEM are [48, 49], while with
FVM [18].
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On the contrary,when aLagrangian framework is adopted,
the convective term in Eq. (26) disappears. This fact has great
relevance for a numerical solution since now the constitutive
equation becomes an ordinary differential equation and will
only require time integration. Lagrangian-based numerical
simulations were performed with FEM in [29, 50] and with
SPH, for example, in [51]. Exploiting the Lagrangian point
of view and normalizing with respect to the coefficient of the
time derivative of the polymeric stress tensor, the constitutive
equation reads:

∂τ p

∂t
− τ p · ∇u − (∇u)T · τ p + 1

λ
τ p = 2Gε̇. (27)

Now, it is possible to approximate the time derivative of the
polymeric stress tensor with a finite difference approach. In
the literature, a common choice is to use second-order accu-
rate integration schemes, such as the leapfrog scheme [24] or
the second-orderRunge–Kuttamethod [13, 22, 23, 26]. Since
in this work the fluid problem is being integrated explicitly
in time with the first-order accurate forward Euler method, it
was decided to use it also to integrate theOldroyd-B constitu-
tive equation. As it will be demonstrated by the applications
in Sect. 5, this choice is acceptable due to the good outcome
of the results. Therefore, the discretized in time constitutive
equation reads:

τ n+1
p − τ n

p


t
− τ n

p · ∇un − (∇un)T · τ n
p + τ n

p

λ
= 2Gε̇n .

(28)

Finally, by solving for the updated polymeric stress tensor
τ n+1
p , it is obtained:

τ n+1
p =τ n

p+
t(τ n
p · ∇un+(∇un)T · τ n

p − τ n
p

λ
+ 2Gε̇n).

(29)

4 Particle Finite Element Method

In the Lagrangian approach, the observer follows each fluid
particle in its motion. In computational fluid dynamics, this
concept is translated intomeshes having the nodes coincident
at any time with the material points. As a result, the com-
putational mesh overlaps the material domain and deforms
accordingly. This approach presents several advantages, such
as the intrinsic ability to capture free surfaces or the fact that
the nonlinear convective terms disappear in the equations of
motion. The Lagrangian description is commonly adopted
in solid mechanics, and in principle, it could be efficiently
applied also to study soft materials and highly viscous fluids.
However, these types ofmaterials are generally characterized

by large deformations, which could lead to the deterioration
of the computational mesh. If a proper strategy is not used
to cure the problem, accuracy and stability issues can arise,
even preventing the possibility of computing a solution.

A possible remedy is given by the so-called Parti-
cle Finite Element Method (PFEM) [30], which is an
updated Lagrangian FEM approach equipped with an effi-
cient remeshing technique. The PFEM was originally devel-
oped for the simulation of free-surface flows and breaking
wave problems [52].However, it soon becamewidely applied
also to other fields, such as landslide simulations [32, 53],
geotechnical problems [54, 55], granular flows [56], fresh
concrete flow tests [36, 37], multi-phase flows [57], particle-
laden flows [58] and fluid–structure interaction problems
[59–61].

Also in industrial and manufacturing applications, PFEM
turned out to be a valid option, especially for simulating duc-
tile solids [35] or viscous fluids, such as in glass forming
[33], metal moulding [34] and recently 3D concrete printing
[39–41].

The main steps for computing a solution with the PFEM
are here summarized with reference to Fig. 2.

(1) The initial domain is discretized with a finite element
mesh (Fig. 2a). As the analysis starts, the equations of
motions for the continuum are solved as in the standard
FEMand the solution is used to update the nodal variables
(e.g., velocity, pressure, position).

(2) Step 1 is iteratedmultiple times in the spirit of the updated
Lagrangian formulation, allowing for the advancement
of the solution in time. Eventually, the fluid will undergo
large displacements, which are generally associated with
high distortions in the computational mesh (Fig. 2b).

(3) Themesh quality is thus checked runtime during the anal-
ysis. As soon as some excessively distorted elements are
detected in the computational domain, a remeshing pro-
cedure is started. The first operation consists of removing
the old mesh, maintaining only the nodes (Fig. 2c).

(4) Successively, a reconnection phase is performed, in
which a new mesh is generated using an efficient Delau-
nay triangulation algorithm, such as [62]. The newly
generated mesh represents the convex hull of the given
set of nodes (Fig. 2d).

