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Abstract
Anovel discrete elementmethod-based approach formodeling of solid state sintering of sphericalmetallic powder is presented.
It tackles the interplay between the thermodynamical mass transport effects arising in the vicinity of the grain boundary
between the particles and their mechanical interaction. To deal with the former, an elementary model is used that describes the
behavior of the matter flow at the grain boundary such that neck growth and shrinkage are properly captured. Themodel solves
a set of partial differential equations which drive the changes of the corresponding geometry parameters. Their evolution is
transformed into the equivalent normal sintering force arising in each sinter neck. To capture the mechanical interaction of
particles due to their rearrangement resulting from the geometry changes of each individual contact, the entire assembly
is modeled as an assembly of 2-nodal structural elements with 6 degrees of freedom per node. The stiffness properties are
estimated employing the approximations from the bonded DEM. The numerical implementation then constitutes a two-step
staggered solution scheme, where these models are applied sequentially. The performed benchmarks reveal the plausibility
of the proposed approach and exhibit good agreement of both neck growth and shrinkage rates obtained in the numerical
simulations with the experimental data.

Keywords Sintering · Discrete element method · Finite element method · Modeling · Powder processing

1 Introduction

Multiple modern numerical techniques target simulation of
sintering process at different scales. Molecular dynamics
(MD) [1,2] ismost suitable for nanoscalemodeling of assem-
blies which contain very few particles. For handling larger
domains, continuous finite element method (FEM) models
based on the solid mechanics [3] or mass transport equations
[4] can be used. A substantial progress has been recently
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made in applying diffuse interface methods for sintering
simulations [5–7], thanks to their robustness and scalability.
They are based on Cahn–Hilliard and Alen–Cahn partial dif-
ferential equations [8,9] which describe the mass transport
processes of the matter and evolution of the phases. How-
ever, these are unable to capture properly shrinkage of an
assembly due to the absence of the advection terms. The
Wang’s approach [10] is the most common option to intro-
duce the densifying contributions into the phase-field partial
differential equations. Due to lack of rigorous physical or
mechanical theoretical foundation its practical usage is not
straightforward since an additional set of parameters, which
cannot be precomputed and may only be calibrated to fit the
experimental data [11], emerges. Toovercome this limitation,
an alternative approach based on zero grain boundary force
assumption has been recently derived [12]. Another limiting
factor for applying FEM models for large-scale simulations
is high computational costs. Though, with the aid of mod-
ern HPC computing, the phase-field models have become
more efficient [13], they still require substantial computa-
tional resources if one wants to perform a simulation of an
assembly of over a thousand of particles. Even if a modern
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cluster is at disposal, the energy costs should not be disre-
garded.

In comparison with the continuous FEM approaches,
the kinematic Monte–Carlo [14,15] and discrete element
methods are less computationally demanding for sinter-
ing simulations at mesoscale. The latter has intensively
evolved in the recent decades. The work of Jagota and
Dawson [16] introduced the basic concepts of this fam-
ily of models: The authors adapted the general particle
dynamics simulations of Cundall and Strack [17] for the
case of viscous micromechanical modeling of powder com-
pacts. The basic formulation assumed particles to have only
translational degrees of freedom and later was extended by
Jagota and Scherrer [18] to account for rotational effects;
thus, both forces and moments equilibrium are enforced for
each sphere. Being firstly derived for 2-dimensional parti-
cle packings, these approaches were later generalized for
3D cases [19]. Parhami and McMeeking [20] adopted the
ideas of Jagota, Dawson, and Scherrer to study the sintering
behavior of 3-dimensional random networks of crystalline
equisized powders. The underlying equations for the inter-
action of neighboring particles were developed by Swinkels
and Ashby [21] and Bouvard and McMeeking [22]. As was
exposed by Reidel et al. [23], the transport mechanism for
densification and creep of the sintering powder compact is
grain boundary diffusion that resulted in appearance of the
normal stress driving densification process. Svoboda and
Riedel [24] then further enhanced this idea balancing the
grain boundary fluxes by and surface diffusion mechanisms.
Requiring the normal stresses to be equilibrated by surface
tension at the neck, they obtained the solution of the twomass
transport equations that led to a linear relation between the
sintering force transmitted by a contact and the normal rel-
ative velocity of the particles. This expression was directly
used by Henrich et al. [25] in the DEM context. Dosta et
al. [26] have recently shown that this model can result in
very efficiently numerical implementations taking advantage
of superior performance of the modern CUDA-based codes
[27].

Martin et al. [28] enhanced the numerical method of
Parhami andMcMeeking introducinggrain coarseningbehav-
ior. An efficient contact detection strategy was also added in
their implementation. This model was later used to inves-
tigate which effects the presence of a substrate has on the
microstructure of the constrained sintered films [29]. Mar-
tin et al. [30] later validated the developed discrete element
method (DEM) framework using an in situ X-ray microto-
mography analysis of the sintered NaCl powder. Nosewicz et
al. [31,32] incorporated elastic interaction of particles in
addition to the viscous effects for DEM simulations of both
free and pressure-assisted sintering. Thanks to this enhance-
ment of the particles contact model, it became possible to
study sintering and postsintering residual stresses of parti-

cles collections [33]. Due to its elegance and efficiency, the
approach of Nosewicz et al. got a lot of attention among
the researchers: For instance, Iacobellis et al. [34] used it to
model sintering of ceramic composite materials (ZrB2–SiC),
Matsuda [35] enhanced it with independent evaluation of the
neck growth rate between two particles bymeans of the direct
integration of the diffusion equation.

Despite having superior performance over the phase-field
technique, DEM modeling of sintering still suffers from
high computational costs compared to macroscale contin-
uum mechanics-based models [3,36,37]. The need to use
contact detection procedures and application of explicit time
integration naturally limit computational efficiency of DEM
approaches and hence reduce the number of simulated par-
ticles. Furthermore, most DEM- based sintering models
employ the viscous model [20] in which a timestep decreases
with the evolutionof particle contact viscosity.The advantage
of DEM with respect to continuum mechanics formulations
(commonly implemented with FEM) is the capability of tak-
ing into account the particulate nature of the sinteredmaterial.
This does not explicitly enter continuummechanics rheolog-
ical models, thus complicated and sometimes questionable
assumptions on the structure of sinteredmaterial are required.
To take advantage of both worlds (rigor of the DEM-based
and performance of the continuum mechanics-based mod-
els), so-called multiscale formulations have been proposed.
These approaches combine the results along different scales
and have recently become efficient tools to model complex
thermo-mechanical phenomena like sintering. In this con-
text, Rojek et al. [38] applied their DEM model developed
earlier not to run the entire simulation of the particles assem-
bly but only to get its macroscopic properties (elastic and
viscous moduli) which are then supplied to a more perfor-
mance efficient continuum mechanics- based model. In its
turn, the DEM model itself used the diffusion properties
of material computed at the previous step using molecular
dynamics simulations. This toolchain was then extended to
the cases of pressure-assisted sintering by Nosewicz et al.
[39]. Another multiscale, so-called integrated microstruc-
ture model, has been proposed by Raether et al. [40] where
Monte–Carlo technique capturing diffusion processes was
coupled with particle-based simulations responsible for han-
dling rearrangements due to geometry changes.

