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Abstract
A scalable matrix solver was developed for the moving particle hydrodynamics for incompressible flows (MPH-I) method.
Since theMPH-I method can calculate both incompressible and highly viscous flows while ensuring stability through physical
consistency, a wide range of industrial applications is expected. However, in its implicit calculation, both the pressure and
velocity must be solved simultaneously via a linear equation with a nondefinite symmetric coefficient matrix. In this study,
this nondefinite linear system was converted into a symmetric positive definite (SPD) system where only the velocity is
unknown. This conversion enabled us to solve the system with well-known solvers such as the conjugated gradient (CG)
and conjugated residual (CR) methods. For scalability, bucket-based multigrid preconditioned CG and CR solvers were
developed for the SPD system. To handle multidimensionality during preconditioning, an extended Jacobi smoother that is
even applicable in a nondiagonally dominant matrix system was proposed. The numerical efficiency was confirmed via a
simple high-viscosity incompressible dam break calculation, and the scalability within the presented case was confirmed. In
addition, the performance under shared memory parallel computations was studied.

Keywords Particle methods · Physical consistency · High-viscosity flows · Incompressible flows · Pressure–velocity coupled
approach · Multigrid method

1 Introduction

Particle methods can easily handle large deformations of free
surface flows compared to mesh methods such as the finite
volume method (FVM) because the motion of a continuum,
i.e., a fluid and a solid, can be directly expressed by parti-
cle movement. The representative particle methods are the
smoothed particle hydrodynamics (SPH) method proposed
by Monaghan [1] and the moving particle semi-implicit
(MPS) method proposed by Koshizuka et al. [2]. Although
they have been adopted in various applications, they require
empirical relaxations to obtain stable results (e.g., artificial
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viscosity [1], density smoothing [3–6], background pressure
[7], relaxation of the pressure Poisson equation (PPE) [2,
8–11], and particle regularization [12–16]). On the other
hand, the moving particle hydrodynamics (MPH) method
[17–22], which inherits the concepts of the SPH and MPS
methods, can conduct calculationswhile avoiding unphysical
instability, such as particle scattering, evenwithout empirical
treatments. This is because the stability with respect to par-
ticle motion is ensured through physical consistency in the
MPH method. When the discrete particle motion equations
can be fit into the analytical mechanical framework [23],
the system will be physically consistent. The MPH method
currently has two types, i.e., MPH for weakly compress-
ible flows (MPH-WC) [18] and MPH for incompressible
flows (MPH-I) [17]. In previous studies [17–20], the MPH
method was validated with various calculations, e.g., static
pressure [17, 18], dam break [17, 18], Taylor Couette flow
[19], high-viscosity free surface flow [19], droplet oscilla-
tion [20], liquid bridge [20], and Plateau–Rayleigh instability
[20]. Although it appears straightforward owing to its sim-
plicity, calculating the static pressure using particle methods
is not easy, as the static pressure calculation is easily affected
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by unphysical fluctuation. In fact, unrealistic results were
observed with the SPH and MPS methods [17]. However,
even in such cases, the physically consistent MPH method
could obtain the reasonable results [17]. In addition, Other
physically consistent particle methods, e.g., the elastic body
models proposed by Suzuki et al. [24] and Kondo et al.
[25], thin plate model by Kondo et al. [26], constraint-based
incompressible SPH model by Ellero et al. [27] and Hamil-
tonian MPS model by Suzuki et al. [28], have also been
proposed.

To simulate practically incompressible fluids such as
water, a very large bulk modulus must be employed. In
addition to the physical consistency, the constraint-based
incompressible SPH method proposed by Ellero et al. [27]
and the Hamiltonian MPS method proposed by Suzuki et al.
[28] could treat the incompressibility. However, to strictly
satisfy the geometric incompressible constraint, they must
solve nonlinear equations in symplectic algorithms [29], i.e.,
RATTLE and SHAKE. In contrast, the MPH-I method [17]
canpractically simulate incompressibleflowsonlyby solving
linear equations because it adopts a very large bulk modulus
and bulk viscosity instead of directly applying incompress-
ible constraints. Since it can treat not only incompressibility
but also high viscosity, it can be applied in various industrial
problems with respect to complex flows [30–32].

However, the arising linear equation in theMPH-I method
[17] has a nonpositive definite coefficient matrix when the
pressure and velocity are both treated as unknowns. There-
fore, convergence in solving the linear equation is not assured
when well-known solvers such as the conjugated gradient
(CG) and conjugate residual (CR) methods [33] are adopted.
In fact, the convergence is sometimes unstable in the MPH-
I method [17] when the CR solver is adopted. When the
coefficient matrix is symmetric positive definite (SPD), con-
vergence is ensured using the CG and CR solvers adopting
short recurrence for iteration. Therefore, the SPD linear sys-
tem is favorable in terms of both calculation efficiency and
stability. In the MPH-I method, a linear equation can be
converted to an SPD equation, whose unknowns are only
velocity, via pressure substitution [21]. Since the equations
before and after the conversion are mathematically the same,
the calculation will be faster without changing the results.
However, scalability is not achieved because the number of
iterations increases with the system size even when solving
the SPD system.

For large computations, it is important to develop a numer-
ical method whose calculation cost is linear to the problem
size. To obtain such a scalable feature, matrix solvers such as
the multigrid method [34–36] are needed. In particle meth-
ods, there are fewer studies adopting multigrid solvers than
the finite element method (FEM) or finite volume method
(FVM). Cummins and Rudman’s work [37] is a pioneer-
ing study. They applied a bucket-based geometric multigrid

(BMG) solver in an isolated manner to solve the pres-
sure Poisson equation in their incompressible SPH method.
In recent studies, multigrid methods were used as precon-
ditioners in Krylov subspace methods, e.g., the CG, CR
and GMRES methods. Algebraic multigrid (AMG) meth-
ods were adopted by Trask et al. [38], Chow et al. [39] and
Guo et al. [40] in the incompressible SPH method and by
Matsunaga et al. [41] in theMPSmethod. Geometric bucket-
based multigrid (BMG) methods were adopted by Sodersten
et al. [42] in the MPS method and by Takahashi and Lin [43]
in the incompressible SPH method. In addition, Sodersten
et al. [42] reported that the BMG solver was more effi-
cient in particle methods because the AMG solver needs to
be set up at every time step due to the dynamic change in
connectivity. In these multigrid solvers for particle methods
[37–43], only smoothers demanding diagonally dominant
matrix equations, e.g., Jacobi and Gauss–Seidel smoothers,
were adopted. Therefore, their applications were limited
to diagonally dominant systems, which are obtained when
difference-based Laplacianmodels are applied to the Poisson
equation or theHelmholtz equation. In thefinite pointmethod
(FPM),which is ameshlessmethod, Seibold [44] andMetsch
et al. [45] adopted the AMG solver. Metsche et al. [45]
applied a multigrid solver not only for the simple pressure
Poisson equation but also for the pressure–velocity cou-
pled equation, where pressure and velocity are both treated
implicitly. Although they successfully obtained solutions
in nonsymmetric, nondiagonally dominant, and nonpositive
definite systemswith the combination of theGMRESmethod
and AMGpreconditioning with a Uzawa smoother [46], they
noted that convergence was not assured due to the nonsym-
metric matrix. In addition, they reported that the calculation
time was dominated by the AMG setup time because the
point cloud in FPM dynamically changes. This implies that
the AMG setup time is not negligible when the connectivity
dynamically changes, as in the particlemethods andmeshless
methods.