(5) The subsequent step is the boundary reconstruction: it
is necessary to find a criterion to establish which ele-
ments of the newly generated mesh truly belong to the
fluid domain and which ones should be discarded. The
most common approach is to employ the α-shape tech-
nique [31, 63], which relies on the observation that the
elements not belonging to the physical domain are gener-
ally also the most distorted, as they are connecting nodes
which are distant from each other. Therefore, for each
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(a) (b) (c)

(d) (e) (f)

Fig. 2 Re-meshing scheme in the PFEM: initial domain and related
mesh (a); deformed domain with distorted mesh (b); only the nodes of
the old mesh are kept (c); convex hull generated with a Delaunay tri-

angulation (d); the α-shape method is used to discard the elements not
respecting the quality criterion (e); new mesh on the physical domain
(f)

element, a geometrical index αe is computed to measure
its distortion:

αe = rc,e
h

(30)

where rc,e is the radius of the circumcircle (or circum-
sphere in 3D) of the considered element and h is the
characteristic mesh size defined on the initial mesh.
Moreover, a proper threshold value for the distortion
index α is assigned, so that the overly distorted elements
will be those not satisfying αe ≤ α (Fig. 2e). Note that
the choice of the threshold parameter is a delicate point,
as it can lead to different configurations and variations in
the total volume [64].

(6) Finally, once all the non-physical elements have been
identified and removed, the updated computational domain
is obtained. As shown in Fig. 2f, the new mesh shows an
improved quality and can be used to restart the analysis.

A critical aspect of the PFEM is that during the remesh-
ing procedure the elemental information stored at the Gauss

points is inevitably lost and only the nodal variables are con-
served. Often in fluid dynamics, only nodal variables are
employed and, if linear (triangular in 2D, tetrahedral in 3D)
elements are used, there is no need for data interpolation
from the old mesh to the new one [31]. This is a standard
choice in the PFEM; however, it is important to recall that by
using equal-order linear shape functions for both the velocity
and the pressure fields the Ladyzhenskaya–Babuška–Brezzi
(LBB) condition is violated. As a consequence, even if the
weakly compressible fluid assumption tends to mitigate the
instability, it is generally necessary to introduce an appropri-
ate stabilization. In the present work, the stabilizing effect
is achieved by adding a new term in the mass conservation,
based on the local L2 polynomial projection of the pressure
field onto a lower-order interpolation space [65, 66].

4.1 Transfer of internal variables

As already pointed out, the PFEMcan also be applied to large
displacements problems in solid mechanics and to highly
viscous/viscoelastic flowproblems influidmechanics.Often,
these materials present constitutive laws involving historical
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variables that, if Gaussian integration is used, would be lost
because of the remeshing process.

A possible solution could be to use nodal integration
schemes [38, 67], where all variables (including internal vari-
ables, such as stresses and strains) are computed at the nodes.
Despite the perfect transfer of all the data through the remesh-
ing processes, in this approach, the solution is still partially
affected by mesh variations due to reconnection and elimi-
nation/creation of elements [31].

If a standard Gaussian integration scheme is adopted
instead, a possible solution could be the direct projection of
the historical variables from the Gauss points of the old mesh
to the closest one in the new mesh [34, 54, 68]. This tech-
nique is widely used in solid mechanics PFEM applications,
where the mesh reconstruction is generally needed only in a
limited portion of the domain. In fact, in thisway, the elemen-
tal information is perfectly preserved in all those elements
which did not change their connectivity during the remesh-
ing process. However, when the connectivity does change,
an error is introduced proportional to the distance between
the old and the new Gauss points.

Finally, in the more traditional approach, the elemental
data from the original mesh are transferred to the nodes
exploiting the shape functions for interpolation. Subse-
quently, this datum is reconstructed back onto the elements
of the new mesh. Some examples of works relying on this
method are [41, 69, 70]. However, this process can intro-
duce an excessive smoothing of the internal variables and
consistently alter the solution. To limit this issue in [71], it
is proposed to remap only the increments of the historical
variables at the nodes. The same idea is used in this work to
treat viscoelastic internal variables.

As it is illustrated in Sect. (3.2), the integration of the
constitutive law for a viscoelastic fluid needs the value of the
viscoelastic (polymeric) extra-stress tensor at the previous
time step. Let us rewrite the discretized in time constitutive
law (29) in a more concise way:

τ n+1
p = τ n

p + 
τ p, (31)

where 
τp = 
t(τ n
p · ∇un + (∇un)T · τ n

p − 1
λ
τ n
p + 2Gε̇n)

is the increment of the polymeric stress tensor in a timestep.
To transfer the updated information to the subsequent time
step, the following procedure has been implemented:

• Assume that at time tn+1, for the generic j-th element, the
information regarding the polymeric stress tensor at the
previous step is stored at the nodes: τ n

p,i , i = 1, ..., 3.
The value of the polymeric stress tensor at the Gauss
point of the element j can be reconstructed, as shown in

(a)

(b)

Fig. 3 Recovering the internal variables in the Gauss point from the
nodes (a); storing the internal variables computed at the Gauss point at
the nodes (b)

Fig. 3a, by means of:

τ np, j =
d

∑

i=1

Niτ
n
p,i , (32)

where τ np, j is the generic component of the polymeric
stress tensor τ n

p, j , Ni are the linear shape functions
adopted to describe the velocity and the pressure fields
and d is the number of nodes of the finite element (d = 3
in 2D and d = 4 in 3D).

