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Abstract
In this study, a novel method for improving the simulation of wave propagation in Peridynamic (PD) media is investigated.
Initially, the dispersion properties of the nonlocal Bond-Based Peridynamic model are computed for 1-D and 2-D uniform
grids. The optimization problem, developed through inverse analysis, is set up by comparing exact and numerical dispersion
and minimizing the error. Various weighted residual techniques, i.e., point collocation, sub-domain collocation, least square
approximation and the Galerkin method, are adopted and the modification of the wave dispersion is then proposed. It is found
that the proposed methods are able to significantly improve the description of wave dispersion phenomena in both 1-D and
2-D PD models.

Keywords Peridynamics · Wave propagation · Dispersion behavior · Minimization algorithms

1 Introduction

The topic of the present work is the study of wave propa-
gation in solid media described with a Peridynamic model.
Propagation of waves is a classical problem of contin-
uum mechanics [1,2] which is still the center of an active
research effort concerning modern materials, applications
and numerical methods [3–10]. The key dynamic properties
of a medium supporting wave propagation are spectral char-
acteristics. These comprise amplitude-frequency [11] and
phase-frequency, or dispersion curves [12–15].

The theory of Peridynamics has been intensively devel-
oped over the last two decades. This theory was initially
proposed by Silling [16] and Silling et al. [17] as an alter-
native nonlocal continuum theory able to deal with crack
initiation and propagation. In contrast to the classical contin-
uummechanics which uses differential equations to describe
the mechanical behavior of structures, PD applies an integro-
differential equation. The use of this type of equations is
considered as an advantage for PD since it inherently enables
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modeling damage and crack propagation. Peridynamics has
been found successful in modeling static and quasi-static
problems and was recently also applied to simulate wave
propagation, shock-waves and impact phenomena [18]. The
initial investigation in this area was carried out by Silling
[16] who found that the propagation of linear elastic waves
with long wavelengths when simulated with PD or conven-
tional theories is identical. In another study wave attenuation
in a viscoelastic Peridynamics media is introduced by Silling
[19]. The effect of non-locality in the suppression of traveling
waves in a dissipativematerial is addressed.Detailed analysis
of wave dispersion in nonlocal models in 1-D and 2-D cases
was presented in [20]. It was clearly shown that Bond-Based
(BB) Peridynamics displays better dynamic properties than
the State-Based (SB) version, and both show dynamically
softening behavior (i.e., predict lower wave speeds). A criti-
cal conclusion from [20] related toBB- and SB-PD is that due
to its intrinsic integral properties, Peridynamics cannot yield
a scheme more than second-order accurate. The comparison
of wave dispersion in discrete and continuum Peridynam-
ics models was addressed by Mutnuri and Gopalakrishnan
[21]. They have introduced a method to modify wave disper-
sion in discretized Bond-Based PDmodel at low frequencies.
Wave propagation in coupled discrete models was investi-
gated by some researchers in most cases proposing different
approaches to implement the coupling [22–28]. Furthermore,
Giannakeas et al. [29] studied wave dispersion in a cou-
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pled FEM-PD model, testing various strategies for coupling
finite element method and Peridynamics. In another study
Wildman and Gazonas [30] improved the wave dispersion
behavior in Peridynamic through combining with a finite
difference method. They have concluded that their proposed
method can mitigate wave dispersion and it is able to reduce
the oscillation of the stress intensity factor at the crack tip.
Modeling of Lambwave propagation in bimaterial plateswas
proposed byAlebrahim [31]who concluded that althoughPD
produces accurate solution for the evaluation of symmetric
Lamb waves, it is not able to model antisymmetric Lamb
waves accurately.

In subsequent analyses, [13], the dispersion in SB-PD
models was considered. One-, two- and three-dimensional
dispersion properties of continuous and discretized PD equa-
tions were investigated. The influence of various model
parameters, e.g., the horizon size, the number of nodeswithin
the horizon and the shape of the influence function are ana-
lyzed in the context of dispersion properties. It was found
that the numerical dispersion can be substantially improved
by a proper choice of the influence function, in particu-
lar if it coincides with the kernel function of the nonlocal
solid proposed in [32]. Such an approach was presented in
[33] for computing weight coefficients correcting the numer-
ical dispersion error. Weights distributions appear similar to
multiple-point stencils in Finite Differences (FDs) and dis-
play negative coefficients that may lead to instabilities for
bond-breaking schemes. In [34] dynamics of wave prop-
agation in the split Hopkinson pressure bar with 1-D PD
is analyzed. Similarly to other works, 1-D PD dispersion
is investigated and analogously to many other authors, in
[34] the original PD equation is first Fourier-transformed
to the spectral (i.e., wavenumber-frequency) domain, and
then discretized to yield the numerical dispersion formula.
However, in fact, the time-space domain equation should be
discretized first, followed by the spectral transform in the
discrete domain. Note that the two approaches would yield
the same results only under certain assumptions (see, e.g.,
[35] for a discussion on the time discretization influence). A
proper approach can be found in [33], with a slight correc-
tion that the discrete version of the wavefield must be used
to recover the dispersion relation. In [36] the mathematical
equivalence of the SB-PD (and, therefore, BB-PD)with other
mesh-free methods was proposed. In particular, differences
between various mesh-free approaches and Peridynamics
were shown in the context of influence function value that
can be derived from alternative forms of the moving least
squares technique. The influence of various micromodulus
functions, also including negative weights, on wave propa-
gation was provided in [37]. It was found that, for certain
micromodulus functions, material instabilities due to initial
perturbationswith discontinuitiesmay arise. The latter seems
particularly important when wave propagation originating at

crack-like discontinuity, e.g., due to a sudden energy release,
is considered. According to the above-mentioned literature
review, the modification of waves in 2-D PD has been imple-
mented in a few studies. This study is mainly focused on
providing a consistent and versatile framework for devel-
oping improved PD schemes. Various residual techniques
are employed and the scaling coefficient corresponding to
each PD bond is then computed. A set of scaling coefficients
for each residual method is finally obtained to modify both
pressure and shear wave dispersions in 2D PD. Employing
the calculated scaling coefficients and based on the Fourier
curve fitting method, a new influence function is introduced.
Finally, using the influence function in the PD formulation,
crack propagation in different samples is studied. This paper
is organized in the following manner. Section 2 gives an
overview of the peridynamic formulation. Section 3 provides
numerical modeling of wave dispersion in 1-D and 2-D PD.
Sections 4 and 5 introduce the modification of optimal 1-
D and 2-D PD models, respectively. Section 6 investigates
the minimization procedure. The proposed methods are val-
idated against the analytical solutions and dynamic transient
simulation in Sect. 7. Finally, the conclusion of the study is
brought in Sect. 8.