A novel DEM staggered numerical scheme is presented
in the current work. It couples the numerical solution of the
solid state diffusion equations of individual contact pairs
with the discrete element modeling of the entire particles
assembly. The thermodynamically driven particles interac-
tion is described differently in comparison with the existing
approaches. The complete sintering interaction, i.e., mass
transport mechanism of grain boundary diffusion and sin-
tering driving force resulting from surface tension, in all
the aforementioned formulations relies on the derivations
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of Bouvard and McMeeking [22] obtained from Coble’s
assumptions [41] for the neck geometry, whereas the pro-
posed approach employs the elementary model derived by
Thomsen et al. [42] to quantify the mass transport effects
between the two particles resulting in local geometry changes
leading to rearrangementswithin the packing. To describe the
geometry of a contact pair, this formulation introduces 7 vari-
ables (degrees of freedom)whose evolution is represented by
the system of seven partial differential equations. According
to the number of unknowns, within the text, this model is
normally referred as the “7DOF model”. The approach of
Thomsen et al. relies on the assumptions introduced by Her-
ring [43] for the grain boundary diffusion mechanism which
also constitute the foundation of the Swinkels’ and Ashby’s
[21] expressions underlying the majority of the DEM sin-
tering models. Though being quite convenient, the derived
expressions of Bouvard and McMeeking [22] are strictly
valid only for equisized particles while the 7DOF model
underlying the proposed DEM approach has no such a lim-
itation. The use of the 7DOF formulation provides another
significant benefit: a simple and fast model calibration pro-
cedure. One can adjust the missing diffusion properties to fit
the experimental data using not the entire DEM assembly but
only the 7DOF model.

A cohesive bondmodel is adapted to describe themechan-
ical interaction between the particles. It is constructed such
that not only a DEM framework can be used but also a
structural FEM implementation can be designed in which,
instead of dynamics, a quasi-static equilibrium of the assem-
bly is analyzed allowing thus to avoid the use of explicit time
integration techniques. The latter provides large marching
timesteps that positively influences performance of numeri-
cal solutions.

Section 2 describes the basic concepts of the approach pro-
posed herein and its essential ingredients: the part responsible
for capturing the mass transport phenomenon, the method-
ology for converting its effects into the internal forces, and
the 2-nodal structural finite element that models mechanical
interaction of particles as an assembly of elastic links. The
details of the numerical implementation, such as the trans-
fer of variables values between the two steps of the solution
procedure, generation of the initial packing, and the time
marching strategies, are well presented in Sect. 3. The devel-
oped framework is then applied for numerical analysis of
sintering of copper and titanium powder particles in Sect. 4,
where the obtained results are compared with experiments.
Since third-party data may contain hard to track errors and be
subject to certain limitations not always explicitly disclosed
in the papers, it is desirable (but not always possible) to oper-
ate with personal highly reliable experimental results. Taking
advantage of having excellent research facilities at our center,
the titanium benchmark uses the experimental data obtained
previously [44] by our group for which all the conditions and

possible limitations are known. Finally, Sect. 5 summarizes
the model features and discloses the possible directions of its
further development.

2 Staggered numerical model

2.1 Basic idea

The model developed by Thomsen et al. [42] is capable to
simulate sintering of 2 particles only. To extend it applicabil-
ity to packings with large number of particles, the following
quasi-static DEM approach is proposed. Each individual par-
ticle is attached to a node having 6 degrees of freedom: 3
displacements and 3 rotations. The latter are represented by
the Euler rotation vector. The packing is then discretized as
an assembly of 2-nodal finite elements. Every contact pair
is represented by a set containing 2 structural elements of
different types. The first element wraps up the 7DOF model
whose governing equations are resolved individually for each
pair of particles thus describing the changes of geometry of
the latter as all the contacts were independent from the each
other. The results provided by the 7DOFmodel are converted
into the sintering forces generated at the bondswhich are then
applied to the nodes.

When operating as an interconnected system, the contact
pairs of the packing start acting on each other increasing or
decreasing shrinkage rates at different parts of the packing
due to mechanical interaction of particles via the growing
necks. To capture this phenomenon, a second element is
created for each contact pair. It estimates stiffness of the
sintering bond from the geometry of the contacting particles
and computes the reactive forces and moments arising at the
neck thus eliminating unphysical kinematic mechanisms in
the modeled packing. Contributions from both element types
are then added to the global force vector and tangent matrix,
and the obtained linear system of equations is solved in a
regular manner.

2.2 7DOF particles sinteringmodel

The sintering force is introduced with the aid of the 7DOF
model developedbyThomsen et al. [42,44].A short summary
is provided herein and the reader is referred to the afore-
mentioned works for more details. This model is based on
a simple but computationally efficient geometrical approach
of coupling the two particles via a pair of caps connected by
two cones representing the neck. Seven degrees of freedom
gathered in vector

Y = [
y1 y2 y3 y4 y5 y6 y7

]T
(1)
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Fig. 1 Two particles (7DOF) model

and shown in Fig. 1a are introduced in order to describe the
change of geometry of the contact pair due to the underly-
ing mass transport mechanisms. The time derivative of each
component yi of vectorY is related to the change of a specific
volume Vi of the pair of particles via the chain rule as

ẏi = dyi

dt
= dyi

dVi

dVi

dt
=

(
dVi

dyi

)−1 dVi

dt
. (2)

For solid state sintering, evaporation and condensation
mass transports can be neglected [45] and the current model
then captures (1) grain boundary, (2) surface, and (3) lattice
diffusion which are of the primary importance for the present
study. The complete set of possible diffusion paths arising in
accordance with this assumption is shown in Fig. 1b, and the
corresponding volume fluxes V̇i are summarized in Table 1.
These volume fluxes result in the following changes of the
specific regions of the model:

dV1

dt
= V̇I A + V̇I B + V̇I I A + V̇I I B + V̇I I I A

+ V̇I I I B + V̇I V A + V̇I V B, (3a)

dV2

dt
= − (

V̇V A + V̇V I A
)
, (3b)

dV3

dt
= V̇V A + V̇I V A − (

V̇I I I A + V̇I V A
)
, (3c)

dV4

dt
= − (

V̇I A + V̇I I A
)
, (3d)

dV5

dt
= − (

V̇V B + V̇V I B
)
, (3e)

dV6

dt
= V̇V B + V̇I V B − (

V̇I I I B + V̇I V B
)
, (3f)

dV7

dt
= − (

V̇I B + V̇I I B
)
. (3g)

It is assumed that the linear kinetic Fick’s law holds for
the defineddiffusionpaths.This introduces then linear depen-
dency between the density of the particle flux and the gradient
of the chemical potential μ. As pointed in [42], this general
form of the first Fick’s law, for which the driving force is
provided by the gradient of chemical potential rather than
the gradient of concentration (which is a more common for-
mulation), allows to compute the volume fluxes as

V̇i = −Ci�
Dn

kBT
∇μi , (4)

where � is the atomic volume, n the density of mobile
particles and Ci is the cross-sectional area related to the cor-
responding volume flux (see Table 1), kB is the Boltzmann
constant and T is the temperature. The diffusion coefficient
D is computed in accordance with the Arrhenius equation as

D = D0e− Q
RT , (5)

where D0 is the pre-exponential factor, Q is the activation
energy, and R is the gas constant.
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Table 1 Volume fluxes introduced in the two-particle model

Symbol Description of mechanism Approximation of cross-sectional areas

V̇I A, V̇I B Grain boundary diffusion from contact grain boundary to contact surface CI A = CI B = π y1δgb

V̇I I A, V̇I I B Lattice diffusion from contact grain boundary to contact surface CI I A = CI I B = 2

3
π y21

V̇I I I A, V̇I I I B Surface diffusion from neck to contact surface
CI I I A = π (y1 + h A) δs

CI I I B = π (y1 + hB) δs

V̇I V A, V̇I V B Lattice diffusion from neck to contact surface
CI V A = π (y1 + h A) lA

CI V B = π (y1 + hB) lB

V̇V A, V̇V B Surface diffusion from particle to neck surface
CV A = 2πh Aδs

CV B = 2πhBδs

V̇V I A, V̇V I B Lattice diffusion from particle to neck surface
CV A = 2πh AlA

CV B = 2πhBlB

To resolve system (3), quantitiesμi have to be detailed. In
general, the chemical potential is a partial derivative of the
Gibbs free energy G with respect to the number of atoms N
[43]:

μ = ∂G

∂ N
. (6)

For the i th region of the model this can be rewritten as

μi = ∂G

∂ Ni
= ∂G

∂Vi

∂Vi

∂ Ni
= ∂G

∂Vi
�, (7)

where the definition of atomic volume � = ∂Vi

∂ Ni
was sub-

stituted. The total free energy of the system for solid state
sintering is mainly determined by the evolution of interfacial
areas A and thus can be defined in the following form:

G = γs As + γgb Agb, (8)

assuming γs and γgb, the specific energies of the free sur-
face and the grain boundary, are constant over the respecting
interface regions. Substitution of (8) into (7) results in

μi =
(

γs
∂ As

∂Vi
+ γgb

∂ Agb

∂Vi

)
� (9)

which in liaison with (4) allows one to resolve system (3).
This set of equations can be integrated with any numerical
scheme suitable for first-order differential equations. In the
present work, the forth-order Runge–Kutta integration was
chosen.

2.3 Sintering force

At a given time ti , one can solve system (3) for each con-
tact pair within the packing independently and obtain new

positions of the centers of the contacting particles from vari-
ables y4 i and y7 i .However, these solutions donot account for
interactions of particles as an interconnected network of elas-
tic elements. To handle this, actions generated by the mass
transport mechanisms are converted into equivalent sintering
forces and then applied to the entire assembly of particles in
contactwise manner. To understand better these actions, one
can think of an assembly of bars subject to cooling. Being
cooled, individual bars contract resulting in appearance of
compression forces in different parts of the structure which,
as a whole, responds elastically to this loading. The current
case is very similar, only the source of compression forces is
different.

Likewise temperature-induced deformations can be con-
verted into compression loading, the same can be done with
sintering driven geometry changes. To do this, an equivalent
bar of length L0 having uniform cross section A [46,47] is
introduced as shown in Fig. 2. The axial force in the bar is
computed from its axial deformation�L using the following
classical expression [48]:

Fn = E A�L

L0
(10)

with E being the Young’s modulus. The initial length of the
bar is nothing but the distance between the centers of the
particles at the initial configuration t0:

L0 = y4 0 + y7 0 ≈ y2 0 + y5 0 = RA + RB, (11)

where RA and RB are the initial radii of the particles:

RA = y2 0, (12a)

RB = y5 0. (12b)
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RA RB

x3
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Fig. 2 Replacement of the two particles with an equivalent bar of con-
stant cross section

Compression is computed from the solution of system (3) as

�L = (y4 0 + y7 0) − (y4 i + y7 i ) . (13)

The cross-section area of the equivalent bar is given by

A = π R2
m, (14)

where Rm is the arithmetic mean of the radii of contacting
particles:

Rm = y2 i + y5 i

2
. (15)

Given that at the earlier stage of sintering, which the 7DOF
model is applicable to, regardless of the intensive growth
of the neck, the radii of particles do not exhibit significant
changes, the following simplification can be made for the bar
geometry:

Rm = RA + RB

2
, (16)

which barely alters the stiffness of the elastic element. It is
then convenient to rewrite

Fn = π

2
E Rm�L. (17)

The equivalent bar shown in Fig. 2 whose cross section is
defined by (14) and (15) is a common option [47] for bonded
DEM simulations and has proved to provide good agreement
with experimental data in the context of fracture mechanics.

Expression (17) converts the changes of geometry induced
in each contact pair by the mass transport mechanisms into
the normal compression forces that can be deemed at this
stage as external loading. To obtain response to this action, a
special 2-nodal elastic link is described in the next section.

A B

LA

RA

RB

x3

LB

e1

x1

x2

e2

e3
A

lA 0 lB 0

Fig. 3 Two-nodal element representing bonded spherical particles

2.4 Cohesive bonding

A cohesive bond model is now introduced to capture the
mechanical interaction between the particles. The approach
proposed by Potyondy and Cundall [46] for modeling of
cement joints has been presently adopted. According to this
formulation, the contact pair is perceived as rigid spheres,
whose centers are attached to nodes A and B as shown
in Fig. 3, connected via an elastic link. The element local
Cartesian coordinate system with unitary vectors e1, e2, e3
is placed at the center of particle A and x3-axis is directed
toward the center of particle B.

Elastic link at the particles grain boundary has tensile,
shear, bending, and torsion stiffness. Therefore, the following
small relative deformations arise at the bond:

1. ε1, ε2—shear displacements,
2. ε3—tensile displacement,
3. γ1, γ2—bending rotations,
4. γ3—torsional rotation.

These quantities can be gathered in the vector of local defor-
mations

ylink =
[
ε

γ

]
, (18)

having

ε = [
ε1 ε2 ε3

]T
, (19a)

γ = [
γ1 γ2 γ3

]T
. (19b)

Local deformations at the bond are obtained from nodal
displacements uA, uB and rotations θ A, θ B . The latter are
represented by the Euler rotation vector [49]. Displacements
vector ε can be derived from the element kinematics repre-
sented in Fig. 4. From the scheme one can easily write the
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Fig. 4 Kinematics of the sintering pair element

following vector identity:

l A 0 − l B 0 = uA + l A − ε − l B − uB, (20)

where vectors

l A 0 = L A 0e3 = y40e3, (21a)

l B 0 = −L B 0e3 = −y70e3 (21b)

describe the distance from the particles center to the grain
boundary center. At the deformed configuration they are
rotated to new positions

l A = QA l A 0, (22a)

l B = QB l B 0. (22b)

The rotation tensors QA and QB are computed by the Euler–
Rodrigues formula [50]:

Q = I + h1 (θ)� + h2 (θ)�2, (23)

where the identity second-order tensor I , the trigonometric
functions

h1 (θ) = sin θ

θ
and h2 (θ) = 1

2

(
sin θ/2

θ/2

)2

(24)

and tensor � were introduced. The latter simply is the skew
symmetric cross-product matrix of the vector θ , i.e., � =
skew (θ).

Expression (23) and, therefore, identity (20) are valid for
arbitrarily large rotations. However, the rotations of the par-
ticles are rather small during sintering of realistic powder
packings.Moreover, if an incremental approach is chosen for
implementation (which is the case for the current work), the
necessity of handling arbitrary rotations is even less impor-
tant as within a given timestep rotations can be considered
small even if the structure undergoes large motions during

the entire simulation process [51]. In this case, the higher-
order term can be omitted in (23) and identity (20) can then
be simplified leading to a neat formula for computing the
displacements at the bond:

ε = uA − uB + �Al A 0 − �B l B 0

= uA − uB − LA 0θ A + LB 0θ B,
(25)

where LA 0 = skew (l A 0) and LB 0 = skew (lB 0). Local
rotations at the bond in this case are then evaluated by

γ = θ A − θ B . (26)

The link state vector ylink can be then extracted from the
nodal displacements of the element with the aid of

ylink = H y, (27)

where

y =

⎡

⎢⎢
⎣

uA

θ A

uB

θ B

⎤

⎥⎥
⎦ (28)

and

H =
[
I −LA 0 −I LB 0

O I O −I

]
(29)

with O being are a zero second-order tensor.
The reactive forces and moments arising at the bonding

link are introduced as vector

P link =
[
Flink

M link

]
(30)

consisting of

Flink = [
F1 F2 F3

]T
, (31a)

M link = [
M1 M2 M3

]T
. (31b)

The constitutive relation between ylink and P link [46] is
defined as

P link = K link ylink, (32)

where the local stiffness matrix of the bond has been intro-
duced:

K link =
[
K F

KM

]
(33)
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with

K F = 1

L0

⎡

⎣
G A

G A
E A

⎤

⎦ , (34a)

KM = 1

L0

⎡

⎣
E I

E I
G J

⎤

⎦ , (34b)

as frequently done in cohesive DEM approaches [52]. Here
shear modulus

G = E

2 (1 + ν)
(35)

is computed from elasticity modulus E and Poisson’s ration
ν; A, I , and J are the area, moment of inertia, and polar
moment of inertia of the bond cross section. These are given
in accordance with the proposal of Potyondy and Cundall
[46] for the 3D version of the cement bond as

A = π R2
m, (36a)

I = 1

4
π R4

m, (36b)

J = 1

2
π R4

m, (36c)

where Rm is computed using (16). Stiffness coefficients (33)
are constant anddonot account for the growthof the neckdur-
ing sintering.However, as demonstrated by further numerical
simulations (see Sect. 4), even such a simple choice renders
the results which are in good agreement with the experi-
mental data. Of course, more complex and accurate forms of
K link can be proposed which is the prospect of the authors’
future work. The plausibility of the adopted simplification
has also beenpreviously investigated in [46]where itwas suc-
cessfully applied for multiple numerical simulations whose
results were verified by experiments.

The local force Flink and moments M link arising at the
bonding link are now transferred to nodes A and B by ana-
lyzing equilibrium of each particle within the contact pair. As
can be seen from Fig. 5, the following static relations hold
for particles A and B:

FA = Flink, (37a)

M A = M link − l A 0 × Flink, (37b)

FB = −Flink, (37c)

MB = −M link + l B 0 × Flink (37d)

A
B

z

x

y

FA −F link

F link

M link

−M link

lA 0

lB 0

MA
MB

FB

Fig. 5 Static equilibrium of the sintering pair element

which, after all the forces and moments are gathered in a
single vector

P =

⎡

⎢⎢
⎣

FA

M A

FB

MB

⎤

⎥⎥
⎦ , (38)

can be written in compact notation as

P = HT P link (39)

and even further simplified with the aid of (27) and (32):

P = HT K linkH y (40)

This expression allows instant computation of the element
nodal forces and moments directly from the nodal displace-
ments and rotations and can be readily implemented in any
finite element framework. Expression (40) does not con-
tain any nonlinear contribution which is the result of the
previously made assumption regarding the displacements
and rotations remaining small within a given timestep. This
means that the entireDEMstep is linear that positively affects
the simulation time.

Note that the possibility of bonds breakage during sinter-
ing is not considered in the proposed model as these events,
even if they happen, are negligible in comparison with the
number of growing necks thanks to homogeneity and rela-
tively high density of initial packings.

3 Implementation details

The model was prototyped in KRATOSMultiphysics frame-
work [53] and then reimplemented in the in-house deal.ii
[54]-based code. The results presented further are obtained
using the latter implementation.
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3.1 Correction of the inter-particles shrinkage

After performing the DEM step, the positions of the centers
of particles of the j th contact pair differ from values y4 i

and y7 i of the corresponding vector Y j at time ti and the
latter have to be updated accordingly. To this end, the axial
compression of the entire contact pair is computed as

ξ3 = (uA − uB) · e3, (41)

which is then appended to values of y4 and y7 obtained at the
previous timestep as

y4 i = y4 i−1 + �y4 i

�y4 i + �y7 i
ξ3, (42a)

y7 i = y7 i−1 + �y7 i

�y4 i + �y7 i
ξ3, (42b)

where quantity ξ3 is distributed between y4 and y7 propor-
tionally to their initial contributions to shrinkage at time ti :

�y4 i = y4 i−1 − y4 i , (43a)

�y7 i = y7 i−1 − y7 i . (43b)

The alteration of the distance between the centers of particles
of a given contact is then given by

�Li = y4 i + y7 i − y4 i − y7 i . (44)

The isotropic shrinkage observable macroscopically during
sintering implicitly introduces the homogeneity of densifi-
cation inside a sinter body provided the contact pairs are
randomly oriented. This means that for assemblies contain-
ing a large number of particles, quantity (44) should have
Gaussian distribution.

3.2 Generation of initial packings

Discussion on the generation of initial packings for subse-
quent sintering simulations [25] itself could become a topic
of an independent paper. An extensive study of this question
is out of scope of the present work and a single quite sim-
ple but yet efficient approach to generate green bodies with
initial relative density of ≈ 60% is proposed.

The generation procedure has to provide an isotropic con-
figuration with irregular, realistic distributions of particles
having relatively low porosity. The algorithm developed by
Nosewicz et al. [55] fulfills these requirements and there-
fore is adopted herein with minor modifications. The main
challenge at this stage is to provide such initial stress-free
configuration of spherical particles that would have the max-
imum green density. Within the present work, the initial

compact was constructed with the aid of DEM technique
implemented in software package Yade [56]. At the initial
step, a facet box is created and then a cloud of particles whose
radii have predefined distribution around themean valuewith
the specified dispersion is generated inside. To this end, Yade
function “makeCloud()” is used and by default it generates
a uniform distribution of particles radii. However, a custom
distribution, for instance, directly from experimental data,
can be provided via its additional parameters.

Once the particles cloud has been generated, gravity is
applied then along the x3-axis such that all particles fall
down to the lower part of the box. After equilibrium has been
reached, the plane perpendicular to the x3-axis is placed over
to the uppermost particle of the compact covering the entire
packing. Small constant velocities are then applied to this
plane and to the other two planes perpendicular to it and to
the remaining axes of the coordinate system performing thus
triaxial compression of the packing until the relative density
of ≈ 60% has been reached. Homogeneity of packings
obtained with the aid of the proposed procedure will be ver-
ified further in the benchmark.

3.3 Solution procedure

The previous sections disclose the key components of the
proposed numerical model. Once they have been derived,
the complete solution procedure can be assembled and its
summary is presented as flowchart in Fig. 6. At the first step,
the initial packing is generated and the kinematic boundary
conditions are imposed as described in Sect. 3.2. Then the
time loop is launched. At the beginning of each timestep,
the packing is checked for appearance of new contacts. The
7DOF model is solved then for each j th contact pair per-
forming a single Runge–Kutta step delivering new values of
vector Y j as an output. This data is used to compute the sin-
tering forces as detailed inSect. 2.3 and theNewton–Raphson
DEM solution step is executed thereafter. Once the step has
been solved, the components of vectors Y j are updated as
explained in Sect. 3.1. If the final time is not yet reached,
another timestep is initiated.

In order to speed up computations, time control is intro-
duced. Timestep �ti is adjusted such that the optimal
accuracy is reached at the Runge–Kutta integration step. Two
slightly different strategies, reflected in Fig. 7, can be pro-
posed to this end. According to the first one, theRunge–Kutta
solution of system (3) is performed for all the contact pairs
and then the integration error for each of them is computed.
If the desired tolerance is not reached at least for a single
pair, the results for all the contacts are rejected, timestep �ti
is reduced as

�ti = �ti
α

(45)
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Generate initial packing (DEM solution)

Impose kinematic boundary conditions
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(step detailed in Figure 7)

Compute sintering forces

Solve DEM problem

Update y4 and y7 of the 7DOF
model for each contact pair

ti < tend

End

no

yes

Fig. 6 Solution procedure of the proposed approach

and the step is repeated. If the accuracy is reached with some
margin, i.e.,

max
n=1,N

εn < 0.1εlim, (46)

then the next timestep can be increased by a factor of α:

�ti+1 = α�ti . (47)

This strategy ensures that both Runge–Kutta and DEM steps
of the algorithm are solved with the highest possible accu-
racy. However, this approach inevitably suffers from frequent
significant reductions of the timestep once a new contact pair
has been detected. This happens since the growth of the neck
between the two particles is particularly intensive when the
contact has just been initiated. In order to capture the neck
evolution at this very early stage, the timestep size has to be
small enough and only then can be gradually increased pre-
serving the accuracy. According to this algorithm, it turns out
that themost recently detected contacts compromise the com-
putational performance limiting the timestep globally for the
entire packing while most of the contact pairs (those already
having relatively large necks) could be handled with much
larger �t .

An alternative approach preserves the global timestep and
it instead subdivides �ti separately for each nth contact
pair when system (3) is solved. The global timestep size
is increased via (47) if the number of contact pairs which
required subdivision to meet the desirable integration accu-
racy is below 5% and decreased using (45) if this number
exceeds 15%. The thresholds values can be varied to achieve
an optimal ratio between computational speed and accuracy.
The performance and reliability of the two strategies are
assessed later in the subsequent section.

To allow the DEM step to be marched with a rela-
tively large timestep, a Newton scheme is applied for the
mechanical model to find its equilibrium. This means that a
linear system of equations has to be solved at each iteration
that requires the corresponding tangent matrix to be well-
conditioned. To ensure its invertibility, certain kinematic
boundary conditions have to be imposed on the particles
assembly to prevent its spatial rigid body motions. To this
end, those particles touching the principal planes Oxy, Oxz,
and Oyz of the global coordinate system are constrained to
remain on them during the simulation. In practice, specimens
usually lie on a horizontal surface that also thanks to fric-
tion fixes them from sliding during sintering. Keeping this in
mind, the proposed boundary conditions correlate well with
reality: One of the three planes can be deemed as a horizontal
foundation while the other two prevent rigid body motions
of the particles assembly in the corresponding directions.

4 Numerical benchmarks

4.1 Numerical simulations of copper sintering

At first, numerical simulations of copper sintering are per-
formed to study the essential features of the proposed model.
The benchmark is inspired by the thorough study performed
by Thomsen et al. [42] in analyzing the experimental data
of Kingery and Berg [62] and Wilson and Shewmon [63] in

123



Computational Particle Mechanics (2023) 10:185–207 195

Choose
time

marching
strategy

Increment global time:
ti = ti−1 + Δti

Initialize contact
number n = 1

Solve 7DOF model

n ≤ N

Is
accuracy
reached
for all
contact
pairs?

Reduce global

timestep: Δti =
Δti

α

n + +

Increase global
timestep: Δti = αΔti

if maxn=1,N εn < 0.1εlim

Initialize contact
number n = 1

Set local timestep:
tnk−1 = ti−1,
Δtnk = Δti

Increment local time:
tnk = tnk−1 + Δtnk

Solve 7DOF model n + +

Is
accuracy
reached?

Reduce lo-
cal timestep:

Δtnk =
Δtnk

α

Update local time:
tnk−1 = tnk

Increase local timestep:
Δtnk = αΔtnk

if εn < 0.1εlim

tnk < ti

n ≤ N

Go to DEM solution

strategy 1

no

yes

yes

no

strategy 2

no

yes

no

no

yes

yes

Fig. 7 Solution strategies for solving the 7DOF model at a given time ti with timestep �ti
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Table 2 Material properties of
copper

Symbol Meaning Value

Vm Atom volume 1.18 × 10−29 m3 [57]

γgb Grain boundary free energy 0.55 J/m2 [58]

γs Surface free energy 1.78 J/m2 [58]

Db Bulk diffusion prefactor 6.2 × 10−5 m2/s [59]

Qb Bulk diffusion activation energy 207 kJ/mol [59]

δgb Grain boundary thickness 0.69 nm [42]

δs Surface thickness 0.23 nm [42]

Ds0 Surface diffusion prefactor 7.0 × 106 m2/s [42]

Qs Surface diffusion activation energy 370 kJ/mol [42]

Dgb0 Grain boundary diffusion prefactor 2.7 × 1011 m2/s [42]

Qgb Grain boundary diffusion activation energy 500 kJ/mol [42]

ns Concentration of mobile atoms at the surface 0.2 [42]

ngb Concentration of mobile atoms at the grain boundary 0.1 [60]

E Young’s modulus 72 GPa [61]

ν Poisson ratio 0.3 [61]

(a) Initial configuration, t = 0 s. (b) Final configuration, t = 5000 s.

0.023 0.024 0.025 0.026 0.027

radius, mm

Fig. 8 Packing of 805 copper particles

order to get the grain boundary and surface diffusion coeffi-
cients of copper. Thematerial properties obtained therein and
adopted currently are summarized in Table 2, elastic parame-
ters for the corresponding sintering temperature are extracted
from [61] by means of further extrapolation. Since in our
model only the Poisson’s ratio affects the deformation of the
particle composite, an arbitrary value could be assumed for

the Young’s modulus. The latter could be explicitly removed
from the corresponding formulas if the two structural ele-
ments described in Sects. 2.3 and 2.4 were mathematically
merged in a single expression.

A nearly cubic packing of dimension 0.5× 0.5× 0.4 mm
shown in Fig. 8a containing 805 particles having mean diam-
eter 50 µm with dispersion 0.1 is sintered at temperature
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Fig. 9 Segmentation of a packing along the given axis for computing
the relative density variation
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Fig. 10 Variation of the relative density of the packing of 805 copper
particles along axes x, y, z for segment width qs = 0.025 mm

T = 1293 K for 5000 seconds. To check if the obtained
initial packing homogeneous, the relative density along the
three global axes x, y, z was analyzed. To this end, over each
of the axes the packing was divided into a number of equal
laminae of length qs as shown in Fig. 9 and the relative den-
sity for each of them was computed as the ratio between the
sum of volumes of the particles segments inside the lamina
and the volume of the lamina itself:

ρrel s = Vparticles s

Vlamina s
. (48)

As can be seen from Fig. 10, where the variation of this quan-
tity along the three axes is presented, the density is quite
uniform and does not vary a lot in different directions across
the packing. The drops of the density at the edges is explain-
able since there more voids are located between the particles.

One should not be confused with the final configuration of
the packing in Fig. 8b: though it is quite similar to the initial
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(a) Strategy 1, with detection of new contacts.
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(b) Strategy 2, with detection of new contacts.
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(c) Strategy 1, without detection of new contacts.
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Fig. 11 Shrinkage of the cubic packing of the copper powder particles
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Fig. 12 Comparing timestep for the two solution strategies for the sin-
tering simulations of the cubic packing of the copper powder particles
(with detection of new contacts)
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Fig. 13 Average neck growth within the cubic packing of the copper
powder particles

one, by looking carefully at the axes it is possible to observe
that the particles assembly densifies. Confirming this visual
observation, Fig. 11 shows the shrinkage values of the pack-

ing along the 3 axes

(
�L1

L10
,

�L2

L20
,

�L3

L30

)
and compares

them with the change of the distance between the particles

centers
�L

L0
obtained for a simple 2 particles systemusing the

7DOF model previously calibrated using the data from the
particle row experiments from [62]. As seen from the plots in
Fig. 11, the curves for the 3 directions agree with each other
(that indirectly confirms the homogeneity of the generated
initial packing) and also with the reference data. The existing

difference arises due to the generated assembly of particles:
In a spatial packing there are balancing interactions that do
not exist in a row [64] where the overall change in length is
just the sum of all center approaches. This explains why the
shrinkage of the cube is lower than the shrinkage determined
on the basis of the two-particle model or the experiments
with particle rows. As will be shown in the next numerical
benchmark, where the comparative data comes from experi-
ments with spatially packed particles, the densification along
the corresponding axis approaches the reference values.

Even if the graphs show that the formation of new con-
tacts during sintering significantly increases densification,
Fig. 11c demonstrates that quite accurate results can be
already obtained even if detection of new contacts is disabled
during numerical analysis. Such rapid preliminary simula-
tions can provide a rough idea about the packing behavior
which can be helpful when performing large number of batch
parametric computations.

It is worth to compare the two strategies for timemarching
at theRunge–Kutta stepdescribed inSect. 3.3. It turns out that
the first and the second strategies provide very close results
while the latter is almost two orders of magnitude faster than
the former (1 h vs.≈100hon an IntelCore i7–8550U laptop).
The reason of the drastic drop of performance for the first
strategy can be seen in Fig. 12 exposing the change of the
timestep size over the simulation process. The timestep can
hardly reach its maximum possible value since whenever
a new contact is detected, �ti is automatically reduced to
meet the accuracy requirements. Note also that for the second
strategy the maximum possible timestep is adjusted to be
of an order of magnitude lower than for the first strategy,
which is �tmax = 10 seconds, in order to avoid situations
when numerous new contacts appear within a single solution
step that could have introduced additional error in capturing
properly the interplay between the contacts. Note, that as
can be seen from Fig. 13, neck growth is less sensitive to the
choice of the time marching strategy.

4.2 Numerical simulations of titanium sintering

As a second benchmark, numerical simulations reproduc-
ing the experimental data of Thomsen et al. [44,65] for pure
titanium are performed with the proposed technique. The
samples are sintered using different heating profiles summa-
rized in Table 3. As can be seen from the table, the particles
sizes do not vary significantly across the experiments, so a
single packing having mean diameter 64 µm is chosen for
numerical simulations in order not to repeat the packing gen-
eration step and save computational time. This assumption
will introduce a bit more noticeable error for experiment
E25B which was conducted for specimens having a larger
mean diameter of the particles. The generated packing has
normal distribution of particles diameters and reproduces the
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Table 3 Temperature profiles and the average particle diameters of the experiments

Exp. ID Average particle diameter (µm) Tmax (K) dT / dtheat (K/min) dT / dtcool (K/min) tTmax (min)

E1B 67.5 1203 20 -20 0

E2B 66.2 1203 20 -20 30

E3B 63.6 1203 20 -20 90

E4B 66.0 1203 20 -20 120

E5B 66.3 1203 20 -20 180

E6B 67.2 1203 50 -50 0

E7B 65.3 1203 50 -50 30

E8B 66.3 1203 50 -50 60

E9B 64.1 1203 50 -50 90

E10B 64.7 1203 50 -50 120

E11B 65.4 1373 20 -20 0

E12B 66.5 1373 20 -20 30

E13B 66.5 1373 20 -20 60

E14B 66.6 1373 20 -20 90

E15B 67.6 1373 20 -20 120

E16B 65.8 1373 50 -50 0

E17B 66.4 1373 50 -50 30

E18B 66.0 1373 50 -50 60

E19B 65.3 1373 50 -50 90

E20B 65.0 1373 50 -50 120

E21B 64.1 1573 20 -20 0

E22B 66.2 1573 20 -20 30

E23B 66.2 1573 20 -20 60

E24B 64.8 1573 20 -20 90

E25B 73.4 1573 20 -20 120

E26B 68.9 1573 50 -50 0

E27B 67.1 1573 50 -50 30

E28B 66.5 1573 50 -50 60

experimental data as explained in Sect. 3.2, see Fig. 15. The
generated packing shown in Fig. 14a contains 3619 particles
and has the dimensions of 0.75× 0.75× 1.5 mm in order to
check how the model works when the assembly is not cubic.
For performance reasons, it was decided to stick to the aspect
ratio 1:1:2 and not to go above that.

The properties of titaniumused in the simulations are gath-
ered in Table 4. The basic atomic properties of titanium and
its surface and grain boundary energies along with the bulk
diffusivity were taken from the literature. Surface and grain
boundary diffusion prefactors and activation energies were
identified by the authors in the previous work [65]. To this
end, experimental data for the settings from Table 3 was used
to calibrate the 7DOF model. Shrinkage of the entire sample
was measured simply by micrometer screw. To obtain neck
growth, specimens were broken and the fracture surfaces
of the sinter necks were measured using scanning electron
microscope. A simple particle swarm optimization algorithm

followed by the gradientmethodwas applied to adjust the dif-
fusion coefficients for surface diffusion and grain boundary
diffusion simultaneously for the 7DOF model to reproduce
the experiments. To account for the phase transition of pure
titanium at 1156K, the properties are switched from α-phase
to β-phase once the corresponding temperature has been
reached.

The Young’s modulus was set E = 57 GPa and the Pois-
son ratio ν = 0.39 as investigated in [66]. This data is
provided for β-titanium at temperature T = 1273 K. Due
to lack of data regarding elastic properties of α-titanium,
Young’s modulus and Poisson ratio for this phase are said to
be the same as for the β-phase.

As has just been mentioned, at low temperatures sintering
process is not intensive and the neck growth and shrinkage
evolution can be hardly observed. For this reason, the parts
of the heating curve with temperatures lower than 793 K are
truncated as shown in Fig. 17 in order to save computation
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(a) Initial configuration, t = 0 h. (b) Final configuration, t = 100 h.
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Fig. 14 Packing of 3619 titanium particles
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(b) Numerical simulation.

Fig. 15 Distribution of particles diameters in the experiments and numerical simulation
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Table 4 Material properties of titanium

Symbol Meaning α-phase β-phase

Vm Atom volume 1.76 × 10−29 m3 [57] 1.81 × 10−29 m3 [67]

γgb Grain boundary free energy 0.3 J/m2 [68] 0.184 J/m2 [68]

γs Surface free energy 2.05 J/m2 [69] 2.05 J/m2 [69]

Db Bulk diffusion prefactor 17 × 10−9 m2/s [70] 19 × 10−8 m2/s [71]

Qb Bulk diffusion activation energy 192.8 kJ/mol [70] 152.8 kJ/mol [71]

δgb Grain boundary thickness 0.78 nm [44] 0.78 nm [44]

δs Surface thickness 0.26 nm [44] 0.26 nm [44]

Ds0 Surface diffusion prefactor 213.14 m2/s [44] 3.9 × 10−2 m2/s [44]

Qs Surface diffusion activation energy 161.2 kJ/mol [44] 205.2 kJ/mol [44]

Dgb0 Grain boundary diffusion prefactor 2.12 × 10−10 m2/s [44] 50.98 m2/s [44]

Qgb Grain boundary diffusion activation energy 20.5 kJ/mol [44] 221.0 kJ/mol [44]

ns Concentration of mobile atoms at the surface 0.2 [42] 0.2 [42]

ngb Concentration of mobile atoms at the grain boundary 0.1 [60] 0.1 [60]

E Young’s modulus 57 GPa [66] 57 GPa [66]

ν Poisson ratio 0.39 [66] 0.39 [66]

0 50 100 150 200

500

1 000

minutes

T
,
K

full heating profile (experiment)
reduced heating profile (numerical simulation)

Fig. 16 Heating profile

time in the numerical simulations. Indeed, as can be seen in
Fig. 17, where the neck growth and shrinkagewere computed
for 2 particles of diameter 66.6 µmwith the aid of the 7DOF
model for the complete and truncated heating curves, such a
deviation from the conditions of the original experiment is
acceptable. The blue curves in Fig. 17 were offset along the
x-axis by 24 minutes so that the results for the 2 different
heating profiles could be visually easily compared.

Figure 18 exposing neck growth and shrinkage at the end
of the sintering process shows that the results of numerical
simulations agree well with the experimental observations.
One can notice that the behavior of theDEMmodel presented
in Sect. 2 is strongly dependent on the underlying 7DOF
model, as expected. Indeed, the 7DOF model can be cali-
brated alone firstly and then the obtained material diffusion

properties can be directly used for analysis of large packings
performed with the particles-based approach. Therefore, if
the calibration step is not perfectly accurate (see larger devi-
ations of shrinkage for experiments E23B, E24B, and E25B
in Fig. 18b), the DEM model also suffers from this.

Good agreement is achieved not only for the final con-
figurations but also over the entire time integration process.
To demonstrate that, one of the experiments, E14B, is cho-
sen for more detailed analysis. Figure 19 plots the evolutions
of neck growth and shrinkage of the packing along the x3-
axis for the numerical integration performed with the second
time marching strategy having the detection of new contacts
enabled. The curves are nearly indistinguishable from those
obtained by means of the 7DOF model for a simple 2 parti-
cles system. It is assumed that the narrow distribution of the
particle size in the specimen is even necessary for the good
agreements of the experimental data from particles collec-
tions with the simulation results from the 2-particle model.
The fact that mechanical coupling used here nevertheless
has an effect is illustrated by the histogram in Fig. 20. It
shows the occurring deviations of the changes of the individ-
ual particle distances in the assembly from the changes of the
distances previously calculated in each case with the 7DOF
model demonstrating thus how the correction of variables
y4 i and y7 i described in Sect. 3.1 performs. The distribu-
tion of quantity �Li computed for each j th contact at the
selected timestep ti = 30 min is normal besides the very few
outliers, as expected, confirming thus the plausibility of the
proposed mechanism of coupling the thermodynamical and
mechanical effects.

Having possibility to track during numerical analysis an
individual particle and its neighborhood, one can compute

123



202 Computational Particle Mechanics (2023) 10:185–207

0 3000 6000 9000 12000
0

0.1

0.2

0.3

time, s

r N
/
r A

(a) Neck growth.

0 3000 6000 9000 12000
0

0.01

0.02

time, s

Δ
L

/
L

(b) Shrinkage.

full heating profile reduced heating profile

Fig. 17 Comparison of results obtained with the aid of 2- particle model for the full and reduced heating profiles
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Fig. 18 Comparison of neck growth and shrinkage from simulation results and experimental data. The error bars represent the respective measure-
ment uncertainties during the evaluation of the samples
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Fig. 19 Results of the numerical simulations of experiment E14B: comparison of the 2-particle and DEM models

the relative density of the assembly as the ratio between the
sum of the volumes of the particles and the volume occupied
by the packing:

ρrel = Vparticles

Vpacking
. (49)

The corresponding curve is plotted in Fig. 22a for the case
when the packing presented in Fig. 14a was sintered at tem-
perature T = 1373 K for 100h instead of using the heating
profile fromFig. 16, the obtained final configuration is shown
in Fig. 14b. Qualitatively, the curves exhibit the same behav-
ior as demonstrated by neck growth and shrinkage in Fig. 19.
Note that with the current model, it is hardly possible to
advance significantly further than the relative density of 0.8
due to the geometric restrictions of the 7DOFmodel andgrain
growth effect becoming more influencing on the densifica-
tion process at the later stages of sintering. This phenomenon
is currently not captured by the developed model.

Thedensification effect canbe also clearly seen comparing
microstructures in Fig. 21 for the initial and final configu-
rations. The images are obtained building a cross-sectional
plane passing through the mass center of the packing and
having a normal vector n = (1, 0, 0).

If new contacts are detected during numerical analysis,
the evolution of the particles’ coordination number nc aver-
aged over the entire packing can be also captured as shown in
Fig. 22a. The dependency of the coordination number from
the increase of the relative density plotted in Fig. 22b is close
to linear that agreeswellwith the experimental studies of geo-
metrical structure of disordered sphere packings performed
by Aste et al. [72].

−1 −0.5 0 0.5 1
·10−3

0

2

4

ΔLi, μm

%

Fig. 20 Distribution of corrections of quantities y4 i and y7 i within the
packing at time t = 30 min for experiment E14B

5 Conclusion and discussion

The novel staggered quasi-static DEMscheme for simulating
the early stage solid state sintering of metallic powder com-
pacts has been presented. The proposed approach consists of
the two main models capturing mass transport and mechan-
ical phenomena independently with connections between
them.

Diffusion behavior is tackled independently for each con-
tact pair by the elementary 7DOF model of Thomsen et al.
[42]. It takes into account the interplay of different transport
mechanisms (lattice, surface, and grain boundary diffusion)
to carefully capture neck growth and centers approach for
an interacting pair of particles. The effects resulting from
the corresponding changes in geometry are then converted
into the equivalent forces which drive the compaction of the
packing.
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(a) Initial configuration, t = 0 h. (b) Final configuration, t = 100 h.

Fig. 21 Microstructure at the cross-sectional plane with normal vector n = (1, 0, 0) passing through the central point of the packing of 3619
titanium particles
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Fig. 22 Analysis of densification of the titanium packing containing 3619 particles
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To capture the mechanical interaction of particles within
the entire packing, the latter is represented as an assembly of
structural finite elements replacing each contact pair by an
elastic link. Translational and rotational degrees of freedom
are defined per particle thus both force and moment equi-
libria are enforced. The link introduces local tensile, shear,
bending, and torsion stiffness at the contact point of the two
particles. To obtain the corresponding stiffness coefficients,
the approximations used in the bonded DEM are employed.
These relations setting up dependency between various stiff-
ness components and the contact pair geometry are simple
but yet efficient and render the formulation that is able to pro-
vide the numerical results which are in good agreement with
experiments. However, this ingredient of the entire model
can be improved with a more accurate description of the
mechanical behavior of each pair of particles. For instance,
stiffening of the grain boundary region due to neck growth is
not accounted for in the present implementation.Besides that,
the geometry details of the contact pair are currently hidden:
The two spheres and the bond between them is effectively
replaced by an equivalent bar with constant cross-sectional
profile.

The underlying 7DOF model, thanks to its simplicity, can
be relatively easy calibrated to fit the existing experimen-
tal data if some diffusion properties of a given material are
absent, as described in [42] and later demonstrated in [44].
The obtained coefficients can be directly used in the proposed
formulation without any further modification and rescaling.

The plausibility of the proposed model as well as the
plausibility of the basic assumption of an instantaneous
mechanical equilibrium, introduced by the same authors in
[12], was demonstrated with the numerical benchmarks for
both constant temperature and realistic varying heating pro-
file. The obtained results for neck growth and shrinkage agree
well with the existing experimental data for the early stage
sintering of copper and titanium powder compacts.

The numerical solution procedure resembles a two-step
staggered scheme, where at first the mass transport equa-
tions are resolved for each contact pair and then the particles
rearrangement is obtained as the result of the arising sintering
forces. The presented implementation is particularly efficient
and is able to perform simulations of assemblies containing a
few thousands particles even on an averagemodern computer
within a reasonable amount of time. Sincemass transport and
mechanical behaviors are handled independently, the ther-
modynamical part of the model can be easily extended. For
instance, mixtures of particles made of different materials or
containing various impurities can be naturally treated. In this
case, this information is accounted for each contact pair via
its diffusion properties (getting them though itself is quite
a challenging task, especially, for mixtures). Besides that,
additional phenomena, like, for instance, heat transfer, as has
been done by Teixeira et al. [73] for DEM sintering simula-

tions too, can be added to the model to enhance its accuracy
in predicting the densification rates.

However, the proposed approach is applicable to the early
stage sintering only since grain growth phenomenon is not
included in the formulation. The results obtained with the
developed coupled model can be later used as an initial
configuration for a subsequent phase-field simulation where
grain coarsening is naturally captured with the Allen–Cahn
equation [12]. The developed model in this sense can be per-
ceived as a component of a larger toolchain being currently
developed by the authors.
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