• The increment 
τ p, j of the non-Newtonian extra-stress
tensor is then computed at the Gauss points of element j
from Eq. (29). Thus, the updated polymeric stress tensor
in the Gauss point is given by:

τ n+1
p, j = τ n

p, j + 
τ p, j , (33)

and it will be used to compute the vector of the nodal
internal forces Fint.

• Finally, before starting the next time step, the increment
of the polymeric stresses in the Gauss points must be
stored at the nodes. For each node i in the mesh, the
contributions coming from the adjacent elements are
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Fig. 4 Detachment mechanism based on the α-shape criterion in standard PFEM. Dotted arrows indicate how the body is moving

Fig. 5 Unilateral alternative boundary condition: node P is released if the interpolated value of the normal velocity un,P is greater than a tolerance.
Dotted arrows indicate how the body is moving

averaged (see Fig. 3b), and the obtained value is added to
the previously stored contributions:

τ n+1
p,i = τ n

p,i +
∑m

j=1 A j
τ p, j
∑m

j=1 A j
, (34)

where A j is the area of element j , and index j cycles
over the elements adjacent to the node i (m in total).

4.2 Treatment of boundary conditions

For a general review of the most common techniques
employed to impose boundary conditions in the PFEM, the
reader is referred to [31, 46]. In this work, the Dirichlet
Boundary Conditions (DBCs) are imposed following the
scheme introduced in [40]: zero DBCs are assigned during
the analysis by “freezing" (imposing a null velocity) those
nodes which satisfy a certain prescribed constraint on their
position. To clarify this conceptwith an example, in the appli-
cation regarding the impact of a 2Ddrop on a horizontal plane
(see Sect. 5), the y-coordinates of the free-surface nodes are
monitored.Whenever a node i satisfies the inequality yi < 0,
the DBC is imposed in strong form on that node to reproduce
the effect of the plane. Differently from how it is done in
standard PFEM [31], with this technique, there is no need to
define in advance the constraint by positioning fixed nodes on

the Dirichlet boundary. Furthermore, mass variations remain
limited also in the case of coarse meshes.

Generally, DBCs are interpreted and imposed as bilateral
constraints. However, this is not always the case and in some
applications (such as in the impacting drop problem), it could
be necessary to implement a unilateral constraint to capture
bouncing phenomena. A unilateral DBC is a type of con-
straint that imposes a restriction on a system only in one
direction, leaving the opposite direction free. Two different
techniques are presented to deal with this type of behaviour
in PFEM:

(1) The first option is to rely on the α-shape. Basically, after
the impact, as the body tries to contract and detach from
the surface, the first elements connecting the body with
the fixed nodes will stretch and become distorted, as
shown in Fig. 4. By a suitable choice of the α-shape
parameter α, these distorted elements will be deleted,
gradually “releasing" the body and allowing it to con-
tract and bounce. This is the technique used in PFEM,
however, it works well only for very fine meshes. For
example, in [72], the detachment of droplets from the
free surface of a fluid is treated with ad hoc strategies to
mitigate unwanted mass variations and alterations of the
free surface.
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(2) A second option to treat unilaterally the DBC, which
allows for smoother results, especially in the case of
coarser meshes, is here proposed. At each time step, at
every fixed Dirichlet node, the velocity component nor-
mal to the wall is interpolated from the adjacent nodes.
With reference to Fig. 5, at the fixed point P, the inter-
polated value of the normal velocity un,P is found with:

un,P =
∑m

i=1 un,i

m
. (35)

where m is the number of nodes adjacent to node P.
If un,P > tol (where tol is a threshold value close to
zero), this velocity is assigned to the bounded node and
it is released from the plane. Otherwise, if un,P < tol,
the node is kept as a boundary node with a zero veloc-
ity imposed. This method presents several advantages
with respect to the first one: smoother free surfaces are
obtained, mass conservation is improved and the depen-
dence of the results from the α-shape parameters is
reduced. These aspects will be illustrated more in depth
in Sect. 5.1.3.

On the other side, a nonzero DBC is imposed at the inflow
for the application of the jet buckling problem. The technique
adopted here discretizes the inflow with a set of Eulerian
nodes, and new Lagrangian nodes are added in the surround-
ing stretching elements during the simulation, to reproduce
the continuous material flow. For further details about this
method, the reader is referred to [40].

5 Results and discussion

In this section, two benchmark problems are solved both in
2D and in 3D to demonstrate the capability of the particle
finite element method for the simulation of viscoelastic free-
surface flow problems1. Each case study is solved firstly for
a standard Newtonian fluid and successively employing the
Oldroyd-B viscoelastic constitutive law.

5.1 Numerical simulation of an impacting drop in 2D

Awell-established benchmark in thefield of viscoelastic sim-
ulations of free-surface flows is the impact of a 2D drop on
a rigid plane. The problem requires dealing with large defor-
mations, free-surface tracking and the correct description of
the viscoelastic effects. For all these reasons, it has been cho-
sen by different researchers to verify numerical schemes, for

1 It is important to remark that the 2D simulations solve the govern-
ing equations in a bi-dimensional space, axisymmetric cases are not
considered in this work.

Fig. 6 Initial conditions and geometry of the 2D impacting drop bench-
mark

example, employing the FDM[11, 13, 16] or the SPHmethod
[22–24, 26].

The benchmark was originally introduced in [11]. With
reference to Fig. 6, the initial configuration is described
through the following data: initial drop diameter D =
0.02 m; initial height of the centre of the drop from the plate
H = 0.04 m; initial velocity U = −1 m/s; gravity acting
downward with g = −9.81 m/s2. No slip boundary condi-
tions are imposed on the rigid plane.

5.1.1 Simulations and description of the results

Three simulations have been carried out, the first one adopt-
ing a Newtonian fluid and the other two a viscoelastic
Oldroyd-B model. In all cases, it was chosen a density of
ρ = 1000 kg/m3, a speed of sound in the material of 12.5
m/s and a Newtonian viscosity of η = 4 Pa s. The Newtonian
fluid flow is completely characterized by the dimension-
less Froude (Fr) and Reynolds (Re) numbers. The Froude
number (in the context of this work) represents the ratio
of inertial to gravitational forces, while the Reynolds num-
ber is the ratio of inertial to viscous forces. The Froude and
Reynolds number for the Newtonian simulation take values:
Fr = U√

gD
= 2.26 and Re = ρDU

η
= 5.

To describe a viscoelastic flow in addition to these two
numbers, it is necessary to define the Weissenberg number
Wi = λU

D = ηpU
GD and the ratio between the solvent and the

total equivalent viscosity β = ηs
η
, where for the Oldroyd-B

model η = ηs + ηp. In the first viscoelastic simulation, Fr
= 2.26 and Re = 5 are assigned as in the Newtonian flow.
Additionally, to the Weissenberg number it is given unitary
value Wi = 1, while β = 0.01. Consistently to these data,
the solvent viscosity is set to ηs = 0.4 Pa s, the polymer
viscosity to ηp = 3.6 Pa s and the shear modulus to G =
180 Pa. In the second viscoelastic simulation, Fr = 2.26, but
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now the Reynolds number is decreased to Re = 0.5. Also,
Wi = 1 and β = 0.01 are kept the same as for the previous
case. Consistently to these data, the solvent viscosity is set
to ηs = 4.0 Pa s, the polymer viscosity to ηp = 36 Pa s
and the shear modulus to G = 1800 Pa. For all three sim-
ulations, the initial mesh size is of the order of h = 0.0002
m, for a total number of nodes of n = 6430. Remeshing is
conducted when necessary during the analysis. In particular,
it is activated very frequently during and immediately after
the impact, due to the severe mesh distortions arising. The
time step has been adapted during the simulation according
to the stability conditions.

Figure7 reports the comparison between the shapes of
the Newtonian, Oldroyd-B with Re = 5 and Oldroyd-B with
Re = 0.5 fluid drops, respectively, at selected dimension-
less times t = t∗U/D, where t∗ is the dimensional time.
It can be observed that the three flows present substantial
differences. The Newtonian drop after the impact spreads
gradually always maintaining its convex shape. On the con-
trary, the viscoelastic dropwithRe= 5 shows amore complex
shape evolution. After hitting the rigid plane, the viscoelas-
tic drop is characterized by a downward vertical velocity
and while spreading on the surface shifts from a convex
shape to a concave one. When all the impact energy has
been dissipated or elastically stored through elastic deforma-
tions, the drop starts to contract due to elastic effects, until
reaching a shape of maximum contraction. Subsequently, the
drop undergoes numerous spreading-contraction cycles with
decreasing intensity, until all the elastic effects are damped
out. In the long term, the flow behaviour will align with the
one of the Newtonian drop with an equal Reynolds number
(this is also evident by comparing the curves Wi = 0 and Wi
= 1 in Fig. 12).

The viscoelastic drop with Re = 0.5 presents a similar
trend, but deformations are considerably reduced in the initial
phase. Moreover, in the contraction phase, the elastic force
stored during the impact is now sufficient to make the drop
detach from the plane and bounce. After a few bounces the
elastic effects will be damped out and the drop will start to
slowly flow and spread on the plane.

For the Oldroyd-B with Re = 5 drop impact, in Fig. 8, the
x-component of the velocity field in the drop for selected
time instants is reported. The results are in good agreement
with similar plots presented in [13, 16, 26].

5.1.2 Verification of the results

Aquantitative evaluation of the spreading history of the drops
can be done by evaluating at each time instant the drop width
d∗, computed as d∗ = max |xi − x j |, being xi is the hori-
zontal coordinate of the generic node i . Figure9a shows the
evolution in time of the dimensionless width d = d∗/D, of
the Newtonian drop and compares it to other relevant results

in the literature. An optimal accordance is found. In Fig. 9b,
the same quantity is plotted for the viscoelastic drop with
Re = 5. The comparison with the results obtained with other
methods is also very good, thus allowing us to verify our
implementation of the Oldroyd-B model. It can be observed
that the descending branch in the plot, associated with the
elastic contraction of the drop, is very sensitive to the method
adopted to impose the unilateral DBCs on the rigid plane.
If the no-slip boundary condition is imposed as in standard
PFEM, the values of the α-shape parameters should be care-
fully selected to reproduce a unilateral constraint and obtain
correct results (continuous line in Fig. 9b). On the contrary, if
the unilateral behaviour of the rigid plane is achieved through
the procedure described in Sect. 4.2, by freeing those nodes
with positive outward velocity, a slightly different result is
obtained (dashed line in Fig. 9b). In the following, the two
ways of imposing the unilateral DBC are further investigated
with a convergence study.

The second technique has been preferred for the simu-
lation of the Oldroyd-B drop with Re = 0.5, as it is found
to work particularly well in reproducing bouncing. For this
drop, the results are presented both in terms of the dimen-
sionless width in Fig. 10a and in terms of the dimensionless
maximum y-coordinate y = ymax/H in Fig. 10b.

5.1.3 Convergence study and unilateral DBCs

Two different ways of representing unilateral DBCs in the
PFEM framework are introduced in Sect. 4.2. The first one is
intrinsic to the PFEM and simply relies on a suitable choice
of the α-shape parameters (“α-shape b.c."). The second one
involves releasing those nodes which are constrained and
for which the interpolated normal velocity to the constraint
appears to be positive (“un > 0 b.c."). To further investigate
the performances of the two methods, the results of a conver-
gence study are here reported. The impacting drop problem
of the viscoelastic dropwithRe = 5 is taken as a reference and
simulations have been carried out with four different charac-
teristic mesh sizes: h = 0.0008 m, h = 0.0004 m, h = 0.0002
m, h = 0.0001 m.

Figure11a reports the evolution of the dimensionless drop
width at the refinement of the mesh for the two different
unilateral DBCs. The results obtained with the “α-shape
b.c." are acceptable only for quite refined meshes h =
0.0002−0.0001m. For coarsermeshes, the solution is highly
dependent on the mesh size and tends to underestimate the
deformations during the first contraction phase. Moreover,
too high values of the α-shape for the boundary elements
would prevent the drop from contracting or bouncing, while
too low values would cause holes in the mesh. The α-shape
value selected for the boundary elements in this example was
αb = 1.0 − 1.1. On the contrary, the results obtained with
the “un > 0 b.c.” exhibit nearly no dependence on the mesh
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Fig. 7 Comparison of the
shapes of the 2D impacting
drops for the Newtonian,
Oldroyd-B with Re = 5 and
Oldroyd-B with Re = 0.5 fluids

(a) Newtonian, Re=5, t=1.3 (b) Oldroyd-B, Re=5, t=1.3 (c) Oldroyd-B, Re=0.5, t=1.3

(d) Newtonian, Re=5, t=1.5 (e) Oldroyd-B, Re=5, t=1.5 (f) Oldroyd-B, Re=0.5, t=1.5

(g) Newtonian, Re=5, t=1.75 (h) Oldroyd-B, Re=5, t=1.75 (i) Oldroyd-B, Re=0.5, t=1.75

(j) Newtonian, Re=5, t=2.0 (k) Oldroyd-B, Re=5, t=2.0 (l) Oldroyd-B, Re=0.5, t=2.0

(m) Newtonian, Re=5, t=2.4 (n) Oldroyd-B, Re=5, t=2.4 (o) Oldroyd-B, Re=0.5, t=2.4

(p) Newtonian, Re=5, t=2.7 (q) Oldroyd-B, Re=5, t=2.7 (r) Oldroyd-B, Re=0.5 t=2.7

(s) Newtonian, Re=5, t=4.0 (t) Oldroyd-B, Re=5, t=4.0 (u) Oldroyd-B, Re=0.5, t=4.0

(v) Newtonian, Re=5, t=5.0 (w) Oldroyd-B, Re=5, t=5.0 (x) Oldroyd-B, Re=0.5, t=5.0
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Fig. 8 The x-component of the
velocity field in the viscoelastic
drop at different times

(a) Oldroyd-B drop, t=1.3 (b) Oldroyd-B drop, t=1.5

(c) Oldroyd-B drop, t=1.75 (d) Oldroyd-B drop, t=2.0

(e) Oldroyd-B drop, t=2.4 (f) Oldroyd-B drop, t=2.7

(g) Oldroyd-B drop, t=4.0 (h) Oldroyd-B drop, t=5.0

size and the corresponding curves in Fig. 11a are practically
overlapping. Additionally, there was no need to calibrate the
α-shape value or any other parameter. It is also observed that
the results derived from the use of the standard “α-shape b.c.”
at the refinement of the mesh tend to gradually approach the
“un > 0 b.c.” solution.

Figure11b displays the mass conservation plots with the
two approaches for treating unilateralDBCs at the refinement
of the mesh. On the y-axis the dimensionless mass defined
as m = m∗/m0 is reported, where m0 = ρπD2/4. The “α-

shape b.c.” results show nonnegligible mass variations for
coarse meshes due to the elimination of the elements not
respecting the α-shape criterion in the contraction phase. As
the mesh is refined mass conservation improves, converg-
ing from below to the horizontal line m = 1. Using instead
the alternative “un > 0 b.c.” approach, the mass is almost
perfectly conserved, even for very coarse meshes. All the
curves obtained with this second method are almost straight
lines overlapping m = 1.
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Fig. 9 Evolution of the dimensionless width of the 2D drop for the Newtonian fluid (a) and for the Oldroyd-B fluid with Re = 5 (b)
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Fig. 10 Evolution of the dimensionless width (a) and maximum y-coordinate (b) of the 2D drop for the Oldroyd-B flow with Re = 0.5

Summarizing, the “un > 0 b.c.” approach proposed to
deal with unilateral DBCs exhibits some appealing features:

• The results can be seen as independent of the mesh size
since there is no need for excessively refined meshes to
capture correctly the contraction and bouncing effects.

• The results are almost independent of the choice of the
α-shape parameters, provided that these are selected high
enough to prevent the formation of holes in the mesh.

• Mass conservation is respected almost perfectly also for
coarse meshes.

5.1.4 Parametric study on theWeissenberg number

It is well known that due to the hyperbolic nature of the dif-
ferential constitutive equation, many numerical solvers can
experience instability at moderate or high Wi numbers [73].
This issue is knownas the high-Weissenbergnumber problem
and can manifest in different ways and at different Wi num-
bers depending on the boundary conditions of the problem
and on the numerical techniques adopted for the solution. The
behaviour of the proposed implementation at increasing Wi
numbers has been investigated with reference to the impact-
ing dropproblem.The results are reported inFig. 12 and show
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Fig. 11 Convergence study to assess the performances of the two methods of imposing unilateral DBCs in the Oldroyd-B impacting drop problem
with Re = 5
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Fig. 12 Influence of theWi number on the evolution of the dimension-
less drop width

how thePFEMsimulations remain stable also at very highWi
numbers. Moreover, the computed results are in good agree-
ment with those of other works relying on stabilizations such
as the square-root conformation [16] or the log-conformation
[51] formulations. However, it must be underlined that the
impacting drop problem is not a very stringent benchmark.
The stability of the method at high-Weissenberg numbers in
general problems will be evaluated in future works.

5.2 Numerical simulation of an impacting drop in 3D

To further verify this implementation of the viscoelastic
Oldroyd-B model and to show how the PFEM can be effec-
tively exploited to obtain results in a three-dimensional
context, the previous problem of the impact of the drop is
reproduced in 3D. In the literature, there are only a few results
of the 3D impacting drop, which were obtained with the SPH
[25] or with the FDM [11, 14, 15].

The problem geometry is the 3D equivalent of that repre-
sented in Fig. 6, so the drop is now idealized with a sphere.
Boundary conditions and material properties are the same as
in the 2D impacting drop: density ρ = 1000 kg/m3; speed of
sound in the material 12.5 m/s; Newtonian viscosity η = 4
Pa s. Additionally, for the Oldroyd-B model the solvent vis-
cosity is ηs = 0.4 Pa s, the polymer viscosity is ηp = 3.6 Pa
s and the shear modulus is G = 180 Pa. For all three simula-
tions, the initial mesh size is of the order of h = 0.0004 m,
for a total number of nodes of n = 40480. The “un > 0
b.c." approach was employed to accurately reproduce the
unilateral DBC while avoiding the difficulties related to the
selection of the α-shapes and the high computational cost of
an extremely refined mesh.

The shapes of the drops at different time instants are
reported in Fig. 13. The quantitative evaluation of the spread-
ing history of the two drops can be done again by comparing
the dimensionless drop width at different times, as shown in
Fig. 14a for the Newtonian fluid and in Fig. 14b for the vis-
coelastic fluid with Re = 5. A very good agreement is found
for both cases.
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Fig. 13 Comparison of the
shapes of the 3D impacting
drops for the Newtonian,
Oldroyd-B with Re = 5 and
Oldroyd-B with Re = 0.5 fluids

(a) Newtonian, Re=5, t=1.3 (b) Oldroyd-B, Re=5, t=1.3 (c) Oldroyd-B, Re=0.5, t=1.3

(d) Newtonian, Re=5, t=1.5 (e) Oldroyd-B, Re=5, t=1.5 (f) Oldroyd-B, Re=0.5, t=1.5

(g) Newtonian, Re=5, t=1.75 (h) Oldroyd-B, Re=5, t=1.75 (i) Oldroyd-B, Re=0.5, t=1.75

(j) Newtonian, Re=5, t=2.0 (k) Oldroyd-B, Re=5, t=2.0 (l) Oldroyd-B, Re=0.5, t=1.75

(m) Newtonian, Re=5, t=2.4 (n) Oldroyd-B, Re=5, t=2.4 (o) Oldroyd-B, Re=0.5, t=2.4

(p) Newtonian, Re=5, t=2.7 (q) Oldroyd-B, Re=5, t=2.7 (r) Oldroyd-B, Re=0.5, t=2.7

(s) Newtonian, Re=5, t=4.0 (t) Oldroyd-B, Re=5, t=4.0 (u) Oldroyd-B, Re=0.5, t=4.0

(v) Newtonian, Re=5, t=5.0 (w) Oldroyd-B, Re=5, t=5.0 (x) Oldroyd-B, Re=0.5, t=5.0
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(a) Newtonian drop (b) Oldroyd-B drop

Fig. 14 Evolution of the dimensionless width of the 3D drop for the Newtonian fluid (a) and for the Oldroyd-B fluid with Re = 5 (b)

5.3 Numerical simulation of jet buckling in 2D

As a second numerical example, the very well-known prob-
lem of jet buckling is considered. The jet buckling phe-
nomenon can occur when a highly viscous fluid jet impacts
a rigid surface. Due to the high viscosity, the jet can coil and
fold instead of spreading along the rigid surface. This prob-
lem was first studied numerically with the FDM in [74]. The
authors were able to provide a formula to establish whether
a fluid jet would buckle after the impact depending on its
aspect ratio and Reynolds number. Successively, the prob-
lem was also studied with FDM in [11–13, 75] and with the
SPH in [23]. In this work, reference has been made to the
benchmark proposed in [13].

The geometry of the problem is depicted in Fig. 15. The
jet is generated by an inlet of opening L = 0.004 m and
positioned at H = 0.075 m above a rigid plane. The jet
velocity at the inlet is imposed equal to U = 0.1 m/s and
remains constant during thewhole simulation. Gravity is also
acting downward with g = 9.81 m/s2.
The Newtonian fluid flow is completely characterized by the
dimensionless Froude and Reynolds numbers, which here
take values: Fr = 0.5 and Re = 0.01. Thus, the density is set
to ρ = 1000 kg/m3 and the Newtonian viscosity to η = 40
Pa s. For the viscoelastic flow, it is also prescribed Wi =
20 and the ratio between the solvent viscosity and the total
equivalent viscosity β = 0.1. Consistently to these data, the
solvent viscosity is chosen to be ηs = 4 Pa s, the polymer
viscosity ηp = 36 Pa s, and the shear modulus G = 45 Pa.
Furthermore, in the simulations, the speed of sound in the
material has been fixed to 250 m/s and the initial mesh size

Fig. 15 Geometry and boundary conditions for the 2D jet buckling flow
at a generic instant

to h = 0.0004m. Since in this example there are no significant
bouncing or contracting phenomena, there is no need to apply
the alternative technique presented in Sect. 4.2 to deal with
unilateral DBC.

During the analysis, it was monitored the jet length d∗,
computed as the distance between the inlet of the jet and
the lowest portion of the fluid. The results are represented
in a dimensionless form in Fig. 16, by defining the dimen-
sionless time as t = t∗U/L and the dimensionless length as
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Fig. 16 Time evolution of the
dimensionless jet length for the
Newtonian and the Oldroyd-B
fluids
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d = d∗/H . The agreement with the data reported in [13] is
very good thus further validating this implementation of the
Oldroyd-B model in the PFEM framework.

In Figs. 17 and 18, the shapes of the jets at different dimen-
sionless times are reported. These times have been selected
to include the instants at which both the Newtonian and the
Oldroyd-Bfluids, respectively, touch the ground and start dis-
playing the unstable behaviour. It can be observed that the
Newtonian fluid takes more time to reach the base plane, pro-
ducing a filament which remains thicker and therefore will
buckle later. On the contrary, the viscoelastic jet stretches a
lot and gets thinner while falling. After having touched the
base plane it starts to widen at the base and the instability
manifests much earlier than in the Newtonian case, causing
the jet to fold over itself multiple times.

5.4 Numerical simulation of jet buckling in 3D

The test of the previous section is here extended to 3D, adopt-
ing the same material and properties described in detail for
the bidimensional case. The Newtonian fluid flow is com-
pletely characterized by the dimensionless numbers Fr = 0.5
and Re = 0.01. The density is ρ = 1000 kg/m3, and theNew-

tonian viscosity is η = 40 Pa s. For the viscoelastic flow, it
is also prescribed Wi = 20 and the ratio between the solvent
viscosity and the total equivalent viscosity β = 0.1. Consis-
tently to these data, the solvent viscosity is set to ηs = 4 Pa s,
the polymer viscosity to ηp = 36 Pa s and the shear modulus
to G = 45 Pa. Furthermore, in the simulations, it has been
chosen a speed of sound in the material of 250 m/s and an
initial mesh size of h = 0.0006 m.

In Figs. 19 and 20, the shape of the jet at different dimen-
sionless times is reported. It appears evident by comparing
these results with those obtained for the 2D case, that the 3D
phenomenon is faster. Both the Newtonian and the viscoelas-
tic jets take less time to reach the base plane and therefore also
to buckle. The reason is linked to the fact that in three dimen-
sions the jet is less constrained than in 2D, thus it can deform
also in the third direction, accelerating the free fall and antic-
ipating buckling. Moreover, as can be seen in Fig. 20, in 3D
the buckling of the flow can lead to a proper coiling of the
filament as the jet can freely rotate in all three dimensions.
The relative behaviour of the Newtonian fluid with respect to
that of the Oldroyd-B fluid instead remains similar to before,
with the Newtonian jet taking more time to reach the base
plane and to buckle.
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Fig. 17 Comparison of the
shapes of the 2D jets for the
Newtonian and Oldroyd-B fluids
at dimensionless times t = 8, t =
8.8 and t = 13

(a) Newtonian jet, t=8.0 (b) Oldroyd-B jet, t=8.0

(c) Newtonian jet, t=8.8 (d) Oldroyd-B jet, t=8.8

(e) Newtonian jet, t=13.0 (f) Oldroyd-B jet, t=13.0
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Fig. 18 Comparison of the
shapes of the 2D jets for the
Newtonian and Oldroyd-B fluids
at dimensionless times t = 16, t
= 18 and t = 21.3

(a) Newtonian jet, t=16.0 (b) Oldroyd-B jet, t=16.0

(c) Newtonian jet, t=18.0 (d) Oldroyd-B jet, t=18.0

(e) Newtonian jet, t=21.3 (f) Oldroyd-B jet, t=21.3
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Fig. 19 Comparison of the
shapes of the 3D jets for the
Newtonian and Oldroyd-B fluids
at dimensionless times t = 5.5, t
= 8.0 and t = 11.5

(a) Newtonian jet, t=5.5 (b) Oldroyd-B jet, t=5.5

(c) Newtonian jet, t=8.0 (d) Oldroyd-B jet, t=8.0

(e) Newtonian jet, t=11.5 (f) Oldroyd-B jet, t=11.5
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Fig. 20 Comparison of the
shapes of the 3D jets for the
Newtonian and Oldroyd-B fluids
at dimensionless times t = 12.4,
t = 15.1 and t = 17.3

(a) Newtonian jet, t=12.4 (b) Oldroyd-B jet, t=12.4

(c) Newtonian jet, t=15.1 (d) Oldroyd-B jet, t=15.1

(e) Newtonian jet, t=17.3 (f) Oldroyd-B jet, t=17.3
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6 Conclusion

Generally, fixed meshes Eulerian approaches or Lagrangian
meshfree methods are employed in the field of viscoelastic
media. This paper has proposed instead an innovative fully
Lagrangian continuum FEM approach to simulate viscoelas-
tic fluids obeying the Oldroyd-B constitutive equation. The
adopted tool is the PFEM, which combines standard FEM
technology with a remeshing algorithm to effortlessly treat
large deformations of the domain and track the evolution
of the free surface. Furthermore, it has been shown how
to solve in this framework the additional equation account-
ing for the Oldroyd-B constitutive law. Special attention has
been given to the techniques to transfer the internal variables
(such as the viscoelastic non-Newtonian stress tensor) from
the old mesh to the new one during a remeshing procedure.
Moreover, an innovative way to deal with unilateral DBCs in
PFEM, which minimizes mass variations and allows for eas-
ily capturing bouncing phenomena has been proposed. The
model has been verify both in 2D and 3D on several well-
known benchmarks for viscoelastic free-surface flows: the
impacting drop and the jet buckling problems. The optimal
agreement with the results available in the literature confirms
how the PFEM could be used as a valuable tool for the sim-
ulation of viscoelastic flows in various applications, ranging
from polymer manufacturing to biological fluids. Addition-
ally, this work opens theway to further research regarding the
implementation in the PFEM of more elaborate viscoelastic
and viscoelasto-plastic constitutive laws.
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