2 The peridynamic formulation

In the nonlocal continuum theory of Peridynamics, the equa-
tion of motion of a material point in the 2-D BB-PD model
in the presence of the body force is defined as follows

ρ ü(X0, t) =
∫
Hx0

f (u − u0, X − X0)dVx + b(X0, t), (1)

in Eq. (1), Hx0 represents the neighborhood of the material
point X0. u0 and u are vectors of displacement of thematerial
points X0 and X , respectively. ρ is density and b is body
force density. The following definitions, according to Fig. 1,
are introduced ξ = X − X0, η = u − u0 and ξ̄ = ξ + η. f
in Eq. (1) is the pairwise force function and it is defined as

f (η, ξ) = ĉ(|ξ |)s ξ̄

|ξ̄ | , (2)

Equation (2) can be rewritten in a linearized form as [16]

f (η, ξ) = ĉ(|ξ |) κ

|ξ |η where, κ = ξ ⊗ ξ

|ξ |2 , (3)

where s = |ξ̄ |−|ξ |
|ξ | in Eq. (2) is the stretch of the bond. ĉ(|ξ |)

is a continuous micromodulus function and it is defined as
ĉ(|ξ |) = cα(|ξ |), where for plane strain model c = 48E

5πδ3
and
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Fig. 1 Schematic of a bond between node X0 and X in a Peridynamic
model before, ξ , and after deformation, ξ̄

α(|ξ |) is an influence function to be computed (unknown). In
a homogeneous linear elastic material under isotropic strain
[17] εx = εy = ε = s, in plane strain conditions, the equiv-
alence of the strain energy density in classical continuum
mechanics and in 2-D BB-PD provides the following equa-
tion

1

4

∫
Hx0

α(|ξ |)cs2|ξ |dVx = Eε2

(1 + ν)(1 − 2ν)
, (4)

after canceling out the strain squared in BB-PD, s2, and
classical continuum mechanics, ε2, and doing some simpli-
fications, Eq. (4) can be rewritten in the following form

∫
Hx0

α(|ξ |)|ξ |dVx = 4E

c(1 + ν)(1 − 2ν)

= 5πδ3

12(1 + ν)(1 − 2ν)
, (5)

with δ being the horizon and E is theYoung’smodulus. Since
the influence function α(|ξ |) is unknown, we solve Eq. (1)
numerically to have optimum wave dispersion phenomenon
in BB-PD. In this waywe are able to find the discretized form
of the influence function.

3 Numerical dispersion in 1-D and 2-D
peridynamics

In this section, we outline theory for generalized nonlocal
models for wave propagation. Particular versions of these
general models are then shown to yield the Bond-Based
Peridynamics formulations for a particular set of model
parameters. Iteration formulas for the model are considered
in the displacement form and are next used to derive spec-
tral characteristics of Peridynamics models for 1-D and 2-D
cases. This section is concluded with the analysis of the non-

Fig. 2 Numbering of the family of a node for a 1-D Peridynamicmodel.
Dashed lines represent the bonds between nodes, αi denotes the scaling
coefficient corresponding to the i th bond

local equations in the long wavelength limit to estimate static
errors of the models.

3.1 One-dimensional case: bond-based
peridynamics

For analyzing dispersion in 1-D linear Peridynamics, the
equationofmotionof amaterial point inEq. (1) in the absence
of body force is reduced to

ρü(X0, t) =
∫
Hx0

f (u − u0, X − X0)dVx , (6)

where f = ĉ(ξ)s is the pairwise force function and ĉ(ξ) =
cα(ξ) where c = 2E

δ2A
and α(ξ) is the influence function.

A is the area of cross section. Equation (6) is written in the
discretized form as follows

ρu0,t t = 2E

δ2A

+N\0∑
i=−N

αi
1

|i	| (ui − u0) A	

= 2E

δ2

+N\0∑
i=−N

αi
1

|i | (ui − u0) , (7)

where N , according to Fig. 2, is the number of nodes within
the horizon δ (i.e., δ = N	, with 	 being the node spac-
ing). Noting that in this study the influence function α(|ξ |) in
the discretized form α(|ξ i |) is called stiffness scaling coef-
ficient. After discretization in time, Eq. (7) can be used to
compute displacements in subsequent time steps for a 1-D
infinite domain. Wave propagation characteristics are found
from Eq. (7) assuming a single, unit amplitude, wave solu-
tion for a linear, homogeneous, isotropic medium of the form
un(n	, t) = eikn	e−iωt (thus continuous time-domain).
This approximation is valid for small time steps 	t , which
is typically the case under explicit time integration scheme
assumptions. Further, i = √−1 is the imaginary number and
k is the wavenumber. For a regular grid of nodes, the follow-
ing phase relation holds between any node in the stencil and
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the considered node n

un±i = une
±iki	. (8)

With (8) and after rearrangement, Eq. (7) becomes

{
2E

	2N2

+N\0∑
i=−N

αi
1
|i |

(
1 − eiki	

) − ω2ρ

}
u0 = 0, (9)

with the non-trivial solution for the quantity in brackets {·} =
0, yielding the dispersion relation for a PD discretized model

ω2 = 4E

ρ	2N 2

N∑
i=1

αi
1 − cos(ki	)

i
. (10)

3.2 Two-dimensional case: bond-based
peridynamics

A framework for obtaining dispersion relation in 2-D PD is
introduced in this section. In contrast to the 1-D case, two
wavemodes—longitudinal and shear—need to be considered
in a 2-D solid medium. Following, dispersion relations for a
2-D infinite PD discretizedmodel are derived. Calling Eq. (1)
and rewriting the 2-D BB-PD formulation in the discretized
form in the absence of body force, one will obtain

ρu0,t t = 	2
N̄∑
i=1

α(|ξ i |)cκ i
ui − u0

|ξ i |
, (11)

where u0 = [ux0, uy0]T and ui = [uxi , uyi ]T are dis-
placement vectors of the considered (0) and a neighboring
(i th) node from the reference to the deformed configuration,
respectively. The same grid spacing in x and y directions is
considered,	x = 	y = 	. N̄ is the total number of bonds in
the horizon. Assuming a single, unit amplitude, wave solu-
tion for a linear, homogeneous and isotropic medium, the
following phase relation holds between the grid points

ui �=0 = u0eikξ i , (12)

where k = [kx , ky] (with kx = |k| cosβ, ky = |k| sin β)
is the wavevector, ξ i = [ξxi , ξyi ]T and ξxi , ξyi denote dis-
tances of the i th (i �= 0) node from the central node (i = 0) in
x and y directions, respectively. Assuming time dependence
of the form u0 = p0e

−iωt and substituting Eq. 12 in Eqs. 11
and after arrangement, one will find

⎛
⎝ N̄∑

i=1

cαi Āiκκκ i − ω2ρ I

⎞
⎠ p0 = 0 where,

Āi = 1 − eikξ i

|ξ i |
	2, (13)

where p0 = [px0, py0]T is the wave polarization vector.
For non-trivial solutions of Eq. 13, the determinant of the
expression in brackets must vanish, yielding the characteris-
tic equation

∣∣∣∣∣
N̄∑
i=1

cαi Āiκκκ i − ω2ρI

∣∣∣∣∣ = 0, (14)

the determinant from Eq. 14 yields the following solution for
ω2 (see A for details)

ω2
p,s = c

2ρ⎡
⎣ N̄∑
i=1

αi Āi ±
√√√√

(
N̄∑
i=1

αi Āi cos(2θi )

)2

+
(

N̄∑
i=1

αi Āi sin(2θi )

)2
⎤
⎦ ,

(15)

where θi in the linearized formof the 2-DBB-PD formulation
[16] is the angle of i th bond in the reference configuration.

cos(2θi ) and sin(2θi ) in Eq. (15) are equal to
ξ2xi−ξ2yi

|ξ i |2 and

2
ξxi ξyi

|ξ i |2 , respectively. Noting that Eq. (15) is valid for grids
with translational symmetry, the even and odd properties of
cos and sin functions allow to reduce the number of param-
eters Āi from the number of bonds in the four quadrants
Q1−Q4 to the number of bonds in the first quadrant Q1 (see
Fig. 3a, b). For spatially symmetric response, we require the
Āi parameters to be equal for nodes located symmetrically
with respect to x and y directions, i.e., for the four symmetric
nodes at ξ j = [±ξ j x ,±ξ j y]T . Then

∑
j

Āi
j = γi	

2

|ξ i |
(
1 − cos kxξi x cos kyξiy

)
, (16)

∑
j

Āi
j cos (2θi ) = γi	

2 cos (2θi )

|ξ i |
(
1 − cos kxξi x cos kyξiy

)
,

(17)
∑
j

Āi
j sin (2θi ) = γi	

2 sin (2θi )

|ξ i |
(
sin kxξi x sin kyξiy

)
,

(18)

in Eqs. (16)–(18), j iterates over the four symmetric bonds
for the i th bond (i �= 0). Due to symmetry considerations,
nodes located at x- or y-axis assume γi = 2 (red nodes in
Fig. 3a, b), while other nodes assume γi = 4 (green nodes in
Fig. 3a, b).
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Fig. 3 A grid of nodes for a
Peridynamic model for a N = 2
and b N = 3. Nodes of the first
quadrant are colored. Green
points relate to contributions
from all quadrants, while the red
points refer to contributions
from points on the reference
axes. [see Eqs. (16)–(18)] c
Irreducible Brillouin zone.
(Color figure online)

3.3 Dispersion relation at the long wavelength limit

3.3.1 1-D BB peridynamic

A general form of the 1-D BB Peridynamic solid in the
absence of the stiffness scaling coefficients for the longwave-
length limit, i.e., k → 0 and kδ � 1, can be derived from
Eq. (10)

ω2 = 4E

ρ

1

N 2

N∑
i=1

1 − cos(ki	)

i	2

= 4E

ρ

1

N 2

N∑
i=1

ik2

2
= Ek2

ρ

N + 1

N
. (19)

The expansion in Eq. (19) is valid for kδ � 1 and,
consequently, for k	 � 1 since δ ≥ 	, by definition. Con-
sequently, Eq. (19) is valid for horizon radii much smaller
than the wavelength. Noting that E/ρ = V 2, where, V is
phase speed. Equation (19) provides the dispersion relation
of aBB-PDmodel solely as a function of the number of nodes
within the horizon, N ,

ω2 = V 2k2
(
1 + 1

N

)
. (20)

The following observations can bemade based on Eq. (20)

– it is assumed that the product of wavenumber and horizon
is small (kδ � 1),

– the dispersion depends on the number of nodes within
the horizon, N , and converges to the exact solution as
N → ∞,

– the number of nodes within the horizon is related to the
grid size by N	 = δ, indicating convergence for N →
∞ and 1/	 → ∞,

– the convergence of a BB-PD model for the long wave-
length limit can be uniquely defined by a single parame-
ter.

3.3.2 2-D BB peridynamic

In order to estimate the static error for 2-D BB-PD model in
the absence of stiffness scaling coefficients, we evaluate Eq.
(15) at the longwavelength limit, i.e., for |kkk| → 0 and |kkk|δ �
1, and considering Eqs. (16)–(18) at the long wavelength
limit, we have

c

2ρ

∑
j

Āi
j = 6

5πN 3 V
2|k|2 S̄+

i , (21)

c

2ρ

∑
j

Āi
j cos (2θi ) = 6

5πN 3 V
2|k|2 S̄+

i cos (2θi ) , (22)

c

2ρ

∑
j

Āi
j sin (2θi ) = 6

5πN 3 V
2|k|2 S̄−

i sin (2θi ) , (23)

with S̄±
i given as

S̄±
i = γi

√
i2x + i2y

(
cos2 (β − θi ) ± cos2 (β + θi )

)
, (24)

where ix = ξi x
	

and iy = ξiy
	
. Then, the long-wavelength

approximation to the dispersion relation yields (note the sum-
mation over the first quadrant only)

ω2
p,s = 6

5πN 3 V
2|k|2

⎡
⎣Q1∑

i
S̄+
i ±

√√√√
(

Q1∑
i
S̄+
i cos(2θi )

)2

+
(

Q1∑
i
S̄−
i sin(2θi )

)2
⎤
⎦ .

(25)

Please note that despite the requirement of |kkk| → 0, prop-
agation angle β still influences Eq. (25) through S̄±

i , i.e.,
the static error is angle-dependent due to the mesh-induced
anisotropy in 2-D. Figure 4a, b show direction-dependent
normalized wave velocity (i.e., V̄s,p = (

ωs,p/|k|
)
/Vs,p)

profiles for N = {2, 3, 4} for the long wavelength limit.
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Fig. 4 Directional profiles of the normalized a pressure and b shear wave velocities for N = {2, 3, 4}; c Normalized velocity for the pressure and
shear waves at two limiting wave propagation directions (along the nodal line and along the diagonal line), at the long wavelength limit

Recalling that the shear and pressure waves Vs,p are related
to V and ν by

Vp = V

ν̄p
=

√
1 − ν

(1 + ν)(1 − 2ν)
V ,

Vs = V

ν̄s
=

√
1

2(1 + ν)
V , (26)

the scaling will depend on selection of ν. In the following
we adopt ν = 0.25, which yields Vs = 0.632V and Vp =
1.095V .

From Fig. 4a, b it can be clearly seen that for N = 2
wave propagation is strongly anisotropic, while for N ≥ 3
almost isotropic—propagation is observed. Figure 4c shows
normalized wave velocities for two angles that are relevant
for subsequent error analysis, i.e., β = {0, π/4}, for vari-
able number N (up to N = 10). The values of shear and
pressure wave velocities converge quickly towards the ana-
lytical solution (assuming ν = 0.25), i.e., V̄ k→0

s = 1 and
V̄ k→0
p = 1, respectively. Again, substantial differences are

observed between N = 2 and N ≥ 3 for both propagation
angles, indicating that N = 3may be an optimal compromise
between accuracy and computational time. It may be noted
that when considering quasi-static crack propagation prob-
lems with Peridynamics (i.e., not wave propagation), higher
number of nodes (e.g., N = 4 or N = 6) are frequently
preferred [38].

3.4 Correlation between the BB-PD and the 2–2
finite difference local approximation

3.4.1 1-D BB peridynamic

For the special case of limiting interactions to the closest
neighbors only, i.e., N = 1, the dispersion relation yields

ω2 = 4E

ρ	2 (1 − cos(k	)) . (27)

Noting that for small values of k	 << 1, (1−cos(k	))/	2

≈ k2/2, we have ω ≈ √
2
√
E/ρk, over 40% error in the

wave propagation speed is obtained for the BB-PD solid.
Please note that no correction factors are considered in Eq.
(27). The frequently employed volume correction method
substantially improves the solution and reduces the error to
zero. The result of Eq. (27) can be compared to the dis-
persion relation for a 1-D central-difference scheme, ω2 =
2E/(ρ	2)(1− cos(k	)), that reproduces the exact solution
for the long wavelength limit (k	 << 1), ω ≈ √

E/ρk.

3.4.2 2-D BB peridynamic

Although not of practical importance, it is interesting to see
the dispersion properties for closest-neighbors interactions
in 2-D, namely N = 1. This compares directly to the 2–2
Finite Difference (FD) local approximation. From Eq. (25)
for N = 1, the dispersion equation for small values of	 <<

1 reduces to

ωp =
√

48

5π
V |k| cosβ, ωs =

√
48

5π
V |k| sin β. (28)

It is clear from Eq. (28) that the two wave modes propagate
strongly anisotropically in the domain, with the two prefer-
ential directions, along the β = 0 and β = π/2 directions,
at which only a single wave mode exists and propagate with
an error of 60%. This heavily distorted wave propagation
pattern is the result of the very limited stencil for the model
(only five nodes), for which the diagonal nodes are missing
which results in poor representation of the shear modes. For
comparison with classical local models based on finite dif-
ferences or cellular automata and the resulting dispersion the
reader is referred to [39].

4 Modified optimal 1-D BB-PDmodel

It was proven in [20] and also observed in other works, that
BB- and SB-PD models perform worse than classical FD
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methods in terms of wave propagation. Therefore, in this sec-
tion we propose a set of modified Peridynamic models with
the main goal of improving PD dispersion properties. The
proposed modifications are particularly attractive for regions
where the product of the wavenumber and horizon (kδ) is
not small. According to Eq. (7), the set of n (n = N ) scaling
coefficients, αi , that best approximate dynamic properties of
themodel, can be found [40]. One possible way of finding αi ,
outlined in [33], was based on selecting a number of points in
the (ω, k) space and enforcing correct behavior of the model
at those points. The results, however, depend on the selec-
tion of frequency (orwavenumber points) and various scaling
coefficients are obtained for different choices. The approach
proposed here is based on constructing optimal approxima-
tion to the exact dispersion characteristic. Equation (10) is
rewritten here

ω2 = V 2 4

	2N 2

N∑
i=1

αi
1 − cos(ki	)

i
or ω2 = V 2k̄Tααα, (29)

where

k̄ = 4

N 2	2

[
1−cos(1k	)

1 ,
1−cos(2k	)

2 , . . . ,
1−cos(Nk	)

N

]T

and ααα = [
α1, α2, . . . , αN

]T
. (30)

Note that elements of k̄ ∝ k2. Equation 29 can be seen as a
linear combination of basis functions k̄, thus the coefficients
ααα can be found by using various known techniques, e.g.,
Finite Elements, Weighted Residuals and others. Recalling
the exact solution to dispersion of a 1-D medium, ω2 =
V 2k2, Eq. (29) can be used to formulate the square-frequency
residue

R(ω2) = V 2
(
k̄Tααα − k2

)
. (31)

The residue R in Eq. (31) can be used for computing ααα to
achieve smallest possible R over the consideredwavenumber
domain. Following the standard approach for minimizing the
residual we require

∫
wR(ω2)dk → 0, (32)

where the integration is performed over the considered
wavenumber domain and the weight w depends on the
method adopted. Because of the discrete nature of the sys-
tem, the integration will be performed over the irreducible
Brillouin zone.

4.1 Physical restrictions on dispersion

The problem formulated in Eq. (32) consists of n = N
unknowns ααα. Therefore, depending on the selected method,
N equations must be constructed to uniquely solve the
problem. However, Eq. (32) should satisfy two physically
motivated conditions, i.e., zero static error (i.e., for ω =
k = 0) and correct group velocity at ω → 0 and k → 0.
Thus, additional constraints may be imposed on parameters
αi to enforce correct solution at the long wavelength limit.
Namely, we require that (a) at k → 0 we have ω → 0, and
(b) dω/dk → Vg = V for k → 0. Recalling Eq. (19) for
dispersion at the long wavelength limit, yields

ω2 = 4E

ρ

1

N2

N∑
i=1

αi
1 − cos(ki	)

i	2 = V 2k2
2

N2

N∑
i=1

iαi . (33)

Clearly, it follows from Eq. (33) that the condition (a) is
satisfied by definition. The group velocity condition at k → 0
then requires that

N∑
i=1

iαi = N 2

2
or iTααα = N 2

2
. (34)

with i = [1, 2, . . . , N ]T . Equation (34) constitutes an addi-
tional equation to the set defined in Eq. (32). Note, that the
number of equations generated from Eq. (32), for the system
to have unique solution, is now N − 1.

5 Modified optimal 2-D BB-PDmodel

In order to investigate the influence of the stiffness scaling
coefficients, αi , on the 2-D BB-PD formulation, Eq. (15) is
rearranged in the following form

ω2
p,s = ν̄2p,sV

2
p,s

24

5πδ3⎡
⎣ N̄∑
i=1

Āiαi ±
√√√√

(
N̄∑
i=1

Āiαi cos(2θi )

)2

+
(

N̄∑
i=1

Āiαi sin(2θi )

)2
⎤
⎦

= |k̄|p,sV 2
p,s . (35)

where the set of n = N̄ scaling coefficients, αi , can be
found through analogous methods as those used for the 1-
D case and—analogously to Eq. (30)—|k̄|p,s ∝ |k|2. For a
2-D case, numerical dispersion depends on material proper-
ties of the medium and in-plane discretization parameters,
see Eq. (35). Here, in contrast to the 1-D case, dispersion is
direction dependent due to the discrete distribution of bonds
in the Peridynamic grid that introduces a sort of anisotropy
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[38]. Noting that the scaling coefficients are assumed to fol-
low the bonds distribution symmetry (as discussed above),
we formulate the following residuum

R
(
ep, es, ω

2
p, ω

2
s

)
= epV

2
p

∣∣∣|k̄|p − |k|2
∣∣∣

+esV
2
s

∣∣∣|k̄|s − |k|2
∣∣∣ , (36)

where ep,s are scaling coefficients for the shear and longi-
tudinal waves, respectively. The coefficients can be used to
tune the accuracy of the solution, e.g., with es = ep = 1, we
treat both wave modes equally accurate. The residuum from
Eq. (36) depends on the wavenumber magnitude and wave
propagation angle. Error minimization requires that

∫
wR

(
ep, es, ω

2
p, ω

2
s

)
dk → 0. (37)

Due to symmetry considerations and unique characteriza-
tion it is sufficient to use integration limits corresponding to
the irreducible Brillouin zone in Eq. (37). Note also that due
to symmetry, the number of unknown coefficients decreases
significantly. For example, for N = 3 the number of inde-
pendent coefficients according to Fig. 3b is 7. However, it
will be explained later that due to symmetry constraints, the
total number of independent coefficients for N = 3 reduces
to 6.

Equation (37) generates n − 2 equations (n is the num-
ber of unique scaling coefficients for the bonds) whose form
depend on the type of themethod employed. The twomissing
equations follow from the long wavelength limit equations
as presented next.

5.1 Physical restrictions on dispersion

Rewriting Eq. (35) at the long wavelength limit we require
verifying two physical restrictions on the dispersion relations
for the pressure and shear waves, i.e., we check (a) ifωs,p →
0 when |k| → 0 and (b) dωs,p/d|k| → V s,p

g for |k| → 0.
From (35) and using (26) one obtains

ω2
p,s = 6

5πN 3

⎛
⎝ Q1∑

i

αi S̄
+
i

±

√√√√√
⎛
⎝ Q1∑

i

αi S̄
+
i cos(2θi )

⎞
⎠

2

+
⎛
⎝ Q1∑

i

αi S̄
−
i sin(2θi )

⎞
⎠

2
⎞
⎟⎟⎠

×ν̄2p,sV
2
p,s |k|2. (38)

Analogously to the 1-D case, for a 2-D BB-PD model the
first condition, (a), is satisfied by definition. From (b) we get

Q1∑
i

αi S̄
+
i

±

√√√√√
⎛
⎝ Q1∑

i

αi S̄
+
i cos(2θi )

⎞
⎠

2

+
⎛
⎝ Q1∑

i

αi S̄
−
i sin(2θi )

⎞
⎠

2

= 5πN 3

6ν̄2p,s
. (39)

Equation (39) provides two constraints for αi parameters,
that must be satisfied from physical viewpoint.

6 Minimization procedure

Residuals defined by Eqs. (31) and (36) for 1-D and 2-D,
respectively, are weighted and minimized as given by Eqs.
(32) and (37) in order to yield the sets of scaling coefficients
αi . The weights, w, in Eqs. (32) and (37) can assume the
following forms depending on the minimization approach
selected and the dimension of the problem

– w = δ (ki ) - the residuum R is collocated at selected
points in the wavenumber domain (where in 1-D ki
reduces to ki ),

– w = �(ki , ki+1) - the residuum vanishes in the integral
sense over a collocation interval (ki , ki+1),

– w = R - results in the least squares weighted residuals,
– w = k̄ [for 1-D, see Eq. (30)] and w = { Āi } (for 2-D)

- yields the Galerkin approximation in the wavenumber
domain.

It needs to be emphasized that the proposed methodology
for finding optimal scaling coefficients for the bonds, α, is
based on the frequency-wavenumber domain analysis. The
procedure relies not only on matching the spectral response
of the model with the analytical solution, but also applies
physical constrains in order to force proper low-frequency
behavior (both value and slope). Consequently, Eqs. (34) and
(39) for 1-D and 2-D, respectively, are used to reduce the
number of residual equations required for unique solution.
In practice, due to symmetry (point symmetry in 1-D and
two symmetry planes in 2-D), we seek the total number of n
unknowns in vector α, which is half of the total number of
bonds for the considered node for 1-D, and 1/4th of all bonds
for the considered node for 2-D. The constraint equations,
Eqs. (34) and (39), reduce the number of residual equations
to n − 1 for 1-D and to n − 2 for 2-D.
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The integration in Eqs. (32) and (37) is carried out
over the contour of the Irreducible Brillouin Zones (IBZ)
characteristic (see Fig. 3c) for 1-D and 2-D cases, respec-
tively, i.e., k ∈ [0, π/	] for 1-D and k ∈ OM ∪
MY ∪ Y O , where OM = (

kx ∈ [0, π/	] , ky = 0
)
, MY =

(
kx = π/	, ky ∈ [0, π/	]

)
andY O =

(
kx ∈ [π/	, 0] , kx

= ky

)
for 2-D. Other approaches than those listed above are

possible to compute coefficientsααα; however, in the following
we focus on these four methods, as they aremost widely used
in engineering practice.

6.1 Point collocation

The weighted residual point collocation is essentially similar
to the approach outlined in [33]. In the presented method,
however, we implicitly link it to the weighted residuals
techniques and supplement the residual by the physical
constraints, thus reducing the number of equations. The
collocation points distribution can be arbitrary; however,
additional effort can be made in order to develop more rig-
orous schemes to improve the solution. In order to define the
n−1 equations via the point collocation method, the interval
[0 π

	
] for 1-D and the IBZ contour for 2-D were uniformly

divided into n− 2 divisions. For the 1-D case, from (31) and
(32) we obtain

R
(
ω2

)
|k= m

n−1
π
	

= V 2
(
k̄Tααα − k2

)
|k= m

n−1
π
	

= 0,

m = {1, . . . n − 1}, (40)

while for 2-D, from Eqs. (36) and (37) we have

∑
R

(
ep, es, ω

2
p, ω

2
s

)
|k={O,M,Y }

=
∑(

epV
2
p

∣∣∣|k̄|p − |k|2
∣∣∣

+esV
2
s

∣∣∣|k̄|s − |k|2
∣∣∣
)

× |k={O,M,Y } = 0. (41)

6.2 Sub-domain collocation

In thismethod, the interval [0 π
	

] for 1-D and the IBZ contour
for 2-D, are uniformly split into n−1 and n−2 sub-domains,
respectively. Residual equations are obtained through apply-
ing the integration in every sub-domain. For the 1-D case,
from (31) and (32) we obtain

∫ m
n−1

π
	

m−1
n−1

π
	

∣∣∣k̄Tααα − k2
∣∣∣ dk → 0,m = {1, . . . n − 1}, (42)

while for 2-D, from Eqs. (36) and (37) we have

∮
IBZ

(
epV

2
p

∣∣∣|k̄|p − |k|2
∣∣∣ + esV

2
s

∣∣∣|k̄|s − |k|2
∣∣∣
)
dk → 0.

(43)

6.3 Least square approximation

Withw = R, and making use of the physical conditions (34)
and (39), for the 1-D case, from (31) and (32) we get

∫ m
n−1

π
	

m−1
n−1

π
	

(
k̄Tααα − k2

)2
dk → 0,m = {1, . . . n − 1}, (44)

while for 2-D, from Eqs. (36) and (37) we have

∮
IBZ

((
epV

2
p

(
|k̄|p − |k|2

))2 +
(
esV

2
s

(
|k̄|s − |k|2

))2)

×dk → 0. (45)

Theminimization procedure outlined in Eqs. (44) and (45)
would lead to theminimumaverage squared-frequency errors
over the wavenumber domain. The sets of Eqs. (44) and (45)
define n − 1 and n − 2, respectively, (least-square) optimal
scaling coefficients αi for the modified BB-PD approaches.

6.4 Galerkinmethod

The Galerkin method is applied to find the unknown scaling
coefficients ααα corresponding to the optimized 1-D and 2-D
non-local Peridynamic models. The set of unknown coeffi-
cients is obtained by projecting the residual, Eqs. (31) or (36),
on the basis functions k̄ [see Eq. (30)] or { Āi } [see Eq. (35)],
respectively.

For 1-D, due to the physical constraint, Eq. (34), n − 1
basis functions are required to define the complete set of
equations for finding ααα as follows

∫ π
	

0
k̄Rdk =

∫ π
	

0
k̄
∣∣∣k̄Tααα − k2

∣∣∣ dk = 0, (46)

where R is the residual from Eq. 31 and k̄ is a n − 1 dimen-
sional vector, as defined in Sect. 4. The n scaling coefficients
αi can be found from Eqs. (34) and (46).

It needs to be pointed out that the vector { Āi } contains
basis functions for all 4n bonds within the horizon. The scal-
ing vector, α, on the other hand, contains only n − 2 unique
coefficients. Consequently, for a 2-D system the following
set of n − 2 equations is used to determine α

∮
IBZ

∑
i

{ Āi }
(
epV

2
p

∣∣∣|k̄|p − |k|2
∣∣∣ + esV

2
s

∣∣∣|k̄|s − |k|2
∣∣∣
)

×dk = 0, (47)
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Fig. 5 Comparison of the solution in a 1-D BB-PD model for N ∈ {1, 2, 3} (a to c) and the modified BB-PD for N ∈ {1, 2, 3} (d to f) (black
markers) with dynamic transient simulation results (gray colormaps). Model parameters: 	 = 1 m, E = 1 Pa, ρ = 1 kg/m3, 	t = 0.1 s

where the summation is carried over the four i indices cor-
responding to the symmetric bonds (i.e., with the same αi ).

7 Results

7.1 1-D wave dispersion

In this subsection, we investigate the influence of the optimal
scaling coefficients on the modification of wave propaga-
tion in a 1-D domain. To validate the proposed method, we
compare dispersion curves for the pressure wave obtained
analytically in Sects. (3.1) and (4), with dispersion curves
identified from a time-domain simulation of wave propaga-
tion in a bar. In order to obtain the dispersion curves with
the time-domain simulation, we adopt the spatio-temporal
Fourier transform procedure (see, e.g., [39]). We start by
analyzing original (unmodified) BB-PD models in 1-D for
N ∈ {1, 2, 3} and then we present numerical studies for
optimal BB-PD models for N ∈ {1, 2,≥ 3} along with
their validation examples. Figure 5 shows results of time-
domain simulations (gray-scale colormaps) compared with
analytical predictions (black circles) for 1-D models. Figure
5a–c present results obtained for the original BB-PD models
(i.e., with unmodified stiffness coefficients). Perfect agree-
ment between numerical and analytical results can be clearly
observed.

7.1.1 Modified BB-PD scheme for N = 1

Assuming N = 1, i.e., only closest neighbors are included in
the horizon and therefore there is a single scaling coefficient
parameter α1. Following Eq. (34) we have α1 = 1/2. This
result reproduces the coefficient correction in the original 1-
D BB-PD after applying volume correction method. Using
the dispersion relation of Eq. (33), ω2 = V 2k22α1 = V 2k2,
the result clearly reproduces the 2–2 FD scheme and per-
fectly agrees with the group velocity at the long wavelength
limit (see Sect. 3.4). Note that this result holds regardless
of the spatial spacing 	. Figure 5d shows results obtained
from the numerical experiment and analytical results for this
new model. The comparison of Fig. 5a, d shows that the cut-
off frequency for the unmodified case is substantially higher
than for the modified one, i.e., waves of higher frequencies
are supported by the improved model. The proposed mod-
ified BB-PD model perfectly reproduces wave velocities at
the long wavelength limit (note that the wave speed error
for the unmodified model is over 40%), therefore displays
much smaller wave speed errors at low frequencies than the
unmodified case.

7.1.2 Modified BB-PD scheme for N = 2

Including second neighbors, i.e., N = 2, yields two scaling
coefficient parameters α1 and α2. From (34) we have the
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Table 1 Scaling coefficients values using Point Collocation (P.C), Subdomain Collocation (S.C), Least Square Approximation (L.S) and the
Galerkin method (G)

Method P.C S.C L.S G

N 3 5 10 3 5 10 3 5 10 3 5 10

α1 10.5 26.3 101 8.8 25 100 9.4 25.1 99.6 9.1 25.0 100

α2 −5.5 −15.4 −52.1 −3.3 −12.1 −50 −5.6 −13 −51 −4.3 −12.4 −50

α3 1.7 12.2 36.5 0.8 6.8 33.1 2.1 8.3 35 1.4 8.4 33.3

α4 – −7.7 −29.5 – −3.0 −24.5 – −4.1 −26.8 – −6.1 −25.0

α5 – 2.2 25.9 – 0.7 19.0 – 0.9 21.5 – 2.3 20

α6 – – −24.3 – – −14.7 – – −17.1 – – −16.7

α7 – – 24.1 – – 10.7 – – 12.9 – – 14.2

α8 – – −22.1 – – −6.5 – – −8.14 – – −12.6

α9 – – 13.7 – – 2.7 – – 3.51 – – 11.0

α10 – – −3.7 – – −0.5 – – −0.7 – – −4.8

group velocity constraint

α1 + 2α2 = 2 ⇔ α1 = 2(1 − α2). (48)

The second equation can be found using one of the meth-
ods outlined in Sect. 6. For instance employing the Galerkin
method, one obtains α1 = 3.72 and α2 = −0.86. Inspection
of Fig. 5b, e clearly shows the superiority of the proposed
modified scheme. The cut-off frequency of the newmodified
model is nearly doubled when compared to the original BB-
PD scheme. Also, the effective frequency band for which the
new model can be applied, up to approximately 2.25rad/s, is
much broader than for the reference method (up to approxi-
mately 1.25rad/s).

7.1.3 Modified BB-PD scheme for N ≥ 3

In contrast to the cases of N = 1 and N = 2, for which only
the restriction equation [Eq. (34)] or the restriction equation
and only one residual equation were used, respectively - we
investigate the case of N ≥ 3where we employ the whole set
of residual equations to obtain optimal scaling coefficients.
Scaling coefficients of the PD bonds for N ∈ {3, 5, 10} are
presented in Table 1 for variousminimizationmethods. It can
be observed that there is a slight difference between the coef-
ficients for the four methods investigated. Figure 5c, f show
dispersion for N = 3 for the unmodified and modified mod-
els, respectively. Further deterioration of spectral properties
can be observed for the original BB-PD, while substantial
improvement is clearly seen for the modified model.

Figure 6a collects scaling coefficients for higher val-
ues of N ∈ {3, 5, 10} obtained using the point collocation
method. It can be noted that scaling coefficients assume
values of monotonically decreasing magnitude and alternat-
ing signs. This last finding is consistent with the nonlocal
media theory discussed in [32] and the analysis outlined in

[20]. Negative scaling coefficients are critical for substantial
improvement of spectral characteristics of the new optimal
methods; however negative stiffness values are expected to
cause instabilities when bond breaking is allowed in the
model (e.g., in crack propagation simulations [13]). The error
of the dispersion properties as a function of the horizon size
was obtained and is plotted in Fig. 6b. The following formu-
lation is employed to obtain error (square-average) values for
the analyzed models

Err =
∫ π

	

0

∣∣∣V 2
(
k̄Tααα − k2

)∣∣∣ dk. (49)

It can be observed that there is a considerable difference
between the original and modified PD for increasing radius
of horizon. The error of the modified PD vanishes rapidly as
the size of the horizon increases. According to Fig. 6b, the
error of the proposed methods for N ≥ 8 drops drastically.
The original and modified dispersion curves for N ∈ {3, 5}
are shown in Fig. 7a, b. It can be seen that the accuracy
of the models, in terms of their spectral response, has sig-
nificantly improved. Clearly, all models display relatively
accurate response at low frequencies, but substantial differ-
ences are noted atmoderate and high frequencies. Comparing
the N = 3 and N = 5 cases for unmodified models, it can be
observed that the effective frequency band decreases despite
the horizon is extended. Exactly the opposite effect can be
seen for the modified models, where the number of scaling
coefficients is greater for N = 5 than for N = 3; therefore
that model can be better tuned to fit the analytical response.

A comparison of errors for the three analyzed horizons,
i.e., N ∈ {3, 5, 10}, and for the four modification approaches
are shown in Fig. 7c. These errors are computed according
to Eq. (49) and are normalized using the original BB-PD
error for N = 3 (see Fig. 6b). It can be observed that among
the four introduced methods, the point collocation and the
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Fig. 6 a Order of the scaling
coefficients for N ∈ {3, 5, 10}, b
Error of the original PD versus
modified PD
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Fig. 7 Comparison of dispersion properties of the original and modified BB-PD for a N = 3, and b N = 5, c Comparison of error in the applied
methods for N ∈ {3, 5, 10}. Model parameters: 	 = 1 m, E = 1 Pa, ρ = 1 kg/m3, 	t = 0.1 s

Galerkin method produce the maximum and the minimum
error, respectively, for all cases considered.

7.2 2-D wave dispersion

As mentioned earlier and according to the reference [33],
it is clear that applying negative scaling coefficients in the
PD formulation can produce instability in the PD solution
upon damage initiation. Therefore, in this study two differ-
ent solutions for the calculation of the scaling coefficients
in 2-D BB-PD are introduced. In the first solution (hereafter
it is called optimal solution), positive and negative scaling
coefficients are obtained. Note that in this method no con-
straint is imposed on the solution procedure. However, in
the second method, positive-only coefficients are obtained
through introducing lower bound constraints in the solution
procedure.

7.2.1 Optimal solution

As mentioned earlier, the optimal solution is employed to
modify the PD formulation through introducing positive–
negative scaling coefficients. Due to negative coefficients,
this method is more suitable for the improvement of wave

propagation. The scaling coefficients corresponding to the
2-D BB-PD for N = 2 and N = 3 are tabulated in Table 2.

The numerically and analytically computed wave disper-
sion for the unmodified 2-D BB-PD models with N = 2
and N = 3 is plotted in Fig. 8a, b, e–f, respectively. The
dispersion of pressure and shear waves computed analyti-
cally according to Eq. (15) is denoted by markers and it is
compared with dynamic transient simulation results (gray
colormaps). Perfect fit between the analytical and numerical
responses can be seen for both pressure and shear waves. As
shown in Fig. 8a, b there is a cutoff frequency for the pres-
sure and shear dispersion curves. By increasing the size of
the horizon in Fig. 8e, f, the cutoff frequency shifts towards
lower frequencies for the original BB-PD models. In Fig.
8a (but also for other results in 2-D) ghost higher order
modes (HOM) are also present in the dynamic simulation.
These higher order modes should be in general avoided but
their detailed analysis and mitigation methods are beyond
the scope of this paper. As it is brought in Fig. 8c, d, g, h for
N = 2 and N = 3, respectively, dispersion curves in the 2-D
PDweremodified through defining scaling coefficients using
Eq. (35). Figure 8c, d reflect the modified pressure and shear
wave dispersion for N = 2 and in the same way Fig. 8g, h
show the wave dispersion for that of N = 3. All unknown
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Fig. 8 Pressure and shear wave modes dispersion of 2-D BB-PD. a, b
Original pressure and shear dispersion curves for N = 2, c, dModified
pressure and shear dispersion curves for N = 2, e, f Original pressure
and shear dispersion curves for N = 3 and, g, h Modified pressure
and shear dispersion curves for N = 3. Gray colormaps show results

obtained fromnumerical experiments (time-domain simulations), while
markers denote analytical solutions based on the respective iteration
equations. Model parameters: 	 = 1 m, E = 1 Pa, ρ = 1 kg/m3,
	t = 0.1 s. The red arrows indicate higher order modes (HOM) that
are beyond the scope of this analysis. (Color figure online)

Table 2 2-D BB-PD scaling
coefficients values using Point
Collocation (P.C), Subdomain
Collocation (S.C), Least Square
Approximation (L.S) and the
Galerkin method (G)

Optimal Positive

Method P.C P.C S.C S.C L.S L.S G G P.C S.C L.S G
N 2 3 2 3 2 3 2 3 3 3 3 3

α1 1.4 −4.2 1.6 − 1.6 2 −3.8 1.6 − 2.8 0.5 0.5 0.5 0.5

α2 −3.1 5.1 −3.1 − 0.1 −3.6 −0.1 −3.2 1.4 0.5 0.5 0.5 0.5

α3 8.3 5.1 8.2 − 0.1 8.1 −0.1 8.5 1.4 0.5 0.5 0.5 0.5

α4 – 3.1 – 8.5 – 13 – 7.6 3.6 3.2 4.9 3.4

α5 – 1 – 0.3 – 10.5 – − 5.5 0.5 0.5 0.5 0.5

α6 – −16.8 – − 10.2 – −24.8 – − 3.7 0.5 0.5 0.5 0.5

α7 – 29.6 – 26.6 – 25.4 – 28.7 3.8 3.8 6.9 3.8

coefficients for N ∈ {2, 3} are listed in Table 2. Number and
order of the scaling coefficients for N ∈ {2, 3} are shown in
Fig. 3a, b. According to Fig. 3a, b, due to symmetry, the num-
ber of coefficients in Table 2 is one-fourth of the whole bonds
of a node. Moreover, because of the symmetry with respect
to the diagonal axis, the number of independent coefficients
for N > 3 is less than one-fourth of the whole bonds of a
node (see Fig. 3 and Table 2). The wave dispersion plotted
in Fig. 9a, b clearly demonstrate that the scaling coefficients
have effectively modified the results of the original 2-D PD
using optimal solution. It is clearly shown that both pressure
and shear waves have effectively improved using a single set
of scaling coefficients.

7.2.2 Positive-only solution

The scaling coefficients for N = 3are calculatedby introduc-
ing the positive-only constraint (see Table 2). In this method,
MATLABnonlinear least square solver function is employed
to compute the positive scaling coefficients. In order to find
proper scaling coefficients for the improvement of both crack
and wave propagation, we have imposed a constraint on the
lower bound of the coefficients. The lower bound value 0.5
is chosen in this study. More details regarding the positive-
only method and the lower bound value can be found in [41].
These scaling coefficients are computed using point colloca-
tion, sub-domain collocation, least square approximation and
the Galerkin method. Employing positive-only solution, the
results of the applied residual techniques are very close to one
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Fig. 9 Dispersion properties of
the modified pressure (a, c) and
shear (b, d) 2-D BB-PD for
N = 3 using optimal (a, b) and
positive-only (c, d) solutions.
Model parameters: 	 = 1 m,
E = 1 Pa, ρ = 1 kg/m3,
	t = 0.1 s
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another. As it is shown in Fig. 9c, d, using above positive-
only scaling coefficients in the PD formulation effectively
mitigates pressure and shear dispersion relations. Based on
the calculated positive-only scaling coefficients, one is able
to use curve fitting method to find a new influence function.
After employing the Fourier curve fitting, the influence func-
tion is computed as follows

α(|ξ |) = a0 +
8∑
j=1

a j cos

(
j
|ξ |
	

w

)
, (50)

where a0 = 2.3, a1 = 2.0, a2 = −0.39, a3 = −0.48, a4 =
0.28, a5 = 0.14, a6 = −0.15, a7 = −0.02, a8 = 0.05 and
w = 1.1. Note that above influence function is computed
in such a way that it is firmly compatible with strain energy
equivalence mentioned in Eq. (5). The curve correspond-
ing to the influence function is shown in Fig. 10. The red
circles represent the scaling coefficients calculated through
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Fig. 10 Influence function curve for N = 3. (Color figure online)

sub-domain collocation and the black dashed line indicates
the influence function obtained through curve fittingmethod.
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Fig. 11 Angular frequency versus wavenumber over the contour O − M −Y using a optimal and b positive-only solutions. c Comparison between
errors in the modified models. Model parameters: 	 = 1 m, E = 1 Pa, ρ = 1 kg/m3, 	t = 0.1 s

7.2.3 Error calculation

The angular frequencies and the error corresponding to each
method is calculated and compared in Fig. 11. Angular fre-
quency of the wave over the IBZ contour using optimal and
positive-only solutions for various minimization techniques
are compared against analyticalmethod inFig. 11a, b, respec-
tively.Using optimal solution, themodified curves in Fig. 11a
follow the local result (black solid line) much more accurate
than those curves in Fig. 11b which are obtained through
positive-only solution. Errors corresponding to each method
were calculated using Eq. (51).

Err =
∮
IBZ

V 2
p

(∣∣∣|k̄|p − |k|2
∣∣∣
)

+ V 2
s

(∣∣∣|k̄|s − |k|2
∣∣∣
)
dkkk.

(51)

Figure 11c shows the error corresponding to each method.
Error values are normalized based on the error related to the
original BB-PDmethod.According to the information in Fig.
11c, the error of the optimal solution ismuchmore lower than
that of positive-only one. In the optimal and positive-only
methods, point collocation and least square approximation
are showing the minimum error, respectively.

7.2.4 Crack propagation

Crack propagation in the pre-notched plates with different
loading conditions (see Figs. 12 and 13) is investigated using
the modified influence function in Eq. (50). In order to simu-
late crack propagation, initially the critical stretch, s0, needs
to be determined. According to the reference [17], the frac-
ture energy G0 in the BB-PD model can be computed as
follows

G0 = 2
∫ δ

0

∫ δ

z

∫ cos−1( z
ξ
)

0

cα(|ξ |)s20
2

ξ2dθdξdz, (52)

employing Eq. (50) in Eq. (52), the critical stretch in the
BB-PD model for the modified influence function can be
evaluated. Considering the Soda-lime glass material proper-
ties in the first example (see Fig. 12), E = 72 GPa, ρ = 2440
kg/m3, ν = 0.22 and G0 = 135 J/m2, the critical stretch
in the plane strain condition for the original and modified
BB-PD is s0 = 0.0013 and s0 = 0.0014, respectively. In
the pre-notched plate in Fig. 12a, the load σ = 12 MPa is
applied uniformly at top and bottom surfaces. Horizon value
and time step in this study are δ = 0.75 mm (N = 3) and
	t = 25 ns, respectively. Figure 12b, c demonstrate crack
propagation at t = 46 µs using the modified and original
BB-PD formulation, respectively. The variation of the crack
branching position in the modified model is small in compar-
ison with that of original one. This achievement is in good
agreement with that which is addressed in [42] for constant
and conical micro-modulus functions.

In the second crack modeling study, a square plate with
an inclined crack 45◦ under uniform stretch loading σx =
σy = 23 MPa in x and y directions is considered (see Fig.
13a). Length of the plate and crack are 0.05 m and 0.01
m, respectively. The square plate is made of Duran 50 glass
with following material properties, E = 65 GPa, ρ = 2235
kg/m3, ν = 0.2 and G0 = 204 J/m2. Using Eqs. (52) and
(50), the critical stretch s0 in the original and modified BB-
PD formulation is 0.0023 and 0.0026, respectively. Crack
propagation in the square plate at t = 22 µs using modi-
fied and original PD formulation is shown in Fig. 13b, c. It
can be observed that, similar to the original BB-PD model,
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Fig. 12 a Schematic of a
pre-notched plate under stretch
loading. Crack propagation in
the plate using b modified and c
original BB-PD formulation at
t = 46 µs. Model parameters:
N = 3,	 = 0.25 mm, E = 72
GPa, ρ = 2440 kg/m3, 	t = 25
ns

(a)

0 0.02 0.04 0.06 0.08 0.1

0.04

0.02

0

(b)
0 0.02 0.04 0.06 0.08 0.1

0.04

0.02

0

(c)

(a)

-0.02 -0.01 0 0.01 0.02

0.02

0.01

0

-0.01

-0.02

(b)

-0.02 -0.01 0 0.01 0.02

0.02

0.01

0

-0.01

-0.02

(c)

Fig. 13 a Schematic of a pre-notched square plate under stretch loading. Crack propagation in the plate using b modified and c original BB-PD
formulation at t = 22 µs. Model parameters: N = 3,	 = 0.25 mm, E = 65 GPa, ρ = 2235 kg/m3, 	t = 25 ns

branching in the modified method starts from the pre-crack
tip. Moreover, the effect of the introduced influence function
on the crack path is negligible. These achievements are in
agreement with the results of reference [43].

Finally, based on the above crack modeling studies, it
is observed that the modified BB-PD formulation can be
adopted to accurately simulate crack propagation problems.
Furthermore, this approach introduces a more accurate wave
dispersion relation in comparison to that of original BB-PD.

8 Conclusion

Wave dispersion in 1-D and 2-D Peridynamic media was
investigated. Deficiencies of the BB-PD formulation in the
modeling of wave propagation were studied. Four different
residual techniques, i.e., point collocation, sub-domain collo-

cation, least square approximation and the Galerkin method,
were proposed and scaling coefficients corresponding to all
bonds were computed. The main achievements of the study
are pointed out as follows

(1) A set of scaling coefficients to be applied to the stiffness
of the bonds to improve wave dispersion in 1-D PD was
introduced and it was observed that, among four different
minimization approaches, the Galerkin method produces
more accurate wave dispersion properties.

(2) A set of scaling coefficients to improve pressure and shear
waves in 2-D PDwas defined using optimal and positive-
only solutions. It was found that the optimal solution
provides more accurate wave dispersion relation. How-
ever, it doesn’t produce stable crack propagation.

(3) Performing the integration over the irreducible Bril-
louin zone, different minimization approaches were
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implemented and it was seen that in the optimal and
positive-only solutions, point collocation and least square
approximation produce more accurate wave dispersion
relations, respectively.

(4) Using the positive-only scaling coefficients, a new influ-
ence function was introduced through Fourier curve
fittingmethod.Theproposed influence function improves
the wave dispersion relation in the BB-PD formulation.
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A Characteristic equation

The characteristic equation for a 2-D non-local model is
obtained from

∣∣∣∣∣∣∣∣∣

N̄∑
i=1

cαi Āi (cos(θi ))2 − ρω2
N̄∑
i=1

cαi Āi cos(θi ) sin(θi )

N̄∑
i=1

cαi Āi cos(θi ) sin(θi )
N̄∑
i=1

cαi Āi (sin(θi ))2 − ρω2

∣∣∣∣∣∣∣∣∣
= 0,

(53)

Equation 53 can be rewritten in a simpler form as follows

∣∣∣∣C̄ − ρω2 P̄
P̄ S̄ − ρω2

∣∣∣∣ = 0, (54)

where

C̄ =
N̄∑
i=1

cαi Āi (cos(θi ))
2,

S̄ =
N̄∑
i=1

cαi Āi (sin(θi ))
2,

P̄ =
N̄∑
i=1

cαi Āi cos(θi ) sin(θi ), (55)

the characteristic equation assumes bi-quadratic form and
yields

ρ2ω4 − ρ(C̄ + S̄)ω2 + C̄ S̄ − P̄2 = 0. (56)

The solution of Eq. (56) gives two distinct roots ω2
p,s

ω2
p,s = 1

2ρ

[(
C̄ + S̄

) ± 2
√(

C̄ − S̄
)2 + 4P̄2

]
, (57)

substituting Eq. (55) in Eq. (57) and rearrangement yields

ω2
p,s = c

2ρ⎡
⎣
(

N̄∑
i=1

αi Āi

)
± 2

√√√√
(

N̄∑
i=1

αi Āi cos(2θi )

)2

+
(

N̄∑
i=1

αi Āi sin(2θi )

)2
⎤
⎦ .

(58)
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