
Computational Particle Mechanics
https://doi.org/10.1007/s40571-024-00712-3

Multiphase simulations of nonlinear fluids with SPH

Juan Gabriel Monge-Gapper1 · Javier Calderon-Sanchez2 · Alberto Serrano-Pacheco3

Received: 27 March 2023 / Revised: 7 November 2023 / Accepted: 17 December 2023
© The Author(s) 2024

Abstract
A modified apparent viscosity approach has been implemented for a weakly compressible SPH scheme for two-phase flows
where a nonlinear phase must yield under erosive dynamics but also maintain a pseudosolid behaviour under the right
conditions. The final purpose is to provide a means to model both dam-break dynamics and erosive interactions between
different phases simultaneously while also keeping smooth pressure fields in spite of discontinuities introduced by viscosity
variations of a nonlinear phase along with significant differences in mean density. Key contributions include purposeful
avoidance of nonphysical elastic behaviour and the integration of a specific particle shifting technique that allows for proper
replication of erosion and scouring. In this work, the method is validated by applying it to model a silted-up dam that
collapses over a static water bed, effectively including all main elements of interest. Although the formulation is inherently
three dimensional, validation is done by direct comparisonwith data fromphysical experiments of a dominant two-dimensional
nature, assuming variable yield stress of medium-grain quartz sand according to the Drucker–Prager equation. Overall results
show most of the expected interface dynamics, such as erosion and transportation of the nonlinear phase, sustained piling
of the non-yielded volume of silt, and good correspondence of both granular and water surface position with experimental
data. Finally, a series of modelling assumptions and implications for future developments are explicitly stated because of their
direct impact on stability and versatility for multiphase, nonlinear flows in general.

Keywords Smoothed particle hydrodynamics · Non-Newtonian fluids · Granular flows · Multiphase flow · Dam break ·
Apparent viscosity
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1 Introduction

Successful modelling of the interaction between a mass of
granular sediment and in a highly transient open flow, a situa-
tion commonly encountered in many natural formations and
industrial processes, requires consideration of many com-
plex physical phenomena that are challenging to incorporate
into any contemporary numerical scheme. However, it is
this complexity, even when dealing with specially designed
physical experiments, which makes numerical modelling an
extremely useful tool to gain insight into the evolution of such
flow patterns, the magnitude of local speeds or pressures,
faultline growth, stagnation points, and several other clearly
defined variables that are very difficult to measure and visu-
alize in a physical set-up. The discharge of a channel or river
bedload dynamics at transitional points are some general
cases of interest, along with sand traps or spillways that can
become silted up during normal operation. Another impor-
tant instance for accurate prediction of this family of flow
dynamics is in landslide risk assessment, where literature on
multi-phase modelling has focused on wave generation, as
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in the studies by [1–3]. In this type of case, the added ben-
efit of a complex model for the granular phase can enhance
both numerical performance and better similarity to physical
observations.

In applications like these, since a sufficiently significant
mass of saturated sediment, silt, or slurries can behave like
a fluid under certain conditions but alternatively keep a rela-
tively solid shape if the local forces are not enough to have
it yield, it is not uncommon to apply nonlinear rheological
models to a clearly identified granular phase along with any
other physical characteristics, most importantly density and
internal friction qualities. In the types of problems such as
those addressed here, this nonlinear phase can become tem-
porarily suspended, but not fully mixed or dissolved, within
a linear water phase [4–6].

Aside from the fact that the movement of granular masses
depends on tribological phenomena among clusters of grains,
which are already difficult to describe deterministically, these
and any other physical nonlinear characteristics that may
arise can affect the stability of numerical schemes that other-
wise exhibit good evolution of data fields and even excellent
accuracy when validated with physical experiments if prop-
erly set up [7, 8]. Care must be taken to avoid numerical
oscillations, which can become very difficult to overcome
when supersonic speeds are expected, like the modelling of
explosions in soil [9].

Previous approaches to the sediment scouring and trans-
port problem as in applying the Boussinesq equation [3] or
the shallow water equations (SWEs) [10] are useful only
for long channels and riverbeds, but not for two or three-
dimensional flows with rapidly changing geometries at a
local level. For low aspect ratio geometries, studies using
finite volumemethods (FVM) have followed approaches that
include changing viscosity using different rheological mod-
els [6, 8, 11] with varying degrees of success, but accuracy is
hindered by sensitivity to the remeshing algorithms that must
adapt continuously to moving boundaries formed between
phases and at the free surface. A form of remeshing in SPH,
that of particle shifting [12] or particle refinement techniques
[13], cannot yet guarantee stability unless it is supportedwith
other stabilization techniques. Transportationmodels of solid
particles inmultiphaseflowwere outlined early inSPHdevel-
opment [14], but the incorporation ofmore complex viscosity
models and yield criteria did not begin until over a decade
later, as accounted by [15], and is still a developing field in
particle methods, as outlined in [16] regarding multiphase
granular flow.

Due to its meshless nature, the modelling of a nonlinear
generic fluid with Smoothed Particle Hydrodynamics (SPH)
was attempted by [17], and later on, a good amount of work
was done on nonlinear flows using variants of SPH [18, 19],
greatly widening the applicability of SPH schemes. Hybrid
approaches mentioning the presence of nonlinear flows that

combine SPH and FVM have also been tested but with the
FVMcomponent applied to interactionwith elastic structures
[3, 8, 20].

Previous studies that have focused on the nonlinear nature
of two-dimensional sediment flow [21–23] approached an
application with SPH of the well-known Herschel–Bulkley
(HB) or Herschel–Bulkley–Papanastasiou (HBP) rheolog-
ical models; farther along, [7] implemented, among other
aspects, a varying yield stress model for the granular phase
according to its local effective pressure. Modification of the
kernel function and adding correction terms to the conserva-
tion equation, such as the approach by [24] for an Oldroyd-B
fluid, is another way to overcome instabilities and improve
precision. These cases are also two-dimensional, and the
agreement with experimental data is good. Other studies,
such as that of [25], explore alternatives for a yield criterion
at the nonlinear phase or prefer to solve a Laplace equation
[26] to calculate effective stress in the unyielded nonlinear
phase, with the purpose of combining an elastic model with
a multiphase, liquid-only SPH formulation. Along the line
of using a pseudoelastic model for the yielding process in
a viscoplastic fluid, studies like [27] approach the problem
by using an artificial stress term to evolve particle kinemat-
ics. Very recently, work like that by [28] has concentrated on
smoother stress fields to dampen noise detrimental to other
data fields. Treatment of the boundaries in this type of mul-
tiphase flow is another matter, which has received plenty of
attention, like the application of normalization factors at free
surfaces as described by [29], application of surface tension
equations with the SPH approximation as described in [30],
or the usage of artificial repulsion forces at the interface as
in the proposal by [31] to deal with clumping issues.

Later applications of this combination of techniques to
specific two-dimensional cases of two-phase dam break offer
different perspectives on flow dynamics exhibited by the
numerical models such as an underwater dam break using
SPH [32], a silted-up dam break using FVM for both phases
[11] with some comparison to experimental data or even the
presentation of three-dimensional cases with limited spatial
resolution, like the single-phase debris flow SPH model by
[33], among other similar studies.

To address several of the challenges these studies have
encountered when dealing with multi-phase flow, this study
aims to lay out a numerical scheme that can accurately emu-
late complex flow dynamics while maintaining stability. To
properly replicate pressure evolution, the scheme should pre-
vent unstable fields that can be caused both by nonlinear
variations of viscosity and by the sharp changes in density
due to dissimilar phases.

The remaining sections are organized as follows: first, a
description of themathematicalmodel is provided alongwith
the methodological aspects of the implementation to cope
with a nonlinear constitutivemodel. The focus is on the nature
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of the nonzero yield stress of the granular material and the
presence of two distinct phases. Next, the model is tested
and compared with two experimental series: a single-phase
nonlinear dam break, and a multiphase dam break based on
a silted-up spillway configuration. In each two-dimensional
case, validation is done with published physical experiment
data sets. Finally, the concluding section presents the main
takeaways from this study and outlines future research in this
line of work in accordance with the results obtained.

2 Numerical model

The present work will employ a weakly compressible SPH
(WCSPH) formulation for a general fluid. All phases consid-
ered will be modelled under the same physical laws, either
in a single phase or a multiphase context. For a weakly
compressible flow, the Lagrangian form of Navier–Stokes
equations can be written as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dρ

Dt
= −ρ ∇ · u

Du
Dt

= 1

ρ
∇ · σ + g

u = dr
dt

, p = p(ρ) ,

(1)

where ρ is the density, u the velocity, r the position, p the
pressure, g the external volumetric force due to gravity, and
D

Dt
stands for the material derivative. The term σ represents

the Cauchy stress tensor, which can be split into two terms,
namely the normal stresses p and the shear stressesτ as in
Eq. (2):

σ = −p I + τ . (2)

In SPH, the system of Eqs. (1) becomes system (3), where
〈〉 is the customary notation for the SPH approximation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

〈
Dρ

Dt

〉

i
= −ρi

∑

j

V j
(
u j − ui

)∇iWi j ,

〈
Du
Dt

〉

i
= 1

ρi

∑

j

V j
(
σi + σ j

) ∇iWi j + g,

ui = dri
dt

, p = c2s (ρi − ρ0) ;

(3)

where subscript i represents the particle being computed, and
j is the set of neighbouring particles. Term Vi = mi/ρi is the
volume of particle i , and Wi j := W (ri − r j ) and ∇iWi j the
kernel and kernel derivative, respectively. The kernel, which
acts as a smoothing function, is a Wendland C2 kernel [34]

with h/dr = 2; h is the smoothing length and dr inter-
particle distance unless otherwise stated.

With this set of equations fully defined, hypotheses are
required for the forms of τ and p. The formerwill be achieved
through a rheological model, discussed further along, and the
latter through an equation of state (EOS). The EOS is the stiff
equation shown in the system of Eq. (3). This way compress-
ibility is adjusted so that the speed of sound is artificially
lowered according to the scheme by [35]. Usually, the linear
term is sufficient to retain the properties of the EOS.

In the present analysis, an apparent viscosity approach is
used to account both for potential variation of viscosity as a
function of strain rates and the existence of plastic behaviour,
where yield stress τ0 must beovercomebeforeflowcanbegin.
Therefore, viscous stresses (τ ) are computed as:

τi = 2μ ε̇i , (4)

whereμ represents the viscosity and ε̇i is the deviatoric strain
rate tensor, defined as:

ε̇i = 1

2

(
∇u + ∇uT

)
− 1

3
∇ · u δi j , (5)

with δi j being the Kronecker delta. In SPH, the ∇u term can
be computed as:

〈∇u〉 =
∑

j

V j
(
u j − ui

) ⊗ ∇iWi j . (6)

When dealing with wet silt or sand, if the sediment is fully
suspended, viscosity is a function of solid concentration [4]
but does not exhibit any yield stresses since contact between
the solid particles is limited and does not allow for frictional
interlocking. This has been well documented and applied
as an interface model for SPH by [4] and followed by later
publications similar to that of [36].

Another important factor when dealing with granular
materials is local packing pressure, as it significantly changes
local yield stress. This is a well-known geotechnics phe-
nomenon and has been applied in many studies using SPH,
among them [4, 23, 26, 28]. These studies use the Drucker–
Prager yield model that considers two factors in determining
local yielding stress τ0, as in Eq. (7):

τ0 = −α peff + κs . (7)

InEq. (7), peff is the local effective pressure,α relates vari-
ation according to this pressure, and κs is the contribution of
cohesiveness. Both of these constants can be estimated by
projecting this model onto the Mohr–Coulomb yield crite-
rion. For a yield surface at π/6, internal angle of friction φ

and cohesiveness c, α and κs can be calculated as follows:
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Fig. 1 Conventional apparent viscosity approach

α = 2
√
3 sin(φ)

3 − sin(φ)
, (8)

κs = 2
√
3c sin(φ)

3 − cos(φ)
. (9)

Several approachesmaybeused to compute effective pres-
sure in SPH. Free surface and interface tracking for all the
phases are considered here. The effective pressure is then
computed from total pressure (ptot) and pore water pressure
for saturated sediment (ppw) as, for instance, [23]:

peff = ptot − ppw = ρg
(
htot − hpw

)
(10)

where htot and h pw are the total depth and the local depth,
respectively, of the fluid.

In nonlinear fluids such as those with viscoplastic
behaviour, a variation of the viscosity can be described
using any equation that properly fits the phenomenon, among
which the Herschel–Bulkley–Papanastasiou (HBP) rheolog-
icalmodel [37] (a generic form shown inFig. 1) iswell known
for its versatility since it can consider yielding stress and
either a shear thickening or shear thinning fluid through flow
index n.

According to this rheological model, once movement
begins, viscous shear stress τi will vary as a function of angu-
lar shear rate ε̇i ; therefore, an apparent viscosityμi,eff can be
defined as the proportion τi/ε̇i , which will become large for
shear rates close to zero. Therefore, the model approximates
this viscosity as:

μi,eff = κε̇n−1
i + τ0

ε̇i

(
1 − e−mε̇i

)
, (11)

where parameters τ0, flow index n, consistency index κ , and
stiffening rate m must all be determined by fitting the equa-
tion to appropriate experimental data.

To circumvent numerical problems with the second term
when ε̇ = 0, an equivalent function that does not become
undefined at that point is used, as in [38]:

μi,eff = κε̇n−1
i + τ0T (mε̇i ), (12)

where T (x) is a function defined as (1 − e−x )/x for values
of x above a small threshold, but as its MacLaurin series
(truncated after 8 terms), for smaller values. The threshold
value, which can be visualised as an amountmε̇0 (see Fig. 1),
should be chosen in accordance with the nonlinear properties
of the fluid, but it does not produce a sharp discontinuity as
the threshold is crossed, and does not require yield surface
detection algorithms.

Whatever themethod applied to obtain an effective viscos-
ity, even small oscillations in the pressure field can produce
apparent yielding of the fluid when, in reality, movement at a
macroscopic level has not yet begun. This means that effec-
tive viscosity will decrease and then yielding happens before
it should. This is especially important where pile-up, buck-
ling, or scouring needs to be modelled. To avoid evolving an
additional elastic stress equation and simultaneously track
the yielded surface to determine whether such an equation
applies or not, one approach used by [23] and followed up on
by [7] is to evaluate the yield criterion and set a null accel-
eration to any unyielded particle. Yielded particles will then
follow the applicable momentum equation, an approxima-
tion used here for cases where pileup or scouring is expected
during the simulation. Therefore,

{
ε̇ = 0 if τ ≤ τy
τ = 2μeff ε̇ if τ > τy

(13)

as proposed by [39], where τ is evaluated as:

τ =
√
√
√
√

1

2

∑

i, j

τi jτi j . (14)

When applying the yield criteria from Eq. (13) to the non-
linear phase numerically, forcing zero acceleration at the
nonyielded area tends to destabilize pressure fields. For that
reason, this model proposes to keep the evolution of the con-
servation equation instead of assigning zero acceleration. In
place of this, the conservation equation is multiplied by an
attenuation factor, KR , which allows for a much smoother
transition at the yielded/non-yielded interface, where sharp
transitions are normally found in erosion processes.

To remove high-frequency pressure oscillations, the δ-
SPH term is added to the continuity equation; this also helps
improve the overall stability of the scheme. The δ-SPH term
is applied independently to each of the phases involved, based
on its impact on stability according to the multiphase study
by [40]. The term is added to the continuity equation, yielding
to:

dρi
dt

= −ρi
∑

j

u j i · ∇iWi j Vj + h cs δ
∑

j

ψ j i · ∇iWi j Vj ,

(15)
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where the term ψ j i is defined as:

ψ j i = 2

[

(ρ j − ρi ) − 1

2

(
〈∇ρ〉Lj + 〈∇ρ〉Li

)
· r j i

]
r j i

‖r j i‖2 ,

(16)

where 〈∇ρ〉Li represents the renormalized density gradient,
as defined by [41]. The value for δ is always set to 0.1.

To improve the spatial distribution of particles, a particle
shifting algorithm is used, following the solution proposed by
[42], based on a diffusion law. Particle positions are slightly
shifted from high-concentration areas to low-concentration
areas to conserve a regular distribution. According to [42],
the expression for the shifting term for all particles in domain
D becomes:

δui = −0.5max
j∈D

(∥
∥
∥
∥
∥
(u j − ui ) · x j − xi

∥
∥x j − xi

∥
∥

∥
∥
∥
∥
∥

)

(
R

�x

)3

R∇̂Ci (17)

i f

∥
∥
∥
∥
∥

(
R

�x

)3

R∇̂Ci

∥
∥
∥
∥
∥

<
R

2�x
;

otherwise,

δui = −0.5max
j∈D

(∥
∥
∥
∥
∥
(u j − ui ) · x j − xi

∥
∥x j − xi

∥
∥

∥
∥
∥
∥
∥

) (
R

2�x

)

∇̂Ci ,

(18)

where ∇̂Ci is the concentration gradient approximation by
[43].

For free-surface flows, shifting at the free surface must
be controlled to prevent overall fluid volume to increase
along the simulation due to particles shifting towards low-
concentration areas beyond the free surface. In this work, we
follow the approach initially proposed by [44], and further
developed by [42, 45].

To this means, identification of particles near the surface
is done using the work developed by [45, 46]. These use
thresholds to designate different regions depending on the
distance of the particle from the free surface, based on the
minimum eigenvalue (λi ) of the renormalization matrix:

Li :=
⎡

⎣
∑

j

r j i ⊗ ∇iWi j Vj

⎤

⎦

−1

. (19)

In the first step, particles with eigenvalues λi ≤ 0.2 are
identified as free surface particles. For particles within an

intermediate region (0.2 < λi < 0.7), a second step is per-
formed. Then, free surface particles can be fully identified,
and the normal vector is found according to the following
expression:

ni = 〈∇λ〉i
‖〈∇λ〉i‖ with 〈∇λ〉i

= −
∑

j

(
λ j − λi

)
Li∇iWi j Vj (20)

Boundarieswill be treated here by using numerical bound-
ary integrals, according to the approach initially proposed
by [47] and further extended by [29]. In that technique, the
boundary is split into elements distinguished by its geomet-
ric attributes: area, normal vector, and tangent vector. This
implies an assumed truncation error, but it prevents node con-
nectivity and is more efficient in computational cost [26, 48].
The Shepard normalization factor is computed geometrically
with a semi-analytical approach.

Time integration is carried out by means of an explicit
predictor-corrector scheme. Timestep size is chosen at each
integration step according to the following restrictions:

�t ≤ CFL
h2ρi
μi,eff

�t ≤ CFLmin
i

(
h

c0 + hmax j πi j

)

�t ≤ CFLmin
i

(
h

‖ui‖
)

�t ≤ CFLmin
i

√
h

‖ai‖

(21)

The current model and the simulations presented below
have been carried out with AQUAgpusph, an open-source
SPH software developed by CEHINAV-UPM [47].

3 Results and discussion

The test cases discussed here aim to cover several types
of physical interaction to illustrate the effect of viscoplas-
tic nonlinearity of dam break dynamics on flow profiles and
the numerical performance of the proposed method. First, a
single-phase dam break case will provide good insight as to
the impact of viscoplasticity on the rest of the SPH scheme
and is expected to replicate key physical behaviour elements
that are expected, like a certain degree of pile-up and strong
viscous damping of angular strain in the nonlinear phase.

Then a two-phase case, consisting of a silted-up dam
break, is targeted at reproducing simultaneous instances of
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Table 1 Physical constants for
numerical models

Li and Zhao [50] Vosoughi et al. [11]

Yield stress, τ0 (Pa) 30.0 –

Total particles (converged) 80,000 180,000

Flow index, κ (Pa sn) 4.472 3.97

Consistency index, n 0.472 1.0

Drucker–Prager φ constant – 30◦

Erosion scheme KR = 1 KR = 0.01

Density (nonlinear phase, kg/m3) 1540 2650

dynamic interactions between a linear and a nonlinear phase.
Dam break evolution for both phases will be different, of
course, and consequently, differences in speeds will bring
up complex local erosion and scouring phenomena. Recall
that the model for the granular phase implies the additional
variability of yield stress as a function of local pressure,
a critical variable in the stable evolution of the conserva-
tion equation in weakly compressible formulation. All these
complications also mean that pressure and strain rate fields
will tend to be unstable. These conditions tax the numerical
scheme and therefore will be a good test of its adaptabil-
ity to rapidly evolving yielded/nonyielded boundaries with
multidirectional interaction between the linear and nonlinear
phases.

Calculation results are compared directly to recently
published experimental data for two distinct cases: (1) single-
phase viscoplastic clay, a two-dimensional dam break with
relatively low yield stress, and (2) the silted-up dam break,
a two-dimensional sand and water interaction experiment
which uses uniform, saturated quartz sand as the nonlinear
phase. Each case used known physical properties applica-
ble to each phase; since the nonlinearity of such properties
can have a significant impact on accuracy and stability, the
parameters for viscoplasticity are shown in Table 1 as a gen-
eral reference for the rest of this article.

The implementation of the numerical model described
above can handle n different nonlinear phases and is lim-
ited to nongaseous fluids, but here only two-phase cases are
tested. This n-phase scheme has been implemented as a plu-
gin within the fluid solver of AQUAgpuSPH.

3.1 Single-phase non-Newtonian dam break

The viscoplastic dam break studied here replicates the
physical experiment by [49], which used homogeneous,
water-saturated clay with rheological constants fitted to the
Herschel–Bulkley (HB) model. This case was worked on
recently by [50] who proposed the application of the volume-
of-fluid (VOF) method to replicate the flow dynamics. The
geometric set-up for the experiment is shown in Fig. 2 and
will be considered two-dimensional since the tank width is

Fig. 2 Case geometry for 2D nonlinear dam break

constant and the water-saturated condition of the clay guar-
antees good lubrication in relation to all solid boundaries.

The clay is initially confined by a bottom solid wall and
two vertical solid boundaries; when the gate is instanta-
neously removed, the clay flows out along the horizontal bed,
wet with a thin film of water. The height of the clay column
is H f = 0.13 m, while the length is L f = 0.26 m.

The density of the fluid has been reported by [50] as ρ =
1540kg/m3 along with HBP rheological parameters τ0 =
30.0 Pa, n = 0.472 and κ = 4.472. Gravity acts along the
vertical axis and was considered as g = 9.81 m/s2.

Numerical parameters for the weakly compressible
scheme are chosen according to low expected flow speeds, so
an artificial speed of sound is chosen as cs = 40m/s, which
is well over the criterion provided by [51] cs = 10 Vmax.
Reference speed Vmax can be estimated as

√
(2gH) = 1.60

m/s, but will likely be lower since viscosity is high.
Spatial resolution varies according to the number of par-

ticles used, but for the model with N = 80,000, for which
numerical convergence was reached (as noted after several
test runs with N between 5000 and 124,000 fluid parti-
cles), the initial particle spacing for the convergedmodel was
�x = 7.5 × 10−4 m. All solid boundaries were modelled
with boundary integrals as described above, and no viscous
or cohesive forces were considered at the walls. Convergence
is sampled at t = 0.5 s (td = 4.3) with profiles seen in Fig. 3
and at t = 1.0 s (td = 8.7) in Fig. 4. Considering how simple
the geometry is, convergence occurred at a relatively high
resolution; this was probably related to the fact that enough
particles must be present at the advancement front to repli-
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Fig. 3 Convergence of
nonlinear dam break at t = 0.5 s
(td = 4.3)

Fig. 4 Convergence of
nonlinear dam break at t = 1.0 s
(td = 8.7)

cate pileup properly, and even the converged models show
higher error in this area compared to the mass farther back.
This can be due to the fact that the mass that is in the front
of the flow and close to the solid boundary has been through
much higher shear strain than other areas; close inspection
of the discrete distribution reveals that the SPH particles are
packed into a higher, albeit smoothed, local density. If the
mass is to remain constant, mean volume must decrease; this
is an inaccuracy observed across test cases with high shear
strain and the relatively low speeds implied with a viscoplas-
tic collapse. When looking at these results, recall that yield
stress for this fine, water-saturated clay is quite low, so static
pileup angles would be much smaller than those expected
from sand or other coarser granular materials.

The results for this calculation are shown in Fig. 5 at times
t = 0.500 s, 0.625 s, and 1.000 s (approximate dimensionless
times td = 4.3, 5.4 and 8.7) in correspondencewith published
experimental data.

Several indicators of a viscoplastic collapse are present,
such as the conservation of the initial rectangular shape for a
longer time than a linear, less viscous fluid,with no splashing,
rollover, or wave formation. To showcase contrasting yielded
and unyielded areas in the fluid, the effective viscosity field is
plotted out in Fig. 6 for t = 0.250 s (td = 2.2); in areas where
particles are at low or zero shear rate, local viscosity is higher
in accordance with Eq. (12), but at the advancement front,
viscosity is correspondingly lower. In some areas, numeri-
cal oscillations resulted in locally higher angular shear rates,
which reduces effective viscosity in a manner that the fluid
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Fig. 5 Collapsed profiles for 2D
nonlinear dam break

Fig. 6 Viscosity and pressure
fields at t = 0.250 s (td = 2.2)
for 2D nonlinear dam break

will yield prematurely, but here it did not seem to change
accuracy significantly.

This viscosity field is smooth, but not directly linked to
the pressure field since a constant value for yield stress was
used. This does not mean that a noisy pressure field could
not affect scheme stability, though, because the calculation
of local apparent viscosity is a function of angular shear rate ε̇

associated directly with the conservation equation (1). In this
set of numerical experiments, once the resolution was high
enough, pressure fields were very smooth during the t = 2.0
s of physical time (td = 17) tested. As an example, Fig. 7
shows a time instant of a simulation at t = 1.0 s (td = 8.7)
where this field can be appreciated.

Although this is a viscoplastic mass that is collapsing
slowly in comparisonwith a linear, low-viscosityfluid, pileup
angleswill be nonzero but low since the order ofmagnitude of
yield stress τ0 is below 102 Pa. Hence, a clearly recognizable
segment mass has not completely collapsed (for example,
the area in Fig. 6 where apparent viscosity is over 50 Pa s)

but a flow front that is completely dynamic has flattened and
is moving quickly towards the right boundary. At t = 1.0 s,
although barely recognizable, a faultline has formed between
the main collapsing mass and the completely dynamic part
of the fluid.

Aside from excellent accuracy in relation to physi-
cal experiments, no unexplained waves, splashes, or flow
rebounding appeared within the simulation timeframe. How-
ever, since no artificial viscosity stabilization scheme is used
for this nonlinear phase, pressure field instabilities will form
for higher values of cs . The application of the δ-SPHdiffusion
term and the particle shifting techniques greatly reduced the
occurrence of fringes and nonphysical faultlines; likewise,
free surface and interface treatment were key in preventing
numerical cracking of the surface.

While testing sensitivity and tuning the numerical param-
eters of the model, several potential sources of pressure
instability were recognized, some of which may be harm-
ful feedback phenomena between pressure and strain. One
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Fig. 7 Viscosity and pressure fields at t = 1.0 s (td = 8.7) for 2D nonlinear dam break

possible source of instability can be values of τ0 in the order
of 103 Pa, and even at 102 Pa if flow speeds become high
enough. In such cases, nonphysical, multiple faultlines will
form or even render the pressure field catastrophically unsta-
ble. In fluids where apparent viscosity is described by the
HBP rheology model, values for consistency index n over
the vicinity of 1.2 also accelerate the occurrence of insta-
bility in the pressure field, perhaps due to stronger viscous
stress differentials that are induced.

During the developmental stages of the scheme, lack of
accuracy usually was in the form of extensive premature
yielding, causing the whole mass to collapse much like a
fluid with no yield stress. Not all of the fluid yielded; it
did so, at initial stages, in a manner of alternating strips of
low and high viscosity roughly distributed perpendicularly
to the lower boundary. This yielding of course meant move-
ment that was quickly diffused into nonyielded areas, which
then correspondingly entered a fully dynamic state with no
unyielded areas. Sometimes this occurred after the end of the
simulation of the timeframe of interest, but barely noticeable
evidence of potential instabilities was appearing even then,
and eventually, the fluid would yield completely instead of
showing static pileup. In this single phase case, the particle
shifting algorithm kept several datafields stable, even if a uni-
tary value was used for the relaxation factor KR . However,
during test runs it was observed that if the physical values of
τ0 is over 102 Pa, a smaller value of KR needs to be used to
keep the unyielded phase numerically active and help stabi-
lize the angular shear rate ε̇ field since it is used to determine
local yield condition.

Finally, the potential for inaccuracies due to shearing
boundary forces was verified by applying no-slip boundaries
to a test run identical in all other aspects to thefinal run used to
report these results. Neither accuracy nor stability seemed to
be affected significantly, and in other test runs where unnat-
ural sliding of the fluid mass occurred, it was not related to
boundary interactions, but to unphysical cracking of the fluid
at the free surface. Once again, the use of particle shifting and
appropriate treatment at the free surface both contributed to
reducing this problem significantly.

This behaviour of a single, nonlinear collapsing block
of fluid is just a first approximation to the full intention of
the proposed model. With the presence of a second, quicker
reacting phase, and higher yield stress differentials, it is rea-
sonable to expect much stiffer difficulties.

3.2 Multi-phase non-Newtonian dam break

This case dealswith amulti-phase formulation of a dambreak
inwhich one of the phases ismodelledwith a non-Newtonian
rheological model. Several complexities can be expected if
compared to the previous single-phase, nonlinear dam break.
First, since the nonlinear phase is sand, yield stresses will be
higher in accordance with known internal friction charac-
teristics; furthermore, the presence of a second phase means
that all types of interactions can follow, including hydrostatic
action (normal to the interface boundary) and erosive action
(shearing). Of course, no dissolution between water and sand
or physical state transformation effects such as evaporation
or condensation are applicable.

In this experiment, following the geometric two-
dimensional set-up shown in Fig. 9, the dam section is a layer
of saturated, homogeneous sand with a comparable mass of
water completing the height of this silted-up dam. A water
bed will receive these collapsing masses, with the dam water
eroding the silted bottom, a configuration that guarantees a
good variety of interaction phenomena. As outlined briefly
above, this is relevant to many engineering applications, both
at large scales as in river mouths, port construction and oper-
ation, water overtopping landslide assessment, and at smaller
scales as in gated channels, dam discharge outlets, large
drainage pipe discharges and other instances where rapidly
changing shape of an area occupied by sand or silt affects
its condition or performance. On the other hand, in terms
of SPH performance, this scheme must handle not only the
alterations a highly non-linear rheology model introduces,
but also has to deal with simultaneous dam break processes
occurring at different speeds that are interacting with each
other during the whole timeframe of the simulation. This is
very different from bedload transportation models that can
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Fig. 8 Snapshots of the two-phase dam-break evolution at different time instants. Sand phase takes 80% of the column and water the remaining
20%. Experiments reproduce that by [11]

only model non-violent scouring or schemes where viscous
stresses present smaller variations throughout the nonlinear
phase.

To follow up on validating this scheme with these consid-
erations in mind, physical experimental datasets were used;
those published in [52] include a variety of silt depths and
different wet bed depths for up to 6.00 s of physical time
after the instantaneous opening of the gate. For this study,
results from applying the proposed scheme to all silt depths
with a downstream 0.05 m waterbed were examined, but to
present relevant insights without repetition, the analysis will
be carried out with results for initial silt depths Hs = 0.03 m;
0.15 m; 0.20 m; and 0.24 m. The body of water completes
the total depth H , including silt, to Hw + Hs = 0.30 m depth
for the dam section, which is Ld = 1.52 m long. The rest of
the tank, with a total length of Lb = 6.00 m, holds a water
bed with a depth of Hb = 0.05 m. In the physical experiment,
the tank is D = 0.65 m wide. Drucker–Prager criterion con-
stants associated with saturated quartz sand as described by
[11] were applied here to calculate local yield stress τ0 as
prescribed by Eq. (11). Snapshots for the time evolution of
the 0.24m initial silt depth case are reported in Fig. 8.

The numerical parameters associated with the weakly
compressible scheme were chosen similarly to the single-
phase case, with an artificial speed of sound of cs = 40m/s.
The spatial resolution of the converged models that used
about N = 180,000 total particles was �x = 1.5 × 10−3 m.
All solid boundaries were modelled with boundary integrals
as described above and, as before, no viscous or cohesive
forces were considered at the walls, a reasonable assumption
for water-saturated sand.

Fig. 9 Case geometry for 2D silted-up dam break

This set of numerical experiments showed greater sen-
sitivity to many numerical parameters in terms of stability,
especially in the pressure field. This may be related to the
need to assure a sufficient degree of stress continuity through-
out the different phases. Unlike the single-phase dam break,
both numerical stability and accuracy in relation to exper-
imental data were easily affected by the value of viscosity
threshold factor K (m in Eq. (12)) and relaxation factor
KR that multiplies the conservation equation if an unyielded
condition is detected. When properly tuned, accuracy was
considered very good for dimensionless times td < 10 for
both water and sand profiles, and the scheme maintained sta-
bility for dimensionless times over td = 37 (approximately
t = 6.00 s), which is the available timeframe the physical
experiment dataset provided.

In this set of tests, numerical parameter tuning was
required to obtain the best degree of accuracy, starting out
with the apparent viscosity factor K . This factor affects how
apparent viscosityμeff changes as a function of angular shear
rates when threshold K ε̇ is below unity. For higher values of
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K, the resulting larger viscosities meant CFL criteria drove
down the values for timestep, making them computationally
too expensive to be practical. Since an artificially high vis-
cosity might be regarded as an inaccuracy of sorts, it actually
is taken care of differently; at low angular shear rates (that is,
unyielded or very recently yielded fluid), particle movement
evolves with the conservation equation but is multiplied by
a relaxation factor KR . A nonzero value for KR is needed to
guarantee that the unyieldedparticles donot freeze or become
too easily suspended in the phase that it does not belong to,
where the absence of other nonlinear neighbouring particles
means they cannot continue replicating viscous stresses that
would have influenced it. Too large a value of KR (if over
0.5, as an example for these test cases) meant that premature
yielding occurred for the rheological models where τ0 might
be over an order of magnitude of 102 Pa. Within the scope
of these tests, KR = 0.01 was a value that produced good
results consistently.

Numerical convergence for this group of tests was
obtained at approximately N = 180,000 or less, with lit-
tle, if any, influence on the proportion of nonlinear particles
present.Models with too few particles not only suffered from
lower accuracy, but premature yielding occurred more read-
ily. Care was also taken to check the convergence of both
the nonlinear and linear phases separately, although some
guidelines for convergence from the previous single-phase
test were useful to set expectations. As an example of con-
vergence rates for this group of tests, water and sand depth
profiles for varying resolutions used for the 50% silted-up
dam case can be seen in Figs. 10, 11, 12 and 13.

As a measure of the effect of parameters K and KR on
accuracy and consideration of any impact they may have on
stability, hydrograms showing the evolution of total depth at
certain dimensionless horizontal positions x/L as a function
of dimensionless time are shown in Figs. 14, 15 and 16 for
the case with 0.20 m of silt out of the total 0.30 m initial
dam depth. Parameter x is the distance measured from the
left tank wall, so position x/L = 1 is the location of the dam
gate, x/L = 0.5 is within the dammed fluid volume and x/L
= 1.7 is downstream relative to the gate.

This first set of results, which remains accurate for approx-
imately the first 2.0 s of physical time (dimensionless time td
= 12.5) according to the experimental data, also shows that
tuning parameter K has a limited effect on accuracy and can
even become the cause of numerical instability. Both of these
effects are to be expected, since if the HBP equation is used
too soon, say for values of K > 0.1, the apparent viscosity
μeff becomes high at low values of angular shear rate ε̇, in
accordancewithEq. (12). This large value of apparent viscos-
ity causes a stronger discontinuity close to the critical stage
wheremovement is imminent and can interact harmfullywith
the yield criteria or drive the timestep to an excessively small
value that is computationally impractical.

That is alsowhy smaller values of K producedgood results
even when below 0.001, where Eq. (12) led to lower apparent
viscosity values and therefore kept the evolution of viscous
forces gradual, so the model could rely on separate yield cri-
teria to properly model the effect of yield stress τ0. After
the threshold is met, no significant problems can be expected
to arise because the HBP equation, applicable to calculate
apparent viscosity, is smoother once movement has begun
because local yield stress has been surpassed. Adjustment of
threshold K ε̇ = 1 in Eq. (12) to different values results in
similar effects and interactions. Changing the value of K is
not equivalent to varying the threshold for K ε̇, but the effects
are similar and do not contribute differently to accuracy or
stability, at least when realistic values for density and viscos-
ity are used.

In every silted-up dam test case, no matter the initial silt
depth, similar behaviour in accuracy was observed, both in
terms of evolution in time and relative to the position. For
downstream positions like that of Fig. 16 and for later stages
in flow dynamics, say for dimensionless times td > 10, there
is an obvious delay of the waterfront arrival, mainly due to
the effect of a light artificial viscosity used on the linear phase
only to stabilize the scheme for longer simulation times. The
use of artificial viscosity is required to keep the nonlinear
phase stable and helps attenuate pressure fluctuations; this,
along with the application of the δ-SPH scheme and the par-
ticle shifting technique described above, results in a smooth,
almost hydrostatic pressure field, like that sampled in Fig. 17.
For other cases with different initial silt levels and for most
of the simulation time, pressure fields are just as smooth with
small local instabilities that quickly diminish.

Smooth pressure fields are a key accomplishment of the
proposed scheme and are essential to the successful function-
ing of the apparent viscosity equations. This is also linked
to a smooth angular shear rate field, preventing massive pre-
mature yielding of the nonlinear phase because of numerical
oscillations distributed through large portions of it. In the case
of a granular phase, this is even more important since yield
stress is a function of local pressure and even small fluctua-
tions in the pressure field will be transferred to the viscosity
field. This happens, for example, in the highly active area at
the gate location seen in Fig. 18 that provides a sample of the
viscosity field for an 80% silted-up dam.

Water depth hydrograms are an indirect indicator of the
amount of sand under that level, so nonlinear phase accu-
racy cannot be really evaluated unless it is compared directly
with the evolving silt depth, which was available with the
experimental datasets. The accuracy of the model for sand
depth profiles was similar among different initial silt depth
cases. The most demanding cases for the proposed method
were 50%, 66%, and 80% initial silt depths, and even so, the
results are very good. Figures19 and 20 plot sand profiles for
different significant instants for the cases with the least and
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Fig. 10 Convergence of water
profiles for 50% silted-up dam
at t = 1.0 s

Fig. 11 Convergence of water
profiles for 50% silted-up dam
at t = 2.0 s

the most sand. The latter case is not so important to evaluate
accuracy but rather to show that even when a relatively small
amount of nonlinear particles is present in the model, they
will still exhibit proper dynamics.

The above water depth plots include three groups of
results, generated using different values for numerical param-
eter K , which will act in accordance with threshold K ε̇ = 1
from Eq. (12) to obtain the value of the local apparent vis-
cosity. For this factor, many combinations of the threshold
of K ε̇ and the value of K were tested, and in general terms,
it was found that the scheme was stable for values K < 0.5
when the threshold value for K ε̇ was unitary. In this set of
tests, whenever K became too small (say, K < 0.001), it was
more difficult to keep the scheme from becoming unstable
as variations of apparent viscosity became sharper close to

small values of angular shear rate ε̇. It was also observed that
the higher the relative amount of nonlinear mass present in
the model, the better a stronger value of K was for accuracy.

These considerations imply that the other numerical
parameter, the relaxation factor KR , is constant and set at
0.01. This value, which produced good overall results, is safe
to use for the problem types studied here, but that does not
mean it will not interact negatively with other parts of the
scheme. A sensitivity analysis carried out with the case with
an 80% silted-up dam shows that the resulting hydrograms
for relevant test values of KR are plotted in Figs. 21, 22, 23
and 24 using a constant value of 0.01 for the apparent vis-
cosity constant K .

Just as it occurs with the effect of varying K , changing KR

has a greater impact for longer simulation times and in areas
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Fig. 12 Convergence of sand
profiles for 50% silted-up dam
at t = 1.0 s

Fig. 13 Convergence of sand
profiles for 50% silted-up dam
at t = 2.0 s

where there was no fluid, like position x/L = 1.7. Other test
cases with different initial silt depths replicated this general
behaviour, where it seems that even if the changing shape of
the silt bed is correctly replicated during thewhole simulation
time (as with this scheme) the waterfront is delayed. This
cannot be completely blamed on artificial viscosity, since this
was also the tendency during tests without activating that
particular stabilization scheme. Once the main dam break
event takes place, angular shear rate fields grow in mean
value through the water phase from the dam that fell onto the
wet bed section of the model.

Aside from these matters, values for KR outside of a
range of 0.1 to 0.005 resulted in inaccuracies because of
premature yielding or a need for nonphysically high values
of artificial viscosity to keep the scheme stable. Too low a

value, in the vicinity of 10−3, would not let the nonlinear
phase yield and instead would favour particle suspension and
mixing. Despite the fact that granular material can become
temporarily suspended in flow, certain conditions must be
met first, and one of the most important is enough speed; in
these cases, even with low speeds of the suspending phase,
with exceedingly low values of KR nonlinear fluid particles
became detached from the main mass and immediately lost
nonlinear behaviour, so it was actually more of an unnatu-
ral boundary diffusion process rather than actual suspension.
Another negative consequence of low values for KR was the
formation of unnatural cracks since the nonlinear mass does
not yield to shear at the interface because of the constraint
to the conservation equation. However, since the hydrostatic
load still is present, any small oscillation ruptures the con-
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Fig. 14 Water depth at
x/L = 0.5 for 66% silted-up
dam

Fig. 15 Water depth at
x/L = 1.0 for 66% silted-up
dam

tinuity and the nonlinear phase slowly collapses, with many
growing cracks perpendicular to the boundary with little or
no erosion processes present.

On the other hand, too high of a value for KR can yield the
nonlinear phase too soon because the conservation equation
lets initial fluid yielding occur at a fast enough rate so that
the threshold for angular shear rate is overcome. Since this
rate is what feeds the calculation of viscous shear stresses,
the yield criterion thenwill also be overcomewithout enough
of a chance to act upon particle dynamics. Other problems
arising when using high values for KR include interaction
with apparent viscosity constant K . If movement is difficult
to start, the field of angular shear rates will remain small,
and therefore apparent viscosity will grow across most of
the nonlinear phase, driving down the value of the timestep
required for numerical stability. With the values of physical

constants associated with these test cases, this sometimes
drove computational expense to impractical levels.

These constants were tuned using the test cases, but as the
above discussion and diagrams show, within certain ranges,
this scheme is not too sensitive to varying K or KR , so it
is reasonable to apply these recommended values to other
simulations in accordance to fluid type and the range of yield
stress τ0 where applicable. In summary, although it is enough
to use values for KR and K that are positive, nonzero and
under unity as to not violate conservation laws, the set of
tests used in this study resulted in the recommended values
shown in Table 2.

Good versatility is expected since the test cases include
violent interactions that come with any dam break. There are
erosive phenomena, and the nonlinear phase did not end up
artificially constrained but rather exhibited its own dambreak
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Fig. 16 Water depth at
x/L = 1.7 for 66% silted-up
dam

Fig. 17 Pressure field at t = 1.0
s (td = 6.3) for 80% silted-up
dam (K = 0.1; KR = 0.01)

Fig. 18 Viscosity field at
t = 1.0 s (td = 6.3) for 80%
silted-up dam (K = 0.1; KR =
0.01)

Fig. 19 Sand profile evolution
for 80% silted-up dam
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Fig. 20 Sand profile evolution
for 10% silted-up dam

Fig. 21 Water depth at
x/L = 0.5 for 80% silted-up
dam

Fig. 22 Water depth at
x/L = 1.0 for 80% silted-up
dam
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Fig. 23 Water depth at
x/L = 1.7 for 80% silted-up
dam

Fig. 24 Water depth at
x/L = 0.5 for 66% silted-up
dam

Table 2 Relaxation and viscosity factor value guide

τ0 KR K

Constant viscosity 0 1 –

Single-phase, nonlinear < 100 Pa 1 0.1

> 100 Pa 0.05–0.10 0.01

< 100 Pa 0.005–0.10 0.1

Two-phase, nonlinear > 100 Pa 0.005–0.015 0.01

> 10 kPa 0.005–0.010 0.01

dynamics. This variety of simultaneous types of behaviour
has not been previously solved with this type of scheme that
relies on an apparent viscosity scheme without recurring to
assigning elastic behaviour to the nonyielded phase. This in
turn is a satisfying development, since sand and silt in par-
ticular, and many real nonlinear fluids cannot exhibit elastic

behaviour at all, so including it in a numerical scheme can
introduce an entirely different type of inaccuracy.

In these multiphase cases, all numerical scheme com-
ponents contributed to a relevant extent to stability and
to smoothing data fields that are essential to maintaining
unyielded areas of the fluid stable, but the most important
change was the addition of the particle shifting scheme. This
part of the method alone did not guarantee stability, but it
certainly was a key factor for approaching a sufficiently ver-
satile composition of a method for a multiphase, selectively
yielding flow.

Another important contribution to good numerical
behaviourwas interface boundary treatment. For caseswhere
high apparent viscosity was present close to the interface
in the nonlinear phase, clumping and detachment of parti-
cle clusters were eradicated by updating state variables for
particle i using data only from neighbouring particles that
belong to the same phase as this particle. When applied to
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updating values of density, this prevented particle diffusion
among phases.

The variety of conditions that the scheme had to react
to in a stable manner without retuning numerical param-
eters means that it is robust enough to tackle many other
multiphase cases and expect similar accuracy and replica-
tion of erosive and scouring phenomena. Although other
approaches, like those using an equivalent elastic solid
for the nonyielded phase, or the formulation of a spe-
cially formulated interfacial layer of particles along the
yielded/nonyielded boundary, need to overcome similar chal-
lenges regarding stability and accuracy, this scheme provides
comparable performance with a relatively simple assembly
of proven SPH methods.

3.3 Method application insights

The scheme avoids using an elastic solid approximation for
the unyielded portion of the nonlinear fluid. When dealing
with nonconservative pseudosolids like a mass of granular
material that piles up due to friction forces between grains, a
nonelasticmodel not only is conceptually a better approxima-
tion but also will elude inaccuracies due to potential energy
storage and exchange that certainly do not occur in real gran-
ular masses with a high elastic modulus. This is the case for
soils, silt, and sand in a saturated state. Additionally, imple-
mentation is simpler as long as proper provisions are made
to deal with smoothing pressure fields and applying the yield
criteria at the right calculation stage.

Many studies have attempted the apparent viscosity
approach to model nonlinear fluids, among which are vis-
coplastic fluids; these pose stiff challenges, like themodelling
of the yielding process, that frequently causes researchers
to implement algorithms that vary according to the target
physical phenomena involved. In SPH schemes, using this
intuitively direct concept has led to the consideration of addi-
tional factors to modify the value of apparent viscosity, such
as weighted viscosity in mixed fluids, consideration of cohe-
sive forces, or the addition of artificially high viscosities at
low strain rates. Unfortunately, this approach alone has little
effect on controlling unnatural pressure field variations and
cannot deal with boundary effects that are harmful to the
numerical stability of relevant variables. Successful yield
point models often mean dealing with some sort of pseu-
dosolid model acting according to a yield criterion, like an
elastic solid model (SPH based or otherwise), a moving solid
boundary with a particle addition/subtraction algorithm, or
a particle refinement algorithm. Both elastic models with a
high apparent modulus (like those mentioned in [15]) or a
low apparent modulus (like that used in a colloidal suspen-
sion model in [53]) assume that the elastic energy will return
with continuum relaxation, something that does not occur in
granular flow where the discrete structure means dominance

of friction forces in the dynamics. Some of these solutions
involve algorithms that are complicated to implement, and
many others, while relatively simple, fail to handle noisy
data fields directly or cannot deal with a wide enough range
of values for realistic rheological models.

Like most computational schemes, in this model some
numerical parameters had to be added and tuned both for
accuracy and stability, but a sensitivity analysis revealed that,
for a certain family of cases, a recommended range can be set
with confidence. Among additional numerical parameters to
those pertaining to theweakly compressible SPHmodel is the
apparent viscosity factor K, that proportionally affects appar-
ent viscosity when angular shear rates are under a threshold
as required by [38] in his approach to dealing with zero angu-
lar shear rates in any rheological model. Among other minor
effects on data fields, higher values of K resulted in imprac-
tically small values for a stable timestep according to CFL
criteria. This does not interfere with the proper modelling
of fluid yielding, because high apparent viscosity is not used
here tomodel the yielding point. Yielding processes aremod-
elled using the selective application of the relaxation factor
KR to the conservation equation.

An essential finding of this study was that particle shifting
based on the Fickian approach proposed by [42] is extremely
important to ensure a smooth pressure field, and by exten-
sion, other data fields that are key to an accurate calculation
of apparent viscosity and application of the yield criteria. If
the particle shifting scheme is not used, in all cases studied
pressure fields started to fluctuate in a manner that, locally,
angular shear rates were high enough to yield the nonlin-
ear phase, although average strain in an area about five to
ten times the smoothing length was clearly below the yield
threshold. Therefore, if even a small section of the nonlin-
ear mass yielded, numerical oscillations artificially yielded
the whole mass, and using a higher apparent viscosity, tun-
ing conventional WCSPH numerical parameters or applying
other artificial viscosity stabilization techniques did not con-
tribute to accuracy. When attempted, either the fluid became
hyperstatic or slightly slowed premature collapse, but never
in a manner to achieve enough accuracy according to the
physical experimental data. This became worse for the mul-
tiphase cases with values of yield stress τ0 greater than 102

Pa, which are very common in sand and soil. However, parti-
cle shifting interferes with the modelling of erosion because
it tends to keep particles spaced close enough so that particles
expected to move with little to no effort, like grains of sand
on a vertical surface, actually remained coherent with the
unyielded mass as if it were composed of plastic clay. This
meant that proper modelling of the yielding process could
not be left only to the calculation of apparent viscosity, but
also needed to be reapplied elsewhere.

All work done with apparent viscosity must deal with
the impossibility of modelling nonzero yielding stress of a
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nonlinear fluid using viscosity alone. Since at zero strain
rate, viscous stresses will be zero no matter the value of
viscosity. Some approaches, such as forcing a minimum
nonzero strain rate, usually lead to other difficulties, includ-
ing incompatibility with higher values of yield stress and
limited accuracy. Therefore, in this scheme, a modification
of the yielded/unyielded treatment by [23] was applied, with
the additional benefit of being able to introduce the yield cri-
teria that will act after the application of the particle shifting
calculation step, so scouring and erosion will be modelled
properly.

When applying the yield criteria to the nonlinear phase, the
direct approach to assign zero acceleration to the unyielded
fluid particles was not suited to replicate the gradual col-
lapsing of a mass, and corners exposed to erosion tended to
destabilize pressure fields. For that reason, in the proposed
scheme the nonyielded fluid still evolves with the conserva-
tion equation but was attenuated by the relaxation factor KR ,
another numerical parameter that required initial tuning. This
provides a much smoother transition, numerically speaking,
at the interface between different fluids, where high differ-
entials in shear stresses are commonly encountered when
modelling scouring and other erosion processes. Just as with
the apparent viscosity factor K , a sensitivity analysis paved
the way to a recommended range for KR applicable to the
group of cases studied here.

In this scheme, another crucial element for goodnumerical
behaviour to prevent unnatural surface cracking or parti-
cle clumping was the selective updating of variables using
information only from neighbouring particles belonging to
the same phase. Nonphysical cracks and clumps can occur
where apparent viscosity was high and pressure fields fluc-
tuated. The solution was to omit data from particles of other
phases or virtual boundary particles explicitly during phys-
ical variable updating processes. This same process is used
as well when updating density to prevent diffusion among
nonmixing fluid phases.

High differentials in shear stressmagnitudes, such as those
appearing at the boundary between different phases, seem to
be among the main causes of noise in pressure fields. This
noise cannot be controlled using artificial viscosity schemes
without interfering with the very dynamics the viscosity
model attempts to replicate. Other, less pronounced physi-
cal discontinuities like differences in density among phases,
can also affect stability, but to a less significant extent.

4 Concluding remarks

A weakly compressible SPH scheme was developed suc-
cessfully to model multi-phase, dam-break physics that can
deal simultaneously with erosion and plastic collapse events,
including cases where yield stresses can change according to

local pressure. This requires the implementation of several
methodological extensions since the smoothing kernel alone
cannot keep data fields stable. The set of extensions used
in this scheme, therefore, work together to guarantee suffi-
cient numerical stability to replicate physically sound flow
behaviour that can be experimentally validated for a certain
set of cases.

The main contributions of this study were: (a) the inte-
gration of an SPH numerical scheme specifically designed
to model a yielding/nonyielding granular material without
approximating the unyielded mass to an elastic solid, avoid-
ing the implied storage of elastic energy; (b) applying yield
criteria to modify the response of the conservation equa-
tion, separately from the Particle Shifting Technique (PST)
algorithm, to ensure proper modelling of scouring; (c) iden-
tifying a PST technique that, under a variety of erosive
and flow dynamics, stabilizes pressure and strain fields to
prevent irregular apparent viscosity fields and to replicate
physical pressure distributions; and (d) validation of this
straightforward approachwith data frommultiphase physical
experiments that exhibit both nonlinear dam break collapse
processes and erosive phenomena.

Although a good amount of attention was given here to
the value of apparent viscosity and rheological models are
certainly important to simulation accuracy, the development
of this scheme was not centred on this variable, but on guar-
anteeing a smooth angular shear rate field, which does not
depend upon a single element of the model or even the tun-
ing of numerical parameters but on how all elements have
been integrated. Future developments, before looking for
completeness, must concentrate on keeping new elements
that help accuracy from introducing noise to the strain rate
fields, which was the central matter during the evolution of
the model described in this study.
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