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Abstract
The paper describes the so-called Waterfall Algorithm, which may be used to calculate a set of parameters characterising
the spatial structure of granular porous media, such as shift ratio, collision density ratio, consolidation ratio, path length and
minimum tortuosity. The study is performed for 1800 different two-dimensional randompore structures. In each geometry, 100
individual paths are calculated. The impact of porosity and the particle size on the above-mentioned parameters is investigated.
It was stated in the paper, that the minimum tortuosity calculated by the Waterfall Algorithm cannot be used directly as a
representative tortuosity of pore channels in the Kozeny or the Carman meaning. However, it may be used indirect by making
the assumption that a unambiguous relationship between the representative tortuosity and the minimum tortuosity exists. It
was also stated, that the new parameters defined in the present study are sensitive on the porosity and the particle size and
may be therefore applied as indicators of the geometry structure of granular media. The Waterfall Algorithm is compared
with other methods of determining the tortuosity: A-Star Algorithm, Path Searching Algorithm, Random Walk technique,
Path Tracking Method and the methodology of calculating the hydraulic tortuosity based on the Lattice Boltzmann Method.
A very short calculation time is the main advantage of the Waterfall Algorithm, what meant, that it may be applied in a very
large granular porous media.

Keywords Waterfall Algorithm · Tortuosity · Porous beds · Granular media · Discrete element method

1 Introduction

It is obvious that the length of a path in a non-empty space
is usually higher than the length of this space measured in
the same direction. The importance of this fact increases in
relation to the decrease in the available free space and to the
increase in the degree of geometry complication of the con-
sidered space. Different effects resulting from the increase in
the relative path lengths are known in geodesy [1], transport
[2], logistic [3], robotics [4], fluid mechanics [5], thermo-
dynamics [6], energetics [7], electrochemist [8], physic and
astronomy [9], medicine [10], ecology [11] and other areas.
The relative elongation of a path in a limited space is known
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as the tortuosity. This parameter is defined as follows:

τ = L p

L0
(1)

where τ it the tortuosity (–), L p is the path length (m) and
L0 is a distance, for which the path is calculated (m).

The tortuosity idea (but not the name of this parameter)
was introduced by Kozeny [12], to correct the way of cal-
culating the piezometric head occurring during fluid flows
through porous media (Fig. 1a). Kozeny stated that the uni-
tary piezometric head (or pressure drop) is in fact smaller
when it is calculated for a real path length, and not for the
total thickness of the porous body. In turn, Carman [13] used
the same parameter to calculate the real velocity in pore chan-
nels. He stated that this velocity is higher than the filtration
velocity (Fig. 1b). The investigations performed by these two
researchers resulted in the so-called Kozeny–Carman equa-
tion

−dp

dx
= CKCτ f S

2
0,Carman

(1 − φ)2

φ3 , (2)
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Fig. 1 Application of the tortuosity concept in the theory of fluid flows through porous media: correction the piezometric head (a), correction the
filtration velocity (b)

where p is the pressure (Pa), x is a coordinate along which
the pressure drop occurs (m), τ f is the tortuosity factor (–)
defined as the square of the tortuosity τ (–), CKC is a pore
shape factor (–) (a model constant, usually equal to 5.0 [13]),
S0,Carman is the specific surface of the porous body in Car-
man meaning (1/m) (it is the inner surface of the solid body
divided by the total volume of the solid part), φ is the poros-
ity (–). If the tortuosity is directly calculated on the basis of
the shapes of pore channels, than it is called the geometric
or geometrical tortuosity. Note that the tortuosity factor is
not the same than the tortuosity. In some papers, this issue is
not underlined well enough and the Reader may be confused.
Moreover, quite often both of these parameters are denoted
by the same symbol, usually τ (like, e.g. in works [14] and
[15]).

The tortuosity conceptwas very quickly applied in the the-
ories related to the processes having a diffusional character
(overall inmeaning of Fourier’s law, Fick’s law, laws describ-
ing Markov processes or other). Knudsen (1928) proposed a
following relationship (cited after [16] and [17]):

Deff = D
ε

τ f
, (3)

where Deff is the effective diffusivity (m2/s), D is the intrin-
sic diffusivity of the conductive phase (m2/s), ε is the volume
fraction of the conductive phase (–). The concept of the effec-
tive diffusivity gave rise to a new group of methods serving
to calculate the tortuosity (in this context called the diffu-
sion tortuosity). Currently, different numerical methods are
usually applied to investigate diffusion processes [15,18].
The main advantages of this approach are the mathemat-
ical simplicity of the diffusion equation, relatively simple
implementation and low demand of computational power in
comparison with other methods, particularly with the Lattice
Boltzmann Method mentioned below.

After the popularization of modern computational meth-
ods, new possibilities to calculate the tortuosity appeared.
Koponen et al. [19,20] proposed a methodology based on the
Lattice Boltzmann Method (LBM). In this approach, the tor-
tuosity (called usually the hydraulic tortuosity) is defined as
follows

τ = 〈|v|〉
〈vx 〉 , (4)

where |v| is the absolute value of local flow velocity obtained
for a creeping flow, vx is theX-component of velocity (where
X is the direction of main flow), 〈〉 is spatial average over the
pore space. The LBM-based methodology is usually applied
in different, randomly generated pore structures consisting
of rectangles (in 2D) or cuboids (in 3D) [21–23]. Other
shapes of obstacles are taken into account relatively sel-
dom (e.g. spherical particles like in [24]), mainly due to high
requirements of lattice quality. The main disadvantage of the
describedmethodology is a huge computational cost required
to perform a LBM simulation, what limits its application to
relatively small scale systems. In general, the velocity field
needed to applicate Eq. (4) may be obtained with the use of
a few other numerical techniques, like the Finite Volume
Method (FVM), the Immersed Boundary Method (IBM),
the Finite Element Method (FEM) or even the Finite Dif-
ference Method (FDM). However, the level of difficulty is
even greater due to the requirements related to the quality of
numerical grids. The methodology based on LBM simula-
tions was also used in a previous work of the author (2019)
[25]. The main result of those investigations was a new func-
tion serving to calculate tortuosity on the basis of the porosity
and the size of a structural element forming the solid part of
the porous body. It should be noted that if a velocity field is
available, than the streamlines may be also calculated. Con-
sequently, because they represent directly the paths lengths, a
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new kind of tortuositymay be obtained, the so-called stream-
line tortuosity.

More information can the Reader find in the review
paper [26], in which 203 publications about tortuosity were
analysed and summarized. All the available methods were
divided into group having similar features and clearly com-
pared in tables and figures.

Summarising the basic information, the tortuosity may be
obtained as follows:

(a) By the use of experimental-based methods. Here, the
Computed Tomography and Image Analysis (CT/IA) is
usually applied [15,27]. Sometimes other methods are
proposed, e.g. those based on acoustic [28], electrical
[29] or optical [30] phenomena.

(b) By the analysis of the pore channels geometry and the
application of Eq. (1). The computational space may be
expressed directly in a form of the vector geometry, or
indirectly, by a grid of nodes, cells, elementary volumes,
pixels or voxels. Algorithms may have analytical ori-
gins or may be based on different discrete techniques.
Different methods based of the Random Walk technique
developed by Pearson in 1905 [31] are here quite often
applied.

(c) By the analysis of diffusional properties of porous media
and the application of Eq. (3).

(d) By the analysis of transportation properties of fluids flow-
ing through pore channels and the application of Eq. (4).
Alternatively, lengths of streamlines may be calculated
to obtain the streamline tortuosity.

(e) By the use of hybrid methods combining different
approaches described in previous items, e.g. CT/IA tech-
niques needed to obtain the geometry with RandomWalk
algorithm serving to calculate lengths of particular paths.

(f) By the use of empirical formulas available in the litera-
ture (but usually obtained frommethodologiesmentioned
above), it is assumed that the tortuosity is a direct func-
tion of the porosity [32]. The impact of other factors is
rarely taken into account.A short reviewof such formulas
dedicated for granular beds was presented in a previous
work [33] and because of that is not repeated here.

Theherebypaper is related to geometricalmethods, partic-
ularly these in which lengths of pore channels are calculated
on the basis of different iterative numerical algorithms. The
main area of interest is the granular beds, that is the porous
media consisting of circular (in 2D) and spherical particles
(in 3D). A short review of the most interesting works is pre-
sented below.

Nakashima and Watanabe [34] applied the RandomWalk
Method to calculate the tortuosity in a granular bed consist-
ing of spherical particles with the average diameter equal to
2.11mm and the standard deviation of 0.06mm. The geom-

etry of the porous medium is described by a discrete lattice
of voxels. The walker executes a random jump to one of the
six nearest unoccupied sites. If the randomly selected site or
voxel is occupied by an obstacle or solid, the jump is not
performed.

Delarue and Jeulin [35] analysed themorphological struc-
ture of six composite materials containing aggregates of
spherical inclusions based on the data obtained by X-ray
microtomography. The tortuosity was calculated in every
space direction on the basis of paths consisting of linear sec-
tions (in the space between spheres) and arcs (on sphere
surfaces). These calculations were performed for three-
dimensional numerical grids consisting of voxels. Authors
stated that the tortuosity calculated in such a way is very
low, usually between 1.03 and 1.05. The idea presented by
Delarue and Jeulin is very similar in character to the Water-
fall Algorithm presented in the hereby paper. However, their
description of the method is very short and quite general. It
consists only of few sentences within which neither details
nor features or properties are commented on.

Boudreau and Meysman [36] proposed a geometrical tor-
tuosity model for predicting the tortuosity in marine muds
represented by randomly located and arranged in layers,
nonoverlapping disks. In their model, a virtual walker is
defined the one which attempts to move through the pore
space in a direction parallel to the cylindrical axis of the
disks. According to the model, if the walker is in the pore
space between the disks, it will simply move along the main
direction. If thewalker encounters a disk, it will choose a ran-
dom direction and walk a straight line along the disk surface,
until it reaches the edge of the disk and the movement in the
main directionwill be again possible. Themodel is analytical
and is destined only for obstacles having one shape.

Huang et al. [37] propose the so-called Random Walk-
ing Particle Tracking (RWPT) method. The random walk
of a particle in an advection velocity field is modelled by
a stochastic differential equation containing terms responsi-
ble for the particle displacement, the advection displacement
and a random walk displacement. The geometry is saved in
a form of structural grid, in which each cell represents the
pore space or the solid part of the porous medium. Walkers
follow straight trajectory and change this trajectory only as
a result of collisions with walls.

Amien et al. [38] used the Simple Neurite Tracer (SNT)
to analyse the tortuosity in four kinds of digital samples
of porous rock model of the 256×256 pixels size. NST is
a plugin of ImageJ software designed to allow easy semi-
automatic tracing of neurons or other filament-like structures
(e.g. microtubules, blood vessels) through either 2D images
or 3D image stacks [39]. The details related to the used
method are not supplied, but on the home page of the used
software we can read that the A-Star algorithm is imple-
mented in this code.
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Cao et al. [40] presented an analytical model of calcu-
lating the tortuosity in cement-based materials containing
aggregates with spherical or quasi-spherical shape. Paths are
expressed as straight lines. However, when the path meets
an obstacle, it bypasses it and returns to the original trajec-
tory. Their results seem to be debatable, because the obtained
tortuosity values are very high (between 20 and 50) and this
does not correspondwith the schemas presented in this work,
in which paths are relatively straight.

Gong et al. [41] used micro-CT techniques and Image
Analysis to calculate different parameters characterising the
geometrical features of several kinds of sandstones. Some of
them were defined by Authors. The pore topological prop-
erties were analysed with the use of a pore network model
with various voxel sizes.

Usseglio-Viretta et al. [42] calculated the tortuosity using
a graph analogy: graph nodes are the pore segments’ centres
of mass, while graph edges connect nodes that correspond
to adjacent pore segments in contact. The paths lengths were
calculated with the Dijkstra algorithm. Authors investigated
different 2D and 3D pore structures representing the material
of battery electrodes with a wide range of porosity. It is the
most complicated algorithm from all the presented here.

The hereby paper is a part of a larger investigation, in
which various methods that may be used to calculate the tor-
tuosity in porous media, particularly in granular beds, are
tested or developed. In 2009, the so-called Path Tracking
Method [43] was developed by the author. In this method, it
is assumed that in a 3D bed tetrahedral structures formed
by neighbouring particles can be always found. Having
established the locations and sizes of particles which form
subsequent tetrahedrons, different geometrical parameters
(such as the local length of a path) may be calculated. The
sum of all these local lengths gives the path length (L p),
which can be used to calculate the tortuosity.A comparison of
approaches based on the Path TrackingMethod and the other
one in which the LBM simulations are used was presented in
paper [44]. In paper [25], the hydraulic tortuosity based on a
velocity field obtained by LBM simulations was calculated.
A new function for calculating the tortuosity on the basis
of porosity and the normalized size of a structural element
forming the solid part of the porous body was proposed. In
paper [33], two algorithms acting on a matrix of zeros and
ones represented the porous body geometry were tested: A-
Star Algorithm and the Path Searching Algorithm developed
by the author. It was stated that the tortuosity establishedwith
the A-Star Algorithm is underestimated in comparison with
the tortuosity (hydraulic or geometric) calculated by alterna-
tive numerical techniques; the tortuosity established by the
Path Searching Algorithm is overestimated in comparison
with the tortuosity calculated by alternative numerical tech-
niques; the results obtainedwith the use of the Path Searching
Algorithm are in a good agreement with the values calculated

with the use of different, popular empirical formulas. In the
hereby paper, the so-calledWaterfall Algorithm is described.
The algorithm was developed by the author in 2019. The
main aim of the investigations presented here is to recognize
the features and possibilities of this algorithm as well as its
potential.

The discussion about the Waterfall Algorithm is divided
into two parts. In the first stage, a comparison with binary
algorithms described in paper [33] as well as with the Radom
Walk technique is presented (Sec. 3.1). Additionally, the
number of paths needed to obtain a representative value of the
tortuosity for a 2D geometry is studied (Sec. 3.3). In this part,
a comparison with the results obtained in the paper [44] is
also shown (Sec. 3.2). After this stage, a set of new geometry
indicators of ratios is proposed (Sec. 3.4). In the second part
of the paper, a parametric study is described, in which 1800
pore structures with different porosities and particle size are
analysed (Sect. 3.5). In that part, the relationships between
porosity, particle size and geometry indicators as well as the
tortuosity are shown.

2 Materials andmethods

2.1 Materials

In the investigations, randomly generated porous beds with
different porosity and particle size are used. It is assumed that
the domain length is equal to 1m in each direction. The par-
ticles are non-overlapping, and the minimum distance equals
zero. In the main part of investigations, a set of 1800 pore
structures with porosities between 0.5 and 0.9 was used. The
particle sizes vary from 0.005 to 0.09m. The geometry is
generated by the use of a software written in the Fortran pro-
gramming language.

2.2 Waterfall Algorithm

TheWaterfall Algorithm is the author’s algorithm for search-
ing as short as possible paths in granular beds consisting of
spherical or circular particles, saved in the form of a vec-
tor geometry (Fig. 2). The geometry may be generated by
appropriate random algorithms or by the use of the Discrete
Element Method. Both ways were tested, and it was stated
that there is no difference in acting the algorithm proposed.
Only one condition is that particles forming a bed should not
overlapping each other.

The algorithm covers the following steps:

(a) Determining the location of the so-called Start Point.
(b) Drawing a line from the Start Point parallel to the chosen

direction of the Cartesian coordinate system (here to X
direction).
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Fig. 2 The main idea of the Waterfall Algorithm

(c) Searching for the first sphere or circle having the common
point with the line.

(d) Calculating coordinates of the point (Pin), in which the
line enters into the current sphere or circle.

(e) Calculating coordinates of the point (Pout), in which the
path leaves the current sphere or circle. This point is
always located on a plane perpendicular to themain direc-
tion and passing through the centre of the current sphere
or circle.

(f) Calculating coordinates of intermediate points linking
Pin and Pout located on the sphere surface or the cir-
cumference of the circle.

(g) Repeating the algorithm starting with step (b). This time
the subsequent lines (here called the current lines) are
drawn from Pout points. In the paper, all points from
which new lines are drawn (namely, Start Point in the
1st iteration and then all Pout points) are called the Cur-
rent Points (CP). Analogically, each sphere or circle for
which Pin and Pout points are calculated is called the
Current Sphere or the Current Circle.

(h) Finishing the algorithm if the current line does not cross
any sphere or circle. In such a case, the last path point is
added and the current path is completed.

The Waterfall Algorithm operates on a set of non-
overlapping spherical or circular particles, for which the
coordinates of the centres of all particles and their diame-
ters or radii are known. In the implementation, it is assumed
that such a set is prepared in advance, e.g. with the use of
the random number generator and then saved in a file with an
appropriate format. Optionally, the geometry of the system
can be rotated by changing the X and Y, X and Z or Y and Z
coordinates. At this stage, the geometry can be also scaled to
other sizes according to any adopted scale factor, under the
condition that the factor is the same for all space directions.
Different scale factors would cause the particles to deform
and, as a result, they would no longer be spherical or circular.

Fig. 3 The idea of iterative searching the sphere which has a contact
with the current line

An important feature of the Waterfall Algorithm is that it
works in the exactly same way for 2D and 3D geometries.
The only difference is that in two-dimensional systems the
value of the Z coordinate of all particles, as well as the Z
coordinate of points Pin and Pout, is reset to zero.

At the beginning of the program operation, the bed geom-
etry is read from a file. At that stage, each particle is being
assigned an identificationnumber ranging from1 tons ,where
ns is the total number of particles in the bed. This number
is used to indicate which particle in the bed is the Current
Sphere or the Current Particle.

The identification number of the current particle can be
determined by an analytical or numerical method. Due to the
simplicity of the operation, in the implementation described
here, a numerical approach is used. It consists of iteratively
shifting additional control point Pi which moves along the
current line by a certain, assumed, spatial step (dx), until it
is inside some particle (Fig. 3).

The value of the spatial step is determined from the diam-
eter of the smallest particle in the bed

dx = dmin

dr
, (5)

where dx is the spatial step in X direction (m), dmin—
minimum particle diameter (–), dr—searching resolution
(assumed to 1000) (–).

Location of Pin point (Fig. 4) may be calculated analyti-
cally from the sphere equation inCartesian coordinates (here,
the 3D space is assumed)

(x − x0)
2 + (y − y0)

2 + (z − z0)
2 = r20 , (6)

where x0, y0 and z0 are coordinates of the centre of the current
sphere (m), r0 is the radius of the current sphere (m). Since
it is known that the yin and zin coordinates of the point Pin
are the same as the coordinates of the Current Point, then to
determine the xin coordinate of this point it is enough to solve
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Fig. 4 Schema of the main elements of the Waterfall Algorithm

the following quadratic equation (where the lower value is
the searched solution)

ax2 + bx + c = 0, (7)

where

a = 1, b = −2x0, c = x20 −r2+(yc− y0)
2+(zc−z0)

2. (8)

In the implementation of the algorithm, the task of deter-
mining the coordinates of the points Pin and Pout is performed
in two separate external procedures. The first one (called
“find_in”) requires variables x0, y0, z0, r0, yc and zc and
returns the xin, yin and zin coordinates. The second procedure
(called “find_out”) requires the values of x0, y0, z0, r0, yin
and zin and returns the xout, yout, and zout coordinates.

Coordinates of the Pout point are calculated on the basis
of the knowledge of the α angle between the OPout section
and the Z axis (Fig. 5):

α = acos

(
zc − z0√

(yc − y0)2 + (zc − z0)2

)
. (9)

These coordinates are calculated as follows:

xout = x0, (10)

yout =
{
y0 + 0.5d0sin(α) foryin > y0
y0 − 0.5d0sin(α) foryin ≤ y0

, (11)

zout =
{
z0 + 0.5d0cos(α) forzin > z0
z0 − 0.5d0cos(α) forzin ≤ z0

. (12)

The intermediate points (Qi ) lying on the surface of the
current sphere between points Pin and Pout are determined
in two steps within one calculation loop. In the first step,
the yQ and zQ coordinates of the ith intermediate point are
calculated:

Fig. 5 Schema of elements serving to calculate intermediate path points

Fig. 6 Visualisation of the Starting Point and Pin and Pout points
obtained for the first iteration of the first path

Fig. 7 Visualisation of the first path and all current spheres belonging
to this path

yQ,i =
{
yin + dy(i − 1) foryin > y0
yin − dy(i − 1) foryin ≤ y0

, (13)

zQ,i =
{
zin + dz(i − 1) forzin > z0
zin − dz(i − 1) forzin ≤ z0

, (14)
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Fig. 8 Visualisation of all 16
paths obtained for the
exemplary 3D geometry

where

dy = yout − yin
nQ

, dz = zout − zin
nQ

. (15)

The nQ means the assumed number of intermediate points
(100 in next considerations).

At the second stage, the “find_in” subroutine with yQ,i

and zQ,i variables inserted instead of yc and zc is applied.
Repeating this procedure nQ times, a poly-line linking Pin
and Pout points is obtained.

The path length (L p) is calculated as the sumof the lengths
of straight sections lying between successive points on the
path. Once the domain length (L0) is known, the tortuos-
ity may be calculated. Figure 6 shows the key elements of
the Waterfall Algorithm for an exemplary 3D geometry. The
visualisation covers the elements specified in the first itera-
tion of the first path. The Start Point is marked with a black
cube, point Pin is in blue, and point Pout in green. In order
not to impair the visibility, the drawing does not take into
account the intermediate points lying on the surface of the
sphere.

In Fig. 7, the full trajectory of the first path for the same
geometry is shown. This figure also shows all the spheres
which became successive current spheres during the calcu-
lations. The number of “collisions” of lines originating from
consecutive Current Points is relatively small, which results
from the relatively high porosity of the system, equal in this
case to 0.735.

Because one single path may not represent the features of
a granular bed in a proper way, a regular grid of Start Points
is applied in each case. In Fig. 8, an example of such a grid
consisting of 16 Start Points is presented.

3 Results and discussion

3.1 Waterfall Algorithm versus binary algorithms

In paper [33], an idea to calculate tortuosity based on geom-
etry expressed in a form of binary matrix was studied. In this
approach, the geometry of a granular bed is represented by a
grid of nodes which are regularly arranged in the space. Each
node is assigned with a binary value : zero, when the node is
located in the pore space, and one, when the node is located
inside the solid part of the porous body. Once such a space
is specified, a path connecting subsequent zero nodes may
be calculated with the use of appropriate algorithms. This
section refers to the paper cited above. A comparison with
the popular RandomWalk Method is additionally presented.

Figure 9 shows a comparison of results obtained by: (a) the
Waterfall Algorithm (black lines), (b) the A-Star Algorithm
with the Euclidean heuristic function in the static variant
(blue lines), (c) the A-Star Algorithm with the Euclidean
heuristic function in the dynamic variant (red lines), (d) the
Path Searching Algorithm (green lines). In the static (clas-
sical) variant of the A-Star Algorithm, the target node (the
so-calledStopPoint) remainsmotionless during calculations.
In turn, in the dynamic variant the target node changes depen-
dent of the location of the current node of the path. In this
test, an exemplary 2D geometry is used. Before calculating,
the input geometry was converted to a grid of nodes with res-
olution 500×500. The mean tortuosity value (average value
from 50 individual paths) for the algorithms mentioned here
is 1.0972 (a), 1.1847 (b), 1.1891 (c) and 1.8248 (d), respec-
tively. It is noticeable that despite the qualitative similarity of
all types of paths, the lowest (minimum)valueswere obtained
when the Waterfall Algorithm was applied.
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Fig. 9 A comparison between
acting the Waterfall Algorithm,
the A-Star Algorithm and the
Path Searching Algorithm (the
number of paths is limited to 10)

Figure 10 shows an analogous comparison of results for
the same geometry obtained by: (a) the Waterfall Algorithm
(black lines), (b) the Random Walk Method with D3Q26
grid model (red lines), (c) the Random Walk Method with
D3Q6 gridmodel (blue lines). The gridmodelmeans here the
number of possible directions of path movement. In D3Q26
variant, the path may move in perpendicular directions as
well as in diagonal directions in the relation to the current grid
node. In D3D6 variant, the diagonal directions are forbidden.
The RandomWalk Method gives quite chaotic paths shapes,
and their lengths are much higher than in the other methods.
The average tortuosity in the D3Q26 and D3Q6 variants is
equal to 2.5477 and 2.5303, respectively.

Note, that the Waterfall Algorithm does not contain
random elements, like in the case of the Path Searching
Algorithm [33] or Random Walk Method. Each run of the
programwith the samegeometry and the same search settings
results in the same path trajectory and the same tortuosity. In
this context, the Waterfall Algorithm is similar to the A-Star
Algorithm which has the same feature.

It should be underlined that in all the so-called binary
algorithm the result depends on the grid resolution. Here,

only one resolution was used, but that is enough to catch
similarities and differences between all approaches.

On this stage, a new general idea may be presented: since
different algorithms give different tortuosity values even at
the same conditions, maybe we should always base on the
minimum tortuosity, which is always only one? This question
remains open.

In Fig. 11, a relative comparison of calculation times (on
the same computer) for all above described approaches is
presented. As may be seen, the Waterfall Algorithm works
very fast. The calculation time is about 100 times shorter
compared to the Random Walk Method and about 100000
times shorter than the Path Searching Algorithm or the A-
StarAlgorithm. Itmeans that theWaterfall Algorithmmay be
used for very large granular beds, what is its high advantage.

3.2 Waterfall Algorithm versus hydraulic and
geometric tortuosity

In paper [44], a comparison of hydraulic tortuosity calcu-
lated by the use of the Lattice Boltzmann Method and the
geometric tortuosity obtained by the Path Tracking Method
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Fig. 10 A comparison between
acting the Waterfall Algorithm
and Random Walk Method (the
number of paths is limited to 10)

was presented. The study was performed for a set of exem-
plary 3D granular beds generated by the Discrete Element
Method. The porosity, the number of particles, the aver-
age diameter and the standard deviation were equal to
0.41 (–), 5000 (–), 6.072mm, 0.051mm, respectively. The
number of fractions used to reconstruct the diameters distri-
bution curve varied from 3 to 25. Each case was repeated 3
times. The representative hydraulic tortuosity for the case
with 25 particles fractions was equal to 1.2314, 1.2331
and 1.2340 for repetitions 1, 2 and 3, respectively. In turn,
the geometric tortuosity calculated from 25 independent
paths in the same samples was equal to 1.2128, 1.2127 and
1.2148.

Figure 12 shows 25 paths obtained by the Waterfall
Algorithm for the bed sample No. 1. The average values
for repetition 1, 2 and 3 were equal to 1.06, 1.06 and
1.0605, respectively. After making an assumption, that there
is a direct unambiguous relation between a representative
tortuosity (e.g. hydraulic or geometric) and the minimum
tortuosity, the following formula may be proposed

τ = s f τmin, (16)

Fig. 11 Comparison of the computation time

where τ—the representative tortuosity (–), s f—a scale fac-
tor (–), τmin—the minimