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Abstract
The microstructures and local characteristics of ordinary refractory ceramics are heterogeneous. The discrete element (DE)
method was used to consider the variation in particle spatial distributions and statistically distributed interface properties (uni-
form, Weibull) between elements. In addition, three Weibull distributions with different shape parameters were evaluated. A
uniaxial tensile test was used to study the effects of particle spatial distributions and interface property distributions on the
stress–strain curve, tensile strength, and crack propagation. The results of the test show that the particle spatial distribution sig-
nificantly influences crack propagation and fracture patterns, and the interface condition plays an important role in mechanical
responses, crack propagation, and fracture mechanisms and patterns. The discrete element modelling of uniaxial tensile and
compressive tests shows that brittle materials exhibit asymmetric mechanical responses to compression and tension loading
including static Young’s modulus.

Keywords Discrete element method · Uniaxial tensile test · Refractories · Interface property · Asymmetric mechanical
properties

1 Introduction

Ordinary refractory ceramics possess coarse microstructures
comprising aggregates of different sizes, often up to 5 mm,
with fine particles and defects. They are typically used
in complex thermomechanical environments, such as steel
ladles in the iron and steel industry. Tensile fracture is one of
the main failure mechanisms caused by severe cold thermal
shocks during service [1].

Theoretically, uniaxial tensile testing is the ideal approach
to detecting fractures in ordinary refractory ceramics under
pure tensile loading conditions. Nevertheless, their inho-
mogeneous microstructures and larger ratios of defect to
aggregate size demand sufficiently large sample dimensions
to gain representative results [2–5]. However, direct tensile
tests have strict requirements for the preparation of test-
ing configurations, and special measures should be taken to
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avoid bending or torsion [6–8]. For these reasons, direct ten-
sile tests have been conducted less frequently in the testing
of ordinary refractory ceramics than three-point bend tests,
Brazilian tests, and wedge splitting tests [9–13]. However,
the samples tested with the latter approach often experience
different loading conditions, such as a tensile load at the flex-
ural area and a compressive load at the residual area close to
the loading point for a three-point bend test [14, 15].

How do ordinary refractory ceramics respond under
purely uniaxial tensile loading conditions? What are
the fracture mechanisms and patterns in ordinary refractory
ceramics with various properties? These questions cannot
be easily answered through experimentation. Therefore, the
present study used the discrete element method (DEM) to
establish a two-dimensional numerical model with a mini-
mum ratio of specimen width to aggregate size of 8 for the
numerical uniaxial tensile test.

The stochastic spatial distribution of particles and sta-
tistically distributed interface properties at the grain level
were considered in the DE modelling, with an emphasis on
the inhomogeneity of ordinary refractory ceramics. Further-
more, the crack propagations appearing in the samples during
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Fig. 1 Two-dimensional representation of a sample for tensile test sim-
ulation

testing were visualised and quantified to provide a failure
mechanism analysis at the mesoscale.

2 Methods: discrete element model
configuration

The Discrete Element (DE) approach exhibits considerable
potential in investigating the behavior of geomaterials at the
individual particle level [16–22]. The approach was first
developed by Cundall and Strack [23] and applies rigid
circular discs, spherical spheres, and walls as basic com-
ponents. The movement of each element is determined by
Newton’s second law, and the contact force is adjusted based
on force–displacement relations [24].

For the tensile test simulation, a 2D representation of the
refractory samples with a size of 80 mm× 40 mmwas estab-
lished, as shown in Fig. 1. The Dinger-Funk equation (Eq. 1
[25]) with n equal to 0.37 described the grain grading of
a refractory ceramic material, where the largest diameter
of the particles was 5 mm, and the smallest diameter was
0.088 mm. The cumulative volume percentage curve with
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Fig. 2 Exemplary cumulative volume percentage curves of a Dinger-
Funk equation and from a DE model [26]

respect to particle diameter is shown in Fig. 2 as introduced
in the ref [26].

Pd � d0.37 − d0.37min

d0.37max − d0.37min

(1)

Pd denotes the cumulative volume distribution of parti-
cles with diameters less than or equal to d. The particle
size was classified into five ranges: 0.088–1 mm, 1–2 mm,
2–3 mm, 3–4 mm, and 4–5 mm. The particle size was dis-
tributed evenly in each group.

The samples were mechanically loaded in the vertical
direction to simulate tensile testing. As shown in Fig. 1, two
sets of elements were selected from the top and bottom rows
of the samples, which are marked in red and green, respec-
tively. A loading strain rate of 0.25 s−1 was chosen as the
optimal rate [27] to allow for quasi-static conditions. Con-
sequently, a constant velocity was applied to the two rows
of elements, as indicated by the arrows in Fig. 1. The row
of elements placed at the top travelled upward at a constant
velocity. In contrast, the row of elements located at the bot-
tom moved downward with the same constant velocity. The
strain was measured from the particles at the two ends. The
stress was measured by creating a single measurement circle
with a radius of 20mm at the centre of the sample. Stress was
computed by averaging the contact forces within the circle.

The interface properties between the elements were
defined using the linear parallel bond model in the PFC code
[28]. The linear parallel bondmodel, seen in Fig. 3, describes
the interaction between two components by considering two
separate interfaces: a bonded interface and an unbonded
interface. The unbonded interface is incapable of withstand-
ing tension and relative rotation. To prevent the occurrence
of sliding, a restriction on the shear force is imposed, known
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Fig.3 Illustration of linear
parallel bond contact in PFC [29]
a parallel bond contact between
two circular elements, b bonded
interface law, c unbonded
interface law
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as the Coulomb limit. The bonded interface has the capacity
to endure displacement and relative rotation until it hits its
maximum strength threshold. When bond is broken, only the
unbonded interface plays role.gs,μ, kn, and ks denote the sur-
face gap, friction coefficient, normal stiffness, and shear stiff-
ness of the unbonded contact, respectively. The parameters
that represent the tensile strength, cohesion, friction angle,
normal stiffness, and shear stiffness of the bonded interface
are symbolised as σ c,c,φ, knand ks , correspondingly.

The determination of the effective moduli and stiffness
ratio, as shown in, Eqs 2-6 provides an alternate approach to
characterising the features of the interface.

{
kn � AE∗/L , unbonded
kn � E

∗
/L , bonded

(2)

{
ks � kn/k∗, unbonded
ks � kn/k

∗
, bonded

(3)

A � 2r t , (t � 1) (4)

r �
{
min

(
R(1), R(2)

)
, ball − ball

R(1), ball − f acet
(5)

L �
{
R(1) + R(2), ball − ball
R(1), ball − f acet

(6)

The effective moduli of the interfaces that are not
bonded and that are bonded are represented as E* and E

∗
,

Table 1 Reference parameter set of the linear parallel bond model [26]

Interface between
particles

Properties Values

Bonded and unbonded Effective modulus/GPa 104

Normal to shear stiffness ratio 1.27

Unbonded Friction coefficient 0.493

Bonded Friction angle/° 40

Cohesion/MPa 40

Tensile strength/MPa 45.3

respectively. The ratios of normal to shear stiffness for the
unbonded and bonded interfaces are denoted as k* and k

∗*,
respectively. The symbol A is used to represent the contact
area, while r is used to designate the radius of the elements.
L is used to signify the distance between the contacted ele-
ments, whileR(1) and R(2) are used to represent the radii of
the contacted elements.

Calibration procedures were performed as described pre-
viously [26]. A series of experimental tests of a brittle
refractory ceramic material (MgO-based) were conducted,
namely cold crushing and wedge splitting tests, and then
compared the actual results with simulation curves generated
from a 2D DE model of identical testing with homogeneous
interface properties defined by a linear parallel bondmodel in
the PFC code. The particle contact parameters were inversely
identified by the use of theNL2SOL [30]. The inversely iden-
tified parameters are listed in Table 1 as reference.
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(a) Seed number 10057 (b) Seed number 16857 (c) Seed number 20057

Fig. 4 Particle spatial distributions resulting from different random seeds a seed number 10057, b seed number 16857, c seed number 20057

The present study focuses on investigating the effects of
the particles’ spatial and interface characteristic differences
on the mechanical behaviour of tensile tests. For the particle
spatial distribution, three models were established with the
sameminimumelement size, grain grading, and homogenous
interface features.A randomseedwas used to assign different
particle spatial distributions, and its default value in PFC
5.0 was 10,000. With fixed seeds, the element locations and
radii were identical for each assembled model. However, the
seed used influences the initial spatial configuration of the
elements within a limited space. As shown in Fig. 4, the
structures of the samples with random seeds 10,057, 16,857,
and 20,057 differed.

A case with a constant interface served as a reference
for investigating the effects of different contact conditions.
Uniform and Weibull distributions with shape parameters 3,
4, and 5 were considered for the interface properties. The
median value of each parameter in the cases with uniform
and Weibull distributions was the same as the corresponding
parameter in the cases with homogeneous interface prop-
erties, as shown in Table 1. The parameters were modified
identically for the uniform and Weibull distributions; that
is, the contact with the highest strength had the highest fric-
tion angle. Figure 5 illustrates the assignment of the interface
properties using tensile strength as an example. The constant-
distributed and uniformly distributed parallel-bond tensile
strengths are shown in Fig. 5a and b, respectively. The paral-
lel bond tensile strength assigned to shape parameter 3 of the
Weibull distribution is shown in Fig. 5c, and those with shape
parameters 4 and 5 are presented in Figs. 5d, e, respectively.
Figure 5f depicts the constant case and distribution curves of

the tensile strength for the uniformly distributed case and the
three Weibull-distributed cases.

3 Results and discussion

3.1 Influence of particle spatial distribution

The number of particles, contacts, andmechanical properties
inmodels assembledwith different seeds are listed in Table 2,
and the value in brackets shows the relative difference of the
respective quantity from that of the reference casewith a seed
of 10,057.

The stress-strain curves for three cases are shown in Fig. 6.
The tensile strength, fracture energy, secant Young’s modu-
lus, and brittleness number were calculated using Eqs. 7–10.

σt � Fmax

A0
(7)

where σ t denotes the tensile strength; Fmax is the maximum
force; and A0 is the cross-sectional surface area.

G f � 1

A0

δult∫
0

Fdδ (8)

where Gf denotes the specific fracture energy; δult is the
ultimate displacement; andF and δ are the force and displace-
ment, respectively. For the curves in Fig. 6, the maximum
displacement used for the calculation was the point at which
the residual force reached a maximum of 15%.

Estatic � σ f c

ε f c
(9)
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(a)                                                        (b)

(c)              (d)

(e) (f)
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Fig. 5 Assigned tensile strength (Pa) in the cases with a constant [27],
b uniform distribution [27], and c Weibull distribution with a shape
parameter of 3, dWeibull distribution with a shape parameter of 4 [27],

eWeibull distribution with a shape parameter of 5, and f tensile strength
cumulative curves for all the cases
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Fig. 6 Stress–strain curves of cases with different particle spatial dis-
tributions

where Estatic is the static Young’s modulus; σ fc is the stress
immediately before the first crack occurs; and εfc is the strain
immediately before the first crack.

B � σ 2
t · L

G f · E (10)

where B and L denote the brittleness number and length of
the specimen, respectively [31].

The crack density and crack density increment are calcu-
lated using Eqs. 11 and 12.

cρi � ni
N

(11)

where cρi and ni are the crack density and number of cracks
at the ith loading point, respectively, and N is the number of
contacts.

cρin � cρi − cρi−1 (12)

where cρin is the increment in crack density.
Themaximum relative differencewas observed in the brit-

tleness number of the model with a seed of 20057, which was

4.7%. In general, the seed number has a slight influence on
the particle number, contact number, and mechanical prop-
erties.

Figure 7 shows the evolution of crack density during the
loading process. The total crack density varies with different
particle spatial distributions, particularly after reaching 80%
of the peak stress in the ascending part, as shown in Fig. 7a.
The ratio of tension to shear crack density is shown in Fig. 7b.
In all three cases, shear-induced cracking dominated at 80%
of the peak stress before the peak load, and tension-induced
cracks dominated after the peak stress. The ratio of tension
to shear crack density increased from 80% of the peak stress
in the ascent to the peak stress for cases with the random
seeds 16,857 and 20,057. For stresses higher than the peak
value, tensile cracking was dominant. The ratio decreased
with decreasing residual stress for the case with a seed of
16,857, whereas the ratio in the case with a seed of 20,057
decreased from the peak stress to the residual stress, reaching
80% of the peak stress, and then increased. In the model with
a seed of 10,057, the ratio increased from 80% of the peak
stress in the ascending portion to the residual stress, reaching
80% of the peak stress. Tensile cracking dominated after the
residual stress reached 80% of the peak stress.

Figure 8 shows the fracture patterns of the samples with
various particle spatial distributions. The main fracture paths
were close to the top surface of the sampleswith seeds 10,057
and 20,057. In contrast, for the sample with a seed number
of 16,857, the main fracture path was farther from the top
surface. Additionally, two short fracture paths were observed
in the samples with seeds 16,857 and 20,057.

3.2 Influence of statistically distributed interface
property

3.2.1 Mechanical properties

Figure 9 shows the stress–strain curves for cases with dif-
ferent particle spatial distributions realised with different
seed numbers (10,057, 16,857, and 20,057) and contact char-
acteristics (constant, uniform, and Weibull distributions).
Three shape parameters (3, 4, and 5) were considered for
the Weibull distribution.

Table 2 Number of particles,
contacts, and mechanical
properties in cases with different
seeds

Seed 10,057 Seed 16,857 Seed 20,057

Number of particles 4454 4352 (−2.3%) 4457 (0.1%)

Number of contacts 9401 9218 (−1.9%) 9470 (0.7%)

Tensile strength/MPa 14.11 13.88 (−1.6%) 14.43 (2.3%)

Static Young’s modulus/GPa 81.14 79.60 (−1.9%) 82.85 (2.1%)

Specific fracture energy/N/m 115.93 115.82 (−0.1%) 113.35 (−2.2%)

Brittleness number 1.69 1.67 (−1.2%) 1.77 (4.7%)
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(a) Total crack density (b) Ratio of crack density of        
tension to shear
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Fig. 7 Crack propagation in cases with various particle spatial distributions a Total crack density b Ratio of crack density of tension to shear

(a) Seed number 10057       (b) Seed number 16857           (c) Seed number 20057

Fig. 8 Crack patterns of cases with different particle spatial distributions

In all the cases shown in Fig. 9, at the beginning of the
loading procedure, the ascending curves for the cases with
different interface properties overlapped. They diverged with
increasing strain. The case with a uniform distribution of
interface properties displayed the lowest tensile strength and
displacement. The cases with constant interface properties
showed the highest tensile strength and displacement when
the seeds were 10,057 and 16,857, respectively. When the
seed was 20,057, the case with shape parameter three exhib-
ited the highest displacement. Generally, the tensile strength
is enhanced with an increase in the shape parameter.

Table 3 lists themean tensile strength, staticYoung’smod-
ulus, specific fracture energy, and brittleness number of the
simulated cases. For cases with uniformly distributed inter-
face features, the stress was too small when the first crack
occurred. Therefore, the first crack at the beginning of the
simulation resulted in an unreasonable value of the static
Young’s modulus. Due to the fact that the average stress
value right before the occurrence of the first crackwas around
10% of peak stress in situations with Weibull and constantly
distributed interface properties, for cases with uniformly dis-
tributed interface properties, Young’smoduli were calculated
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(a) Seed number 10057

(b)  Seed number 16857                                       (c) Seed number 20057
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Fig. 9 Stress–strain curves of cases with different interface properties

Table 3 Mean tensile strength, static Young’s modulus, fracture energy, and brittleness number of simulated cases

Interface property assignment Constant Uniform Weibull shape
parameter 3

Weibull shape
parameter 4

Weibull shape
parameter 5

Mean tensile strength (MPa) 14.14 ± 0.23 6.07 ± 0.41 10.54 ± 0.59 12.56 ± 0.41 13.02 ± 0.35

Mean static Young’s modulus (GPa) 81.20 ± 1.33 67.73 ± 1.78 76.44 ± 1.04 78.62 ± 1.15 78.62 ± 1.18

Mean specific fracture energy (N/m) 115.03 ± 1.19 36.60 ± 3.41 80.92 ± 6.87 96.83 ± 7.68 101.50 ± 7.04

Mean brittleness number 1.72 ± 0.05 1.19 ± 0.02 1.44 ± 0.08 1.66 ± 0.05 1.70 ± 0.05
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Table 4 Mean number of
contacts with specified tensile
strength intervals

Number of contacts

Assigned tensile strength/MPa Weibull shape
parameter 3

Weibull shape
parameter 4

Weibull shape
parameter 5

0 < σt ≤ 9.06 58 15 3

9.06 < σt ≤ 18.12 178 151 67

18.12 < σt ≤ 27.18 387 651 448

27.18 < σt ≤ 36.24 908 1509 1454

36.24 < σt ≤ 45.30 1480 2250 2696

45.30 < σt ≤ 54.36 1821 2492 3064

54.36 < σt ≤ 63.42 1900 1539 1428

63.42 < σt ≤ 72.48 1406 670 230

72.48 < σt ≤ 81.54 812 112 11

81.54 < σt ≤ 90.60 451 12 0

0 < σt ≤ 90.60 9401 9401 9401

using the stress and strain values from the origin point to 10%
of the peak stress in the ascending portion of the stress–strain
curves. The case with constant interface properties showed
the highest tensile strength, a static Young’s modulus, spe-
cific fracture energy, and brittleness number. The case with
uniformly distributed interface properties possessed the low-
est tensile strength, static Young’s modulus, specific fracture
energy, and brittleness number. The mean tensile strength
in the case with uniform distribution was 42.9% of that of
the case with constant interface properties; the specific frac-
ture energy of the case with uniform distribution was 31.8%.
The mean tensile strength of the cases with a Weibull dis-
tribution was 74.5–92.1% of that of the case with constant
interface properties, and the mean specific fracture energy
was 70.3%–88.2% of that of the case with constant interface
properties.

The Weibull shape parameter has an insignificant effect
on the static Young’s modulus. Taking the case of Weibull
shape parameter 3 as a reference, the other two cases showed
relative differences in the tensile strength and specific frac-
ture energy of up to 25.4%. As the Weibull shape parameter
increases, the brittleness also increases.

Table 4 displays the mean number of contacts with a given
tensile strength interval in cases with a Weibull distribution
for interface properties. The mean number of contacts with
a strength of no more than 18.12 MPa was 236 for the case
withWeibull shapeparameter 3; 166 for the casewithWeibull
shape parameter 4; and 70 for the case with Weibull shape
parameter 5.Thenumber of contacts in the caseswithWeibull
shape parameters 3, 4, and 5 were 4569, 2333, and 1669,
respectively, in which the tensile strength was greater than
54.36 MPa. Despite more contacts with high tensile strength
in the case with Weibull shape parameter 3, this case had the

lowest tensile strength. As expected, the results indicate that
weak contacts significantly decrease tensile strength.

3.2.2 Crack density

Figure 10 shows the evolution of the crack density during
loading. In Fig. 10a, the mean total crack density of the
case with uniformly distributed interface properties is much
larger than that of the other instances.When the relative stress
reached 80% of the peak stress in the rising portion of the
stress–strain curve, the mean total crack density in the cases
with a Weibull distribution of the interface properties was
larger than that in the case with constant interface proper-
ties. The case with Weibull shape parameter 3 showed the
largest total density among the three cases with a Weibull
distribution. The mean shear crack density exhibits a ten-
dency similar to that of the mean total crack density. The
mean tensile crack densities differed in the simulation cases.
The difference in themean tensile crack densities of the cases
could not be easily identified.

In cases with uniformly distributed and Weibull shape
parameter 3 distributed interfaces properties, Figs. 10b, c
reveal that shear failure dominated the cracking process.
Cases with constant and Weibull shape parameters 4 and
5 distributed contact features exhibited prevalent tensile
cracks.

Figure 10d shows the mean ratio of the crack density of
tension to shear starting from the peak stress because, in some
cases, shear cracking did not occur before the peak stress. For
the situation with constant and Weibull shape parameter 5
distributed interface properties, tensile cracks dominated the
failure mode, although shear cracks increased after the peak
stress in the descending portion of the stress–strain curve as
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(a) Mean total crack density (b) Mean tensile crack density
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(c) Mean shear crack density              (d) Mean crack density of tension to shear

(e) Mean increment of tensile crack density         (f) Mean increment of shear crack density
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Fig. 10 Crack density with respect to stress relative to the peak stress a mean total crack density, b mean tensile crack density, c mean shear crack
density, d mean crack density of tension to shear, e mean increment of tensile crack density, f mean increment of shear crack density
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the load decreased. Similar to the case with a constant inter-
face property, tensile cracks in the case with Weibull shape
parameter 4 dominated the distributed interface property,
whereas in the case with Weibull shape parameter 4 dis-
tributed interface property, tensile cracks increasedmore than
shear cracks after the peak stress when the load decreased.

The increase in tensile crack density during loading is
shown in Fig. 10e. Tensile cracks began to grow at 80% of
the peak stress in the ascending portion of the stress–strain
curve in the case with constant interface properties and at
60% of the peak stress for the residual cases. Beyond 90% of
the peak stress in the descending portion of the stress–strain
curve, the increment decreased.

Figure 10f illustrates the increase in shear crack density
during loading. For the case with uniformly distributed inter-
face properties, the shear crack density started to increase
prior to 40% of the peak stress during the ascending por-
tion of the stress–strain curve. The increment decreased at
60% peak stress but continued to increase until 90% of peak
stress during ascending portion of the stress–strain curve.
After the residual stress reached 90% of peak stress, the
mean increment in the shear density decreased. For the cases
withWeibull-distributed interface properties, the shear crack
density increased considerably after 80% peak stress in the
ascending portion of the stress–strain curve and dropped evi-
dently after 90% peak stress in the descending portion. For
the case with constant interface properties, the shear crack
density increased significantly at 90% peak stress after the
peak load and then decreased.

3.2.3 Crack patterns

Figure 11 illustrates the ultimate fracture patterns of sam-
ples with different interface properties at a residual stress
of 15% of the peak stress, with the particle spatial distribu-
tion controlled by the seed 16,857. The simulation revealed
distinct fracture patterns in the five cases. The case with con-
stant interface properties exhibited two noticeable localised
fracture bands: the longer band was located at approximately
one-third the length of the specimen below its top surface and
exceeded the centre of the sample, whereas the shorter band
was near the middle of the sample and had a width that was
only half of the specimen width. In the case of the uniformly
distributed interface, cracks were dispersed throughout the
sample.

When the Weibull shape parameter was 3, some cracks
occurred randomly in the sample with three distinct frac-
ture bands, and the longest fracture band was close to the
top end. The model with Weibull shape parameter 4 had
four localised fracture bands, three of which appeared close
to the top end and one in the middle of the sample. The
longest crack path was approximately one-third that of the
specimen’s length beneath its top end. The example with

a Weibull shape parameter of 5 had two distinct localised
fracture bands; their locations were similar to those of the
fracture bands of the case with constant interface properties,
one ofwhichwas located at approximately 1/3 of the distance
beneath the specimen’s top end, and the other was close to
the middle of the specimen. The lengths of the two fracture
bands were greater.

3.3 Comparison between cold crushing test
and tensile test simulation results

The simulation results of a cold crushing test and tensile test
are compared in this section. The sample was generated with
a grain grade obtained using the Dinger-Funk equation with
an n of 0.37 and a minimum element size of 0.088 mm. The
particle spatial distribution was determined for seed num-
ber 10057, and interface properties were assigned using a
Weibull distribution considering a shape parameter of 4.

Themechanical properties of ordinary refractory ceramics
with the same microstructure exhibited evident asymmetry
under compressive and tensile loads, as listed in Table 5. The
cold crushing strength was 47.73 MPa, which is nearly four
times the tensile strength of 12.56 MPa. The static Young’s
modulus was measured to be 139.02 GPa from the compres-
sion test, but it was 78.62GPawith tensile loading. The strain
values used to calculate Young’s modulus for the tensile test
were measured from the particles at the two ends, whereas
those for the cold crushing test were measured from gauge
particles. In the crushing test, the total crack density was
approximately ten times that in the tensile test. In addition,
for the given interface properties and the given particle spatial
distribution, tensile-induced crackswere predominant during
the crushing test, whereas shear-induced cracks were pre-
dominant during the tensile test. The specific fracture energy
calculated from the load–displacement curve of the crushing
test was 11.32 times that of the tensile test.

Figure 12 shows the crack patterns under crushing and ten-
sile loading conditions.Themain fracture bands in the sample
after the crushing test were inclined at 45º to the horizontal
direction, whereas the tensile test cracks were nearly perpen-
dicular to the loading direction. Moreover, the cracks were
dispersed in the specimen after the crushing test, whereas
only two major crack bands appeared after the tensile test-
ing. The crushing test showed a substantially higher crack
density than the tensile test.

Ordinary refractory ceramics have been characterised in
the lab to exhibit anisotropic fracture and creep behaviour
under different loading conditions [32–39]. The dynamic
Young’s modulus is often applied in the characterisation and
modelling of refractory behaviours. In contrast, few publica-
tions have focused on the determination of the static Young’s
moduli of ordinary refractory ceramics under tension and
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(a) constant                               (b) uniform

(c) Weibull                               (d) Weibull                              (e) Weibull 
shape parameter 3                shape parameter 4              shape parameter 5

Fig. 11 Crack patterns of cases with various interface properties a constant and b uniform distributions, cWeibull distributionwith a shape parameter
of 3, d Weibull distribution with a shape parameter of 4, and e Weibull distribution with a shape parameter of 5

compression using mechanical devices and demonstrat-
ing their asymmetry under tension and compression. For
instance, Simonin et al. [32] reported that the relative dif-
ference in the modulus of a high alumina castable between
tension and compression determined through a bend test
lies between 8% and 30% in the temperature range of
200–1600 °C. Nazaret et al. [33] showed that the static
Young’s modulus of a geopolymer-based cordierite castable

under tension is 1.9 times its static Young’s modulus under
compression. Schmitt et al. [8] found that the static Young’s
modulus under tension of a magnesia material with a resin
binder that shows a typical nonlinear behaviour is 2.5 times
the static Young’s modulus under compression, whereas the
static Young’s modulus under tension of a magnesia material
with a pitch binder that shows a typical brittle behaviour is
68.4%of the staticYoung’smodulus under compression. The
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Table 5 Comparison between mechanical properties and crack propa-
gations measured during crushing and tensile tests

Compression Tension

Strength /MPa 47.73 12.56

Young’s Modulus /GPa 139.02 78.62

Total crack density at the peak stress 0.0589 0.0060

Tension crack density at the peak stress 0.0315 0.0020

Shear crack density at the peak stress 0.0274 0.0040

Specific fracture energy /N/m 1148.50 101.50

present numerical simulations also revealed that the ratio of
Young’s moduli of this MgO-based material under tension to
that under compression was 56.6%.

4 Conclusion

A direct tensile testing approach was simulated using a two-
dimensional discrete element model to gain an advanced
understanding of fracture in ordinary refractory ceramics
under uniaxial tensile loading conditions. The stochastic spa-
tial distribution of the particles was controlled using different
seed numbers. Statistically distributed interface properties
between particles were also considered, and the case with
constant interface properties was used as a reference.

The stochastic spatial configuration of the particles had an
insignificant influence on the tensile strength, specific frac-
ture energy, static Young’s modulus, and brittleness number
for the given model setup. The spatial configuration of the
particles evidently affects crack propagation, which yields
different fracture patterns. A few cracks were dispersed in
the samples, and some cracks were localised. No single frac-
ture path was observed in the direct tensile tests. The main
non-straight crack path formed was close to one end of the
sample and passed through the sample perpendicular to the
loading direction.

The bond conditions of the particles in ordinary refractory
ceramics cause significant differences in the load–displace-
ment curves, mechanical properties, crack propagations, and
patterns under uniaxial tensile loading conditions. The case
with uniformly distributed interface properties shows evenly
dispersed cracks, whereas the cases withWeibull-distributed
interface properties display typical localised fracture paths
observed in laboratory mechanical tests. This also indicates
that the tensile strength is controlledmainly byweak contacts
between the particles, and the brittleness of ordinary refrac-
tory ceramics can be reduced when the contact between the
components is imperfect.

A comparative study of the mechanical properties
obtained from a cold crushing test and tensile test sim-
ulation shows asymmetric phenomena in the mechanical
responses under uniaxial tension and compression. The
crushing strength of aMgO-based brittlematerial is 3.8 times
its tensile strength; the static Young’s modulus under tension

Fig. 12 Crack patterns of cases
with different loading conditions

(b) Tensile test(a) Crushing test [17]
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of a MgO-based brittle material is 56.6% that under com-
pression; and the specific fracture energy under compression
is 11.3 times that under tension. With the given Weibull-
distributed interface properties defined by shape parameter
4 and the given particle spatial distribution, tensile cracking
dominated in the cold crushing test, whereas shear cracking
dominated in the direct tensile test.

Funding Open access funding provided byMontanuniversität Leoben.

Declarations

Conflict of interest The authors have no competing interests to declare
that are relevant to the content of this article.

Open Access This article is licensed under aCreativeCommonsAttri-
bution 4.0 International License,which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Gruber D, Harmuth H (2008) Durability of brick lined steel ladles
from a mechanical point of view. Steel Res Int 79(12):913–917

2. Yuan W, Tang H, Zhu Q, Zhang D (2018) Size effects on
fracture parameters of high alumina refractories. Mater Res
21(5):e20180091

3. Cotterell B, Ong SW, Qin C (1995) Thermal shock and size effects
in castable refractories. J Am Ceram Soc 78(8):2056–2064

4. Braulio MAL, Bittencourt LRM, Pandolfelli VC (2008) Magnesia
grain size effect on in situ spinel refractory castables. J Eur Ceram
Soc 28(15):2845–2852

5. Schafföner S, Dietze C, Möhmel S, Fruhstorfer J, Aneziris CG
(2017) Refractories containing fused and sintered alumina aggre-
gates: investigations on processing, particle size distribution and
particle morphology. Ceram Int 43(5):4252–4262

6. Nova R, Zaninetti A (1990) An investigation into the tensile
behaviour of a schistose rock. Int J Rock Mech Min Sci Geomech
Abstr 27(4):231–242

7. Liu J, Chen L, Wang C, Man K, Wang L, Wang J, Su R (2014)
Characterizing the mechanical tensile behavior of beishan granite
with different experimental methods. Int J Rock Mech Min Sci
69:50–58

8. Schmitt N, Berthaud Y, Poirier J (2000) Tensile behaviour of mag-
nesia carbon refractories. J Eur Ceram Soc 20(12):2239–2248

9. Jiang R, Duan K, Zhang Q (2022) Effect of heterogeneity in micro-
structure and micro-strength on the discrepancies between direct
and indirect tensile tests on brittle rock. Rock Mech Rock Eng
55(2):981–1000

10. Huang Z, Zhang Y, Li Y, Zhang D, Yang T, Sui Z (2021) Determin-
ing tensile strength of rock by the direct tensile, brazilian splitting,

and three-point bending methods: a comparative study. Adv Civ
Eng 2021:5519230

11. Liao ZY, Zhu JB, Tang CA (2019) Numerical investigation of rock
tensile strength determined by direct tension, Brazilian and three-
point bending tests. Int J Rock Mech Min Sci 115:21–32

12. Harmuth H (1995) Stability of crack propagation associated with
fracture energy determined by wedge splitting specimen. Theoret
Appl Fract Mech 23(1):103–108

13. Harmuth H, Rieder K, Krobath M, Tschegg E (1996) Investigation
of the nonlinear fracture behaviour of ordinary ceramic refractory
materials. Mater Sci Eng, A 214(1–2):53–61

14. QuinnGD,Morrell R (1991)Design data for engineering ceramics:
a review of the flexure test. J Am Ceram Soc 74(9):2037–2066

15. Pells, PJ (1993). Uniaxial strength testing. Rock testing and site
characterization, pp. 67-85

16. Xu Y, Kafui KD, Thornton C, Lian G (2002) Effects of material
properties on granular flow in a silo using DEM simulation. Part
Sci Technol 20:109–124

17. Liu X, Hu Z, Wu W, Zhan J, Herz F, Specht E (2017) DEM study
on the surface mixing and whole mixing of granular materials in
rotary drums. Powder Technol 315:438–444

18. Nguyen NHT, Bui HH, Nguyen GD, Kodikara J (2017) A cohesive
damage-plasticitymodel forDEMand its application for numerical
investigation of soft rock fracture properties. Int J Plast 98:175–196

19. Vo TD, Pouya A, Hemmati S, Tang AM (2017) Numerical mod-
elling of desiccation cracking of clayey soil using a cohesive
fracture method. Comput Geotech 85:15–27

20. Wang J, Yan H (2013) On the role of particle breakage in the shear
failure behavior of granular soils by DEM. Int J Numer Anal Meth
Geomech 37:832–854

21. André D, Levraut B, Tessier-Doyen N, Huger M (2017) A discrete
element thermo-mechanical modelling of diffuse damage induced
by thermal expansion mismatch of two-phase materials. Comput
Methods Appl Mech Eng 318:898–916

22. Tran VT, Donzé FV, Marin P (2011) A discrete element model
of concrete under high triaxial loading. Cement Concr Compos
33:936–948

23. Cundall PA, Strack ODL (1979) A discrete numerical model for
granular assemblies. Geotechnique 29:47–65

24. Cundall PA (1988) Formulation of a three-dimensional distinct ele-
ment model—Part I. A scheme to detect and represent contacts in
a system composed of many polyhedral blocks. Int J Rock Mech
Min Sci Geomech Abstr 25:107–116

25. Funk JE, Dinger DR (2013) Predictive process control of
crowded particulate suspensions: applied to ceramic manufactur-
ing. Springer scienceBusinessmedia, Berlin/Heidelberg, Germany

26. Du W, Jin S, Emam S, Gruber D, Harmuth H (2022) Discrete
element modelling of ordinary refractory ceramics under cold
crushing testing: influence of minimum element size. Ceram Int
48(12):17934–17941

27. Du W, Jin S (2022) Discrete element modelling of cold crushing
tests considering various interface property distributions in ordi-
nary refractory ceramics. Materials 15(21):7650

28. Itasca Consulting Group. (2008) Particle flow code in two dimen-
sions (PFC2D). Minneapolis

29. Potyondy DO, Cundall PA (2004) A bonded-particle model for
rock. Int J Rock Mech Min Sci 41:1329–1364

30. Jin S, Gruber D, Harmuth H (2014) Determination of young’s
modulus, fracture energy and tensile strength of refractories by
inverse estimation of a wedge splitting procedure. Eng Fract Mech
116:228–236

31. Elfgren L (1989) Applications of fracture mechanics to concrete
structures. In: Mihashi H, Takahashi H, Wittmann FH (eds) Frac-
ture toughness and fracture energy - test methods for concrete and
rock. A.A Balkema, Rotterdam, pp 575–590

123

http://creativecomm\penalty -\@M ons.org/licenses/by/4.0/


Computational Particle Mechanics

32. Simonin F, Olagnon C, Maximilien S, Fantozzi G, Diaz LA, Tor-
recillas R (2000) Thermomechanical behavior of high–alumina
refractory castables with synthetic spinel additions. J Am Ceram
Soc 83(10):2481–2490

33. Nazaret F, Marzagui H, Cutard T (2006) Influence of the
mechanical behaviour specificities of damaged refractory casta-
bles on the young’s modulus determination. J Eur Ceram Soc
26(8):1429–1438

34. JM,R.,Berthaud,Y., Schmitt,N., Poirier, J.,&Themines,D. (1998)
Thermomechanical behaviour of magnesia-carbon refractories. Br
Ceram Trans 97(1):1–11

35. Malamataris S, Hatjichristos T, Rees JE (1996) Apparent compres-
sive elasticmodulus and strength isotropy of compacts formed from
binary powder mixes. Int J Pharm 141(1–2):101–108

36. Traon N, Schnieder J, Tonnessen T, Huger M, Chotard T, Bel-
rhiti Y, Villalba-Weinberg A (2017) High temperature evaluation
of mechanical properties of refractory castables: impact of eutectic
aggregates and testingmethods. RefractWorldforum9(3):116–126

37. Schachner S, Jin S, Gruber D, Harmuth H (2019) Three stage creep
behavior of MgO containing ordinary refractories in tension and
compression. Ceram Int 45(7):9483–9490

38. Kakroudi MG, Huger M, Gault C, Chotard T (2009) Anisotropic
behaviour of andalusite particles used as aggregates on refractory
castables. J Eur Ceram Soc 29(4):571–579

39. Samadi S, Jin S, Gruber D, Harmuth H, Schachner S (2020) Statis-
tical study of compressive creep parameters of an alumina spinel
refractory. Ceram Int 46(10):14662–14668

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Determination of the influence of particle spatial distribution and interface heterogeneity on tensile fracture of ordinary refractory ceramics by applying discrete element modelling
	Abstract
	1 Introduction
	2 Methods: discrete element model configuration
	3 Results and discussion
	3.1 Influence of particle spatial distribution
	3.2 Influence of statistically distributed interface property
	3.2.1 Mechanical properties
	3.2.2 Crack density
	3.2.3 Crack patterns

	3.3 Comparison between cold crushing test and tensile test simulation results

	4 Conclusion
	References