Fortunately, the linear equation in theMPH-I method [21]
can be converted and will have the SPD feature even in the
pressure–velocity coupled approach. Therefore, the classic
multigrid preconditioned CG solver [47] is applicable. How-
ever, the coefficient matrix is not diagonally dominant due to
the complex connectivity andmultidimensionality, has many
nonzero elements corresponding to the neighboring particles,
and has a large condition number due to incompressibility
and large viscosity. To handle multidimensionality and het-
erogeneity [48, 49], a damped Jacobi smoother [34–36] is
often applied to relax the convergence. However, it is difficult
to set the damped parameter to ensure asymptotic conver-
gence in the problem where the connectivity dynamically
changes.

In this study, a scalable MPH-I method was developed.
It was shown that the SPD matrix equation can be derived
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via pressure substitution [21] and that the SPD feature gener-
ally appeared in physically consistent systems. For the SPD
matrix equation, geometric bucket-based multigrid (BMG)
preconditioned CG/CR solvers were constructed, and the
preconditioner was designed to satisfy the condition for theo-
retical convergence in a finite number of iterations. To handle
multidimensionality, the Jacobi smootherwas extended to the
one that is applicable for the nondiagonally dominant matrix.
To confirm the validity of the multigrid solver, the CG, CR,
multigrid preconditionedCG (MGCG) andmultigrid precon-
ditioned CR (MGCR) solvers were compared with respect to
the number of solver iterations and computation time. Specif-
ically, high-viscosity incompressible dam break calculations
were conducted with various resolutions. Furthermore, the
performance in the sharedmemory parallel computationwith
CPU and GPU were also investigated.

2 Moving particle hydrodynamics
for incompressible flows (MPH-I)

2.1 Governing equations and physical consistency

The governing equations in the MPH methods [17–22] are
the Navier–Stokes equation with a Lagrangian description

ρ0
du
dt

� −∇� + μ∇2u + ρg (1)

and the equation for pressure

� � −λ∇ · u + κ
ρ − ρ0

ρ0
, (2)

whereρ,u,�,μ, g,λ and κ are the density, velocity, pressure,
shear viscosity, gravity, bulk viscosity and bulk modulus,
respectively. Although these governing equations do not
directly include the incompressible condition, incompress-
ible flows can practically be expressed by setting λ and μ to
sufficiently large values. The expression inEq. (2) enables the
arising matrix equation to be SPD, which is discussed later.
In the MPH method, the governing equations are discretized
using particle interaction models, which is conceptually the
same as that in the SPH and MPS methods. Simultaneously,
for physical consistency, the interaction models are to be
chosen such that they can be fit into an analytical mechanical
framework [23]. In this study, the normalizedweight function

wi j � w(|ri j |)

w(r ) �
⎧
⎨

⎩

1
S

1
hd

(
1 − r

h

)2
(r ≤ h )

0 (r > h )

S �
∫
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hd

(

1 − r

h

)2

dv (3)

was used for discretization, where rij is the relative posi-
tion between particles i and j, h is the effective radius, i.e.,
the cutoff radius, andd is the number of dimensions. Here,
the effective radius for pressure term hp and the radius for
shear viscosityhv are separately given, and the corresponding
weight functions are denoted by w

p
i j and wv

i j , respectively.
The Navier–Stokes equation (Eq. (1)) is discretized as [20]

(4)

ρ0
dui
dt

�
∑

j

(� j + �i )ei jw
p′
i j

− 2μ(d + 2)
∑

j

(
ui j · ei j

)
ei j

wv′
i j

|ri j | + ρ0g,

where eij is the unit vector in the rij direction, � i and ui are
the pressure and velocity of particle i, and uij � uj-ui is the
relative velocity between particles i and j, respectively. The

right shoulder prime inw
p′
i j and wv′

i j indicates the differential
of the weight function

w′
i j � ∂w(|ri j |)

∂r
, (5)

which yields negative values. On the other hand, the equation
for pressure (Eq. (2)) is discretized as

�i � λ
∑

j

(
ui j · ei j

)
w

p′
i j + κ(ni − n0), (6)

where ni is a particle number density given by the summation
of the weight function wij

p as

ni �
∑

j

w
p
i j , (7)

and n0 is a base value of the particle number density.
In addition, Eqs. (4) and (6) can be fit into the extended

Lagrangian mechanics framework with dissipation [23]

d

dt

(
∂L
∂ui

)

−
(

∂L
∂xi

)

+

(
∂D
∂ui

)

� 0, (8)

L � T − V

where L, T , V and D are the Lagrangian, kinetic energy,
potential energy and Rayleigh’s dissipative function, respec-
tively. Therefore, the system in the MPH-I method is phys-
ically consistent [17, 20]. Specifically, when Lagrangian L
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and dissipative function D are given as

L �
∑
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(9)

and
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i j
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⎞

⎠, (10)

the discretized governing equations (Eqs. (4) and (6)) are
derived using Eq. (8). In Eqs. (9) and (10), m and �V are
the mass and volume of the particles, respectively, which are
given as constants

�V � ld

m � ρ0�V
(11)

using initial particle spacing l.
Although the particle interaction models appearing in the

physically consistent formulations (Eqs. (4) and (6)) are
zeroth-order accurate, the calculation model, i.e., the MPH
method, was validated in previous studies [17–21], for exam-
ple, via the static pressure calculation [17, 18], dam break
calculation [17, 18] and Taylor Couette calculation [19]. The
static pressure calculation is not always easy for particle
methods because it is sensitive to the unphysical fluctuation
that often appears in particle methods. Even so, the MPH
method could obtain reasonable results without any empiri-
cal relaxations in such a problem, where the classical particle
methods, i.e., the SPH and MPS methods, fail [17]. In addi-
tion, since the MPH method is purely a multibody system
defined via analytical mechanics [23], no special treatment
is needed for giving boundary conditions. Specifically, the
wall boundary can be easily expressed by putting fixed parti-
cles in the calculation domain, and the free surface boundary
is naturally given via the vacant space where particles do not
exist.

2.2 Linearmatrix equation in the implicit calculation

For practically simulating incompressible flows, the bulk vis-
cosity λ and bulk modulus κ are set very large. For setting κ ,
numerical stability is assured when the condition

κ ≤ λ

�t
(12)

is satisfied [17], where�t is the time stepwidth. This implies
that the bulk modulus κ can be set large when the bulk vis-
cosity λ is large. Therefore, the way to handle a large bulk
viscosity λ must be considered in the incompressible cal-
culation. In addition, to simulating high-viscosity flows, a
large shear viscosity μ must be calculated stably. For stabil-
ity with a large bulk viscosity λ and a large shear viscosity
μ, the velocity in Eqs. (4) and (6) is implicitly treated as

ρ0
uk+1i − uki

�t
�

∑

j

(�k+1
j + �k+1

i )ei jw
p′
i j

− 2μ(d + 2)
∑

j

(
uk+1i j · ei j

)
ei j

wv′
i j

|ri j | + ρ0g

(13)

�k+1
i � λ

∑

j

(
uk+1i j · ei j

)
w

p′
i j + κ(ni − n0), (14)

where the upper shoulder index k attached to the velocity ui
indicates the time step. Equations (13) and (14) form a linear
matrix equation whose unknowns are the velocity uk+1 and
pressure �k+1. By solving this matrix equation, the velocity
at the next step uk+1 is obtained, and by updating the particle
position x as

xk+1i � xki + uk+1i �t , (15)

the particle movement can be calculated. However, since
the linear system (Eqs. (13) and (14)) has a nondefinite
coefficient matrix, the convergence is not assured when the
well-known CG and CR solvers are applied [17]. In this
study, the system is converted to a system with a symmetric
positive-definite (SPD) feature by substituting Eq. (14) into
the pressure �k+1 in Eq. (13) as

ρ0
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�t
+ 2μ(d + 2)

∑
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)
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· eimw
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)

ei jw
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i j ,

� ρ0
uki
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+
∑

j

(
κ(n j − n0) + κ(ni − n0)

)
ei jw

p′
i j + ρ0g

(16)

where the unknowns are only the velocity uk+1 [21]. Since
this conversion mathematically retains the same equation,
it enables justifiably solving the system with CG and CR
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solvers without affecting the calculation results. The partial
differential version of Eq. (16) is obtained by substituting
Eq. (2) into Eq. (1) as

ρ0
du
dt

− ∇ · μ∇u − ∇(λ∇ · u)

� −∇
(

κ
ρ − ρ0

ρ0

)

+ ρ0g.
(17)

The partial differential equation to be solved (Eq. (17))
is more complex than the Poisson equation or Helmholtz
equation that were solved in previous studies [34–40], but
it is a kind of diffusion equation with respect to velocity.
Therefore, the discretized version is expected to be basically
diagonally dominant.

To obtain the SPD feature in Eq. (16), the formulation
of Eq. (2) is a key, and this approach is analogous to the
penalty method in the finite element method [50] which
was originally developed for structural calculations. In struc-
tural calculations, the Lagrangian is given with elastic strain
energy, and the motion equation is derived by minimizing
the potential energy. On the other hand, in fluid calculations
withLagrangian specifications, i.e., particlemethods, the dis-
sipative function is given, and the corresponding force in
the motion equation is derived by minimizing the function.
In structural calculations, the incompressible constraint can
practically be posed using a very large bulk modulus. This
is the penalty method with which the SPD feature can be
obtained. Analogically, in the particle methods, the practi-
cally incompressible calculation can be conducted with very
large bulk viscosity, λ in Eq. (2), and similarly, the SPD fea-
ture can be maintained with this approach.

Moreover, the SPD feature appeared in Eq. (16) gener-
ally arises in physically consistent systems. In the extended
Lagrangian mechanics with dissipation (Eq. (8)), Rayleigh’s
dissipative function must be positive definite. This allows the
dissipative function to be expressed as

D � 1

2
{u, Cu} (18)

using an SPD matrix C, where the vector u without a lower
index indicates a large vector unifying the velocity of all
particles, and the bracket {,} indicates the dot product of the
unified vectors. Using the matrix C, the motion equation of
the particles is expressed as

m
du
dt

� dL
dx

− Cu. (19)

When the velocity is treated implicitly,

( m

�t
I + C

)
uk+1 � m

uk

�t
+
dL
dx

(20)

is obtained. Since the coefficient matrix appears on the left-
hand side of Eq. (20) is SPD, it is proven that the SPD feature
will arise in arbitrary physically consistent systems that can
be fit into the analytical mechanical framework of Eq. (8).
Therefore, it is interpreted that the SPD feature in Eq. (16)
emerged owing to the physical consistency in the MPH-I
method.

3 Multigrid preconditioned CG/CRmethod

3.1 Generalized CG/CR algorithm

The CG and CR solvers, where the convergence is assured
with short recursive iterations whose number is smaller than
the degree of freedom, canbegeneralized as follows.Here, let
theweightmatrixM and the preconditioningmatrixK. Using
the initial solution x0, the residual r and search direction p
are initially given as

r0 � b − Ax0
p0 � Kr0, (21)

where the lower index indicates the iteration. Then, the solu-
tion x and residual r are updated

xk+1 � xk + αkpk
rk+1 � rk − αkApk (22)

with a parameter αk

αk � {rk , MApk}
{Apk , MApk}

, (23)

which is determined such that

{rk+1, MApk} � 0, (24)

Here, the bracket {a,b} indicates the dot product of unified
vectors a and b. Then, the conjugate vector p is updated as

pk+1 � Krk+1 + βkpk (25)

with a parameter βk

βk � −{AKrk+1, MApk}
{Apk , MApk}

, (26)

which is determined such that

{Apk+1, MApk} � 0. (27)

The iteration given by Eqs. (22)–(27) is repeated until
the L2 norm of the residual |rk |2 becomes small enough,
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i.e., the convergence. When the matrices M and MAK are
symmetric, the orthogonalities

{ri , MAp j } � 0 ( j < i) (28)

{ri , MAKr j } � 0 ( j �� i) (29)

{Api , MAp j } � 0 ( j �� i) (30)

are provided (see “Appendix A”). Using Eqs. (28)–(30), αk

and βk are rewritten as

αk � {rk , MApk}
{MApk , Apk}

� {rk , MAKrk}
{Apk , MApk}

(31)

and

βk � −{MAKrk+1, Apk}
{MApk , Apk}

� {rk+1, MAKrk+1}
{rk , MAKrk)} , (32)

which are often used in implementation. When the matrices
M and MAK are symmetric positive definite (SPD), the-
oretical convergence is assured (see “Appendix A”). This
generalized algorithm (Eqs. (21)–(27)) can generate specific
algorithms such as the CG and CR methods. For example,
the CG method is derived fromM � A−1 and K � I, the CR
method is fromM � I and K � I, the CGNR method [33] is
fromM� I andK�AT, and the CGNEmethod [33] is from
M� (AAT)−1 andK�AT. Furthermore, the preconditioned
CGmethod is equivalent to the case withM �A−1 andK �
KCG, and the preconditioned CR method is the case with M
� K � KCR. Therefore, theoretical convergence is obtained
when KCG and KCR are SPD because M and MAK will be
SPD in such cases.

It is noteworthy that the residual in the CG and precondi-
tioned CG methods is weighted by matrix A−1. In fact, the
weight matrix is specified as M � A−1 when deriving the
CG method. Consequently, the solution in the CG iteration
is updated such that {r,A−1r} is minimized using the search
direction p. This unintended weight may affect the conver-
gence. In fact, the convergence degrades, especially when the
condition number of A is large. On the other hand, in the CR
and preconditioned CR methods, the objective functions to
be minimized are straightforwardly expressed as {r, r} and
{r, KCRr}, respectively, which results in good convergence
properties, such as a monotonic decrease in the residual.

3.2 Bucket-based geometric multigrid
preconditioner

In this study, background bucket cells are utilized for con-
structing a geometric multigrid preconditioner for the CG

and CR methods. The algorithm of the multigrid precondi-
tioned conjugated residual (MGCR) solver is shown in Fig. 1.
To construct the multigrid structure, the bucket size is set the
same as the effective radius such that the range of the interac-
tion is limited to the next buckets. The linear equation in the
MPH-I method (Eq. (16)) has multidimensionality because
the unknowns are the velocities of particles. To restrict the
multidimensional vector of the particles to the finest grid,
i.e., buckets, the vectors of particles in the buckets are sim-
ply summed as

u0l �
∑

i∈l
ui , (33)

where the i and l on the lower right of u show the indices of the
particles and the buckets, respectively, and the upper index
0 of ul indicates that the parameter belongs to the finest grid
(level 0 in Fig. 1). Here, the restriction matrix corresponding
to Eq. (33) is denoted byR, and the prolongationmatrix from
the buckets to the particles P is given by its transpose as

P � RT . (34)

Then, the coefficient matrix in the finest grid scale A0 is
defined as

A0 � RAP, (35)

whereA is the coefficient matrix at the original particle scale,
which is expressed in Eq. (16). Furthermore, the coarser grids
are recursively created from the finer grids. In this study, the
size of the coarser grids is double that of the finer grids.
Specifically, the coarser grid consists of 4 finer grids in 2D
and 8 finer grids in 3D. The level of the grid is incremented
as the grid size is doubled (level 0: grid size � hv, level 1:
grid size � 2hv, level 2: grid size � 4hv, and so on). The
restriction from the finer grid (level r) to the coarser grid
(level r + 1) is simply given by the summation

ur+1l �
∑

s∈l
urs , (36)

where l and s on the lower right of u are the indices of the
coarser and finer grids, respectively. Using the restriction
matrix Rr, which corresponds to Eq. (36), the prolongation
matrix from level r + 1 to level r is given by

Pr � RrT . (37)

Then, the coefficient matrix Ar is recursively provided as

Ar+1 � RrArPr . (38)
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Fig. 1 Multigrid preconditioned conjugated residual algorithm

Using the geometric multigrid expressed by Eqs.
(33)–(38), a preconditioner for the CG and CR methods
satisfying the SPD condition is constructed. However, the
linear system to be solved in the MPH-I method is not diag-
onally dominant even at the coarse grid scale because of
multidimensionality. Therefore, the widely used smoothers,
e.g., the Jacobi and Gauss–Seidel smoothers, cannot directly
be applied because they demand diagonal dominancy. To
address this issue, the Jacobi smoother is extended to be
applicable even for nondiagonally dominant systems. In solv-
ing the linear equation

Ax � b, (39)

the Jacobi iteration is expressed as

xk+1 � xk + D−1(b − Axk), (40)

where D is the diagonal component of the coefficient matrix
A. In the extended Jacobi iteration, the diagonal matrix D
is replaced by another diagonal matrix D̂, whose elements

satisfy

D̂ii >
1

2

∑

j

|Ai j |. (41)

Then, the iteration is given by

xk+1 � xk + D̂−1(b − Axk). (42)

With this simple extension, asymptotic convergence will
be obtained even in a nondiagonally dominant system (see
“Appendix B”). In this study, the right-hand side of Eq. (41)
was simply adopted for calculating the elements D̂ because
it works when 2D̂ − A is not singular, which is satisfied in
most cases. Since the matrix equation in the MPH-I method
is a discretized version of the diffusion equation, it is close to
diagonally dominant. In such cases, this extension is useful.

In this study, the V cycle multigrid calculation was
included as a preconditioner of the CG and CR methods
(Fig. 1), and the extended Jacobi iteration was adopted
as a smoother in each level. It is better for the precondi-
tioner to skip smoothing at the original particle level, where
matrix–vector multiplication requires a large computational
cost. This is because the CG and CR solvers already have the
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main iterations in the original level, which are more efficient
than the smoothing iterations in the multigrid calculation,
i.e., the extended Jacobi iterations. Therefore, in this study,
the preconditioning matrix K was designed not to include
particle level smoothing as

K � D̂−1 + PM0R, (43)

where D̂ is the extended diagonal matrix defined in Eq. (41)
corresponding to the coefficient matrix A in Eq. (16), and
M0 is the matrix corresponding to the calculation at level
0. When the extended Jacobi iterations are conducted twice
in both pre- and postsmoothing in each level (Fig. 1), the
recursive relation between the matrices Mr and Mr+1

Mr � (Ar )−1 −
(
Ir − (D̂r )−1Ar

)2
(Ar )−1

(
Ir − Ar (D̂r )−1

)2

+
(
Ir − (D̂r )−1Ar

)2
PrMr+1Rr

(
Ir − Ar (D̂r )−1

)2
(44)

holds, where the upper right index of M indicates the level
(see “Appendix C”). In the maximum level, the extended
Jacobi iterations are conducted 4 times, and the matrixMmax

is expressed as

Mmax � (Amax)−1 −
(
Imax − (D̂max)−1Amax

)2
(Amax)−1

(
Imax − Amax(D̂max)−1

)2
. (45)

Here, the matrixMmax is SPD (see “Appendix B”). In the
same way, the sum of the first and second terms on the right-
hand side of Eq. (44) is SPD. When Mr+1 is SPD, the third
term in Eq. (44) is symmetric nonnegative definite. There-
fore, Mr is recursively SPD, and K is also SPD. Therefore,
K satisfies the condition to be a preconditioner for the CG
and CR solvers. Note that PM0R in the second term on the
right-hand side of Eq. (43) cannot solely be a preconditioner
because it is nonnegative definite but singular. Therefore, it
is combined with D̂−1 to construct a preconditioner.

4 Benchmark calculations

4.1 Number of iterations

The presented geometric bucket-based multigrid precon-
ditioner was implemented in the MPH-I methods, where
open-source code [22] was used. The calculations were
conducted using the multigrid preconditioned conjugated
residual (MGCR), multigrid preconditioned conjugated gra-
dient (MGCG), nonpreconditioned conjugated residual (CR)
and nonpreconditioned conjugated gradient (CG) solvers.
Specifically, the simple high-viscosity incompressible dam

t=0.0 s t=0.1 s t=0.2 s

L 0.02 m

Fig. 2 Dam-break calculation of a highly viscous incompressible flow

Table 1 Calculation conditions for the base case

Base case

Particle spacing (m) l 1/1 × 10–3

Time step width (s) Δt 1/1 × 10–3

Gravity (m/s2) g 10

Shear viscosity (Pas) μ 10

Bulk viscosity (Pas) λ 104

Bulk modulus (Pa) κ 106

Density (kg/m3) ρ0 103

Radius ratio (hv/l) 1.75

Radius ratio (hv/l) 3.5

Number of particles 400

break shown in Fig. 2 was calculated for a phenomenon time
of 0.2 s. The calculation condition for the base case is shown
in Table 1, and the scaled cases, whose particle spacing l
and time step width �t are 1/2, 1/4, 1/8,…,1/64 times the
base case, are shown in Table 2. In Table 2, only the dif-
ference from the base case (Table 1) is shown. In addition,
the diffusion numbers dλ and dμ, degrees of freedom DoFA,
approximated number of nonzero elements nnzA and approx-
imated condition numbers KA are displayed in Table 2. The
DoFA was calculated as a product of the number of fluid par-
ticles and the number of dimensions. The nnzA was estimated
as

nnzA ≈
{
DoFA × 2π (hv/l)2 (d � 2)
DoFA × 4π (hv/l)3 (d � 3)

(46)

using the approximated number of neighboring particles,
which is π(hv/l)2 in 2D and 4/3π(hv/l)3 in 3D. For the
rough estimation of KA, maximum and minimum eigen val-
ues �max and �min were predicted using

f (u) � ρ0

�t
u − (μ + λ)

d2u

dx2
, (47)

which is the 1D version of the left-hand side of Eq. (17).
In estimating �max, it was assumed that the discretization
in the MPH-I method is analogous to the finite difference
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Table 2 Calculation conditions for the scaled cases with various resolutions

Case x1 (base case) Case x1/2 Case x1/4 Case x1/8 Case x1/16 Case x1/32 Case x1/64

Particle spacing (m) l 1 × 10–3 1/2 × 10–3 1/4 × 10–3 1/8 × 10–3 1/16 × 10–3 1/32 × 10–3 1/64 × 10–3

Time step width (s)
Δt

1 × 10–3 1/2 × 10–3 1/4 × 10–3 1/8 × 10–3 1/16 × 10–3 1/32 × 10–3 1/64 × 10–3

Number of particles 400 1600 6400 25,600 102,400 409,600 1,638,400

dμ � μΔt/ρ0l2 1 × 10 2 × 10 4 × 10 8 × 10 16 × 10 32 × 10 64 × 10

dλ � μΔt/ρ0l2 1 × 103 2 × 103 4 × 103 8 × 103 16 × 103 32 × 103 64 × 103

DoF 800 3200 12,800 51,200 204,800 819,200 3,276,800

Nonzero count nnz
(approx.)

6.16 × 104 2.46 × 105 9.85 × 105 3.94 × 106 1.58 × 107 6.31 × 107 2.52 × 108

Condition number
KA (approx.)

5.21 × 101 2.05 × 102 7.95 × 102 3.00 × 103 1.08 × 104 3.57 × 104 1.06 × 105

Maximum level in
multigrid
calculation

2 3 4 5 6 7 8

discretization with a mesh size of hv(� 2hp). Equation (47)
was discretized as

f (ul ) ≈ ρ0

�t
ul − (μ + λ)

ul+1 − 2ul + ul−1

h2v
, (48)

and the maximum eigen value �max was approximated as

�max ≈ ρ

�t
+ (μ + λ)

4

h2v
. (49)

On the other hand, for predicting �min, the maximum
wavelength 4L which was determined from the calculation
geometry (Fig. 2), was focused on. By substituting a sine
wave with a wavelength of 4L

u(x) � sin
πx

2L
(50)

into Eq. (47),

f (u) �
[

ρ0

�t
+ (μ + λ)

( π

2L

)2
]

u(x) (51)

was obtained. Then, the minimum eigen value �min was
approximated as

�min ≈ ρ0

�t
+ (μ + λ)

( π

2L

)2
, (52)

and the condition number was predicted as

KA � �max/�min. (53)

The number of solver iterations at t� 0.2 s with respect to
the scaled cases (Table 2) is presented in Fig. 3. Here, only
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Fig. 3 Number of iterations in the scaled cases (Table 2)

the main iterations (Fig. 1) are counted with the convergence
threshold of |r|2/|b|2 < 10−12.When theCRandCGsolvers
were adopted, the number of iterations drastically increased
with the problem size.On the other hand,with theMGCRand
MGCG solvers, the increase in the number of iterations was
limited. Additionally, the number of iterations was smaller
with theMGCRandCR solvers thanwith theMGCGandCG
solvers, respectively. The objective function in the MGCG
and CG was unintendedly weighted by A−1 as {r,A−1r},
and it possibly affected the convergence.

The difficulty in solving the scaled cases shown in Table
2 is not only because of the problem size but also because of
the large diffusion numbers. Although the Courant numbers
in the scaled cases are the same as those in the base case, the
diffusion numbers dλ and dμ are larger than those in the base
case. For the comparison, the small cases shown in Table 3
were studied, and the problem size was set the same as that
of the base case, but the diffusion numbers varied to follow
each scaled case in Table 2. In Table 3, only the conditions
that are different from those of the base case (Table 1) are
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Table 3 Calculation conditions
for the small cases with various
diffusion numbers

dμ,dλ

x1
(base
case)

dμ,dλ

x2
dμ,dλ

x4
dμ,dλ

x8
dμ,dλ

x16
dμ,dλ

x32
dμ,dλ x64

Gravity (m/s2)
g

1 × 10 2 × 10 4 × 10 8 × 10 16 × 10 32 × 10 64 × 10

Shear
viscosity
(Pas) μ

1 × 10 2 × 10 4 × 10 8 × 10 16 × 10 32 × 10 64 × 10

Bulk viscosity
(Pas) λ

1 × 104 2 × 104 4 × 104 8 × 104 16 × 104 32 × 104 64 × 104

dμ �
μΔt/ρ0l2

1 × 10 2 × 10 4 × 10 8 × 10 16 × 10 32 × 10 64 × 10

dλ �
μΔt/ρ0l2

1 × 103 2 × 103 4 × 103 8 × 103 16 × 103 32 × 103 64 × 103
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Fig. 4 Number of iterations in the small cases with various diffusion
numbers (Table 3)

presented. By setting the gravity g and viscosities μ and λ,
which were 2, 4, 8,…64 times larger those of the base case,
only the diffusion numbers dλ and dμ were enlarged, while
almost the same flow as that of the base case was maintained.
The number of solver iterations at t � 0.2 s with respect to
the small cases (Table 3) is presented in Fig. 4. The number
of iterations is smaller with the MGCR and MGCG solvers
than with the CR and CG solvers, respectively. This implies
that multigrid preconditioning also suppresses the number
of iterations associated with large diffusion numbers. The
scaled cases (Table 2) and the small cases with the same dif-
fusion numbers (Table 3) are compared in Fig. 5. When the
problem size is large, the multigrid preconditioner contribu-
tion is large, and the number of iterations in the scaled cases
is kept smaller than that in the corresponding small cases. In
addition, it is confirmed that the MGCR solver shows better
scalability than the MGCG solver. Compared to the previous
studies [38, 42, 43], the numbers of iterations in this study
(Figs. 3 and 4) are relatively large. This is because the lin-
ear matrix equation in this study (Eq. (16)) is difficult to be
solve due to the nondiagonally dominancy, large number of
nonzero elements and large condition number (Table 2).
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Fig. 5 Comparison between the scaled cases (Table 2) and small cases
(Table 3)
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Fig. 6 Calculation time of a single thread computation with a CPU

4.2 Single CPU calculation

The calculation times for a single thread CPU (Xeon Gold
6252 (24 core)) computation are shown in Fig. 6, where the
results forCase x1~x1/8 inTable 2 are presented.Hereinafter,
the calculation times are shown with dividing by the num-
ber of particles and number of time steps for comparison,
and such calculati on times are referred to “unit calculation
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Fig. 7 Breakdown of the calculation time of a single thread computation
with a CPU

times”. The unit calculation times using theCRandCGmeth-
ods become larger as the problem size becomes larger. On
the other hand, when using the MGCR and MGCG meth-
ods, the unit calculation time is almost constant even for
large problems. This implies that the computational time
is proportional to the problem size and that the multigrid
methods are scalable. The breakdowns of the unit calcula-
tion times with the MGCR and CR solvers are shown in
Fig. 7. For each calculation, the whole computational time
is labeled “total”. For the MGCR solver, the time spent for
preconditioning is labeled “solver preconditioning”, and the
other time spent by the solver, which is mostly for the main
iteration, is labeled “solver main”. For the CR solver, the
time spent by the solver is labeled “solver” because there is
no preconditioning. Most of the calculation time was spent
by the solvers. In the single CPU calculation, the precondi-
tioning time was not dominant in all the time spent by the
MGCR solver. In the preconditioning stage, the most com-
putationally expensive matrix–vector product calculations in
the original particle level are avoided as in Eq. (43), and the
V-cycle only includes the product calculations in the coarser
level. Therefore, the amount of computation required for the
preconditioning is basically smaller than that for the main
iteration.

4.3 Parallel CPU and GPU calculations

The calculation times of the OpenACC parallel computation
on the GPU (A100 (80 GB)) are shown in Fig. 8, where
the results for Cases x1~x1/64 in Table 2 are presented. In
the relatively small cases with 400–6400 particles (Cases x1
~x1/4), the CR and CG methods were faster than the MGCR
andMGCGmethods, but in the larger cases with over 25,600
particles (Cases x1/16 ~), the multigrid methods were faster.
The breakdowns of the calculation timeswith theMGCR and
CR methods are shown in Fig. 9, where the legends are the
same as in Fig. 7. With both methods, the time spent by the
solvers dominated the total calculation time. Using the CR
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Fig. 8 Calculation time of a parallel computation with OpenACC and a
GPU
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Fig. 9 Breakdown of the calculation time of a parallel computation with
OpenACC and a GPU

solver, the unit calculation time against the problem size (CR
(total)) decreased once in the range of 400–102,400 parti-
cles (Cases x1 ~x1/16) and increased again in the range over
102,400 particles (Cases x1/16 ~). When the problem size
was large, the number of iterations dominated the computa-
tion time, and the increasing trend in the large cases reflects
the large number of iterations in the CR solver. When the
problem size was small, the overhead cost for paralleliza-
tion dominated the computation time. The straight decreasing
trends in the small cases were due to the overhead cost. Since
the overhead cost can be assumed to be almost constant, the
unit calculation time will be close to inversely proportional
to the problem size when the overhead cost is dominant.
With the MGCR solver, the unit calculation time (MGCR
(total)) linearly decreased in the range of 400–102,400 par-
ticles (Cases x1 ~ x1/16), and the decrease slowed down in
the range over 102,400 particles (Cases x1/16 ~). This indi-
cates that the overhead cost was dominant with 400–102,400
particles (Cases x1 ~ x1/16). According to the breakdown
of the total computational time with the MGCR solver, the
preconditioning time was larger with 400 –102,400 parti-
cles (Case x1 ~ 1/16), and the main iteration time was larger
with more than 102,400 particles (Case x1/32 ~). The unit
calculation time with respect to the main iteration (MGCR
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Fig. 10 Calculation time of a parallel computation with OpenMP and a
CPU using MGCR solver

(solver main)) linearly decreased in the range of 400–6400
particles (Case x1~1/4), and after the transition range of 6400
–102,400 particles (Case x1/4~x1/16), it became almost con-
stant in the range over 102,400 particles (Case x1/16 ~). On
the other hand, the unit calculation time with respect to the
preconditioning (MGCR (solver preconditioning)) linearly
decreased in the whole range, showing that it was domi-
nated by the overhead cost within all the presented cases
(Cases x1~x1/64). In addition, the unit calculation timeof the
MGCR preconditioning was larger than that of the MGCR
main iteration in the small cases where the overhead cost
is thought to be dominant. This implies that the overhead
cost of the preconditioning was larger than that of the main
iteration. This large overhead cost is the main reason why
the MGCR method showed lower performance than the CR
method in the small cases. However, the scalability of the
MGCR solver is expected when considering the extrapola-
tions in Fig. 9 toward larger cases with more than 1,638,400
particles (Case x1/64 ~). It was previously confirmed via
the single CPU cases that the preconditioning stage does not
need as much computation compared to that of the main iter-
ation. Therefore, the unit calculation time with respect to
the MGCR preconditioning stage decreases in larger cases
where the parallel efficiency is expected to be improved. In
addition, the unit calculation time of the MGCR main iter-
ation is already almost constant with over 102,400 particles
(Case x1/16 ~). Therefore, the MGCR solver is expected to
be scalable in larger cases, where the MGCR main iteration
time will dominate the total computational time.

A larger overhead cost is requiredwhen the number of par-
allel threads is larger. Since the parallel computation on GPU
(A100 (80 GB)) is highly parallelized, the overhead cost was
thought to be relatively large. To confirm the dependency on
the number of parallel threads, the cases in Table 2 are studied
with OpenMP parallel computations on a CPU (Xeon Gold
6252 (24 core)). The unit calculation times obtained with the
MGCR solver are shown in Fig. 10. The overhead cost was
dominant in the range where the straight decreasing trends
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Fig. 11 Calculation time of a parallel computation with OpenMP and a
CPU using CR solver

were found. With a larger number of CPU threads, the over-
head costwas larger, and it dominated the total computational
time in a wider range. In addition, the unit calculation time
was mostly constant in the sufficiently large cases where the
overhead cost was not dominant. This implies that the com-
putational time is proportional to the problem size and that
the numerical method is scalable when the problem size is
sufficiently large. In comparison, the unit calculation time
with the CR solver is shown in Fig. 11. A straight decreas-
ing trend was also observed in Fig. 11, but the overhead cost
and its dominant range were smaller than those in Fig. 10.
This is because the CR solver does not include precondi-
tioning where the large overhead cost is needed. In contrast
to Fig. 10, the unit calculation time in Fig. 11 increased in
the sufficiently large cases where the overhead cost was not
dominant. This is because the number of iterations in the CR
solver increases against the problem size.

Overall, in parallel computation, the multigrid solvers
(MGCR andMGCG) did not perform well in the small cases
due to the large overhead cost with respect to the precondi-
tioning stage, but they were efficient in the large cases where
the number of iterations mainly determines the total compu-
tational time.

4.4 Three-dimensional calculations

The trends observed in the above sections were almost the
same as those in the 3D calculations. Here, a simple 3D high-
viscosity incompressible dam break problem (Fig. 12) was
taken as an example. Based on the conditions in Table 1,
the calculation conditions in the 3D scaled cases are given
in Table 4. The calculations were conducted on a GPU
(A100 (80 GB)) with OpenACC applying the MGCR and
CR solvers. The number of solver iterations at t � 0.2 s
is shown in Fig. 13. While the CR method suffered from
a large number of iterations in the large cases, the MGCR
method could suppress the iterations even in the large cases.
The breakdowns of the unit calculation times are shown in
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t=0.0 s t=0.1 s t=0.2 s

Fig. 12 Dam-break calculation of a highly viscous incompressible flow
in 3D
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Fig. 13 Number of iterations in the 3D scaled cases (Table 4)

Fig. 14. Since the parallel efficiency of the preconditioning
was not good, the MGCR method was slower than the CR
method in the small cases. In contrast, the MGCR method
was faster in the large cases where the number of iterations
mainly determines the total computational time. This indi-
cates that the multigrid technique is useful for both 2D and
3D parallel calculations when the problem size is sufficiently
large.

5 Conclusion

In this study, a scalable MPH-I method was developed. A
derivation of the SPD matrix equation through pressure sub-
stitution [21] was presented, and additionally, it was shown
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Fig. 14 Calculation time in the 3D scaled cases (Table 4) computedwith
OpenACC and a GPU

that the SPD feature generally appears in a physically con-
sistent system by deriving it from the analytical mechanical
equation [23]. To solve the SPD matrix equation, a bucket-
based multigrid preconditioner was constructed such that
it satisfies the condition for application to the CG and CR
solvers. Moreover, to handle the complexity due to multi-
dimensionality, the extended Jacobi iteration, which is also
applicable for nondiagonally dominant matrix equations,
was proposed. In the benchmark calculations, the simple
high-viscosity incompressible dam break problemswere cal-
culated with the MGCR, MGCG, CR and CG solvers in both
2D and 3D. The number of iterations could be suppressed by
the multigrid solvers, and it was smaller with the CR solvers
than with the CG solvers regardless of the preconditioning
steps. Consequently, the MGCR solver showed the best per-
formance of the four, and the number of iterations hardly
depended on the problem size. In fact, the computational
time in the single CPU calculation was almost proportional
to the numbers of particles and time steps, and the scalabil-
ity was presented within the tested cases. The performance
of the multigrid solvers was also tested in parallel computa-
tions on a CPU andGPU. For the small problems, theMGCR
and MGCG solvers were slower than the CR and CG solvers

Table 4 Calculation conditions
for the scaled cases in 3D Case x2 Case x1

(base case)
Case x1/2 Case x1/4

Particle spacing (m) l 2 × 10–3 1 × 10–3 1/2 × 10–3 1/4 × 10–3

Time step width (s) Δt 2 × 10–3 1 × 10–3 1/2 × 10–3 1/4 × 10–3

Number of particles 1000 8000 64,000 512,000

dμ � μΔt/ρ0l2 1/2 × 10 1 × 10 2 × 10 4 × 10

dλ � μΔt/ρ0l2 1/2 × 103 1 × 103 2 × 103 4 × 103

DoF 3000 24,000 192,000 1,536,000

Nonzero count nnz (approx.) 1.62 × 106 1.29 × 107 1.03 × 108 8.28 × 108

Condition number KA (approx.) 1.31 × 101 5.21 × 101 2.05 × 102 7.95 × 102

Maximum level in multigrid calculation 2 3 4 5
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because of the large overhead cost in the preconditioning
process. However, they showed better performance than con-
ventional solvers for large problems, where the number of
solver iterations mainly determines the calculation time.
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Appendix A: Convergence of the generalized
CG/CR solvers

The algorithm expressed in Eqs. (21)–(27) will theoretically
converge within N iterations when solving a linear matrix
equation with N degrees of freedom when the matrices M
and MAK are symmetric positive definite (SPD). First, the
orthogonalities (Eqs. (28)–(30)) will be proven. Assume that
Eqs. (28)–(30) hold wheni,j < k. From Eq. (30),

{Api , MAp j } �
{

− 1

αi
(ri+1 − ri ), MAp j

}

� 0

{ri+1, MAp j } � {ri , MAp j } (A.1)

is derived with Eq. (22). Using the condition (Eq. (24)) for
determining αk,

{rk+1, MAp j } � {rk , MAp j } � {rk−1, MAp j }
� · · · � {r j+2, MAp j } � {r j+1, MAp j } � 0 (A.2)

holds in j < k + 1. Therefore, Eq. (28) is also satisfied when
i,j < k + 1. Because Eq. (25),

{rk+1, MAKr j } � {rk+1, MAp j − β j−1MAp j−1} � 0
(A.3)

under j < k + 1. Since MAK is symmetric,

{rk+1, MAKr j } � {r j , MAKrk+1} � 0. (A.4)

Therefore,

{ri , MAKr j } � 0 (A.5)

under Conditions i �� j and i, j < k + 1, and Eq. (29) is also
satisfied when i, j < k + 1. Using Eqs. (22) and (25), Eq. (30)
is deformed as

{Ap j , MApk+1}
�

{

− 1

α j
(r j+1 − r j ), MAKrk+1 − βkMApk

}

�
{

− 1

α j
(r j+1 − r j ), −βkMApk

}

� {Ap j , −βkMApk} � 0. (A.6)

With the condition (Eq. (27)) used for determining βk,

{Ap j , MApk+1} � 0 (A.7)

holds in j < k + 1, and with the symmetry of M,

{Api , MAp j } � 0 (A.8)

is derivedunder i �� j and i, j < k +1.Therefore, Eq. (30) is also
satisfied when i,j < k + 1. Then, Eqs. (28)–(30) are satisfied
recursively. Moreover, sinceM is SPD, it is expressed as

M � WTW (A.9)

with a nonsingular matrix W, and Eq. (30) will be

{WApi , WAp j } � 0 ( j �� i). (A.10)

Here, {WAp0,WAp1,…,WApk} form an orthogonal
basis for a k dimensional space, and the search vectors
{p0,p1,…pk} are linearly independent of each other. There-
fore, k linearly independent search directions are produced
by k iterations, but the number of linearly independent vec-
tors cannot exceedN in anN dimensional space. This implies
that theN dimensional space is all exploredwith theN search
directions, and the solver will find the exact solution at most
after N iterations.
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Appendix B: Extended Jacobi iteration

It is shown here that the extended Jacobi iteration (Eq. (42))
can obtain asymptotic convergence even in a nondiagonally
dominant matrix equation. Assume that the initial solution is
x0 � 0 in solving the linear matrix equation (Eq. (39)) having
a symmetric coefficient matrix A. With a matrix Q given by

Q � D̂ − A (B.1)

Equation (42) is written as

xk+1 � D̂−1b + D̂−1Qxk , (B.2)

and thematrixMexJ corresponding to the iterative calculation
is expressed as

Mex J � D̂−1 + D̂−1QD̂−1 + D̂−1QD̂−1QD̂−1

+ D̂−1QD̂−1QD̂−1QD̂−1 + ...

� D̂−1(D̂ +Q)D̂−1 + D̂−1QD̂−1(D̂ +Q)D̂−1QD̂−1 + ...

(B.3)

Since the matrix D̂ + Q � 2D̂ − A is symmetric and
diagonally dominant as

D̂ii + Qii >
∑

j

|Ai j | − Aii �
∑

j ��i

|Ai j | �
∑

j ��i

|D̂ii + Qii |,

(B.4)

it is symmetric positive definite (SPD). Consequently, MexJ

is also SPD. On the other hand, matrix MexJ can also be
written as

Mex J � A−1(I − (I − AD̂−1)k) (B.5)

using A−1 (see Appendix C). For Eq. (B.5) to be SPD, the
eigenvalues of (I − (I − AD̂−1)k) need to be positive, and
those of I − AD̂−1 need to be less than 1. Let qi and �i be
the eigenvectors and eigenvalues of I −AD̂−1, respectively.
An arbitrary vector z is expressed as

z �
∑

i

αi�iqi , (B.6)

Because

{z, A−1(I − (I − AD̂−1)k)z} �
∑

i

αi (1 − �k
i )

{qi , A−1qi } > 0, (B.7)

the eigenvalues �i < 1. This implies that the convergence
(I − AD̂−1)k → O and Mex → A−1 is obtained when k →
∞.

Appendix C: Matrix corresponding
to iterative calculation

The Jacob iteration, extended Jacobi iteration (Eq. (42)) and
multigrid calculation are generally expressed as

xk+1 � xk + Lk(b − Axk). (C.1)

For convergence, Lk must be a good approximation of
A−1. Specifically, in the Jacobi iteration, extended Jacobi
iteration and multigrid calculation, Lk s are given as

Lk � D−1

Lk � D̂−1

Lk � PMR, (C.2)

respectively, where P, R andM are the prolongation matrix,
restriction matrix and the matrix corresponding to the upper-
level calculation. Since the recursive formula (Eq. (C.1)) is
deformed as

b − Axk+1 � (I − ALk)(b − Axk), (C.3)

the iterative calculation with the initial solution of x0 � 0 is
expressed as

b − Axk � (I − ALk−1)(I − ALk−2)

· · · (I − AL1)(I − AL0)(b − Ax0)

� (I − ALk−1)(I − ALk−2)

· · · (I − AL1)(I − AL0)b

xk � {A−1 − A−1(I − ALk−1)(I − ALk−2)

· · · (I − AL1)(I − AL0)}b, (C.4)

and the corresponding matrix is

Mgen � A−1 − A−1(I − ALk−1)(I − ALk−2)

· · · (I − AL1)(I − AL0)

� A−1 − Z. (C.5)

Moreover, the second term Z in Eq. (C.5) is deformed as

Z � A−1(I − ALk−1) · · · (I − ALp)(I − ALp−1)...(I − AL0)

� (I − Lk−1A) · · · (I − LpA)A−1(I − ALp−1)...(I − AL0)

� (I − Lk−1A) · · · (I − LpA)(I − Lp−1A)...(I − L0A)A
−1.

(C.6)

When A is symmetric and

Lp � Lk−p−1 (C.7)
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for every p � 0,1,2,…k − 1,

Z � ZT (C.8)

holds, and Mgen will be symmetric.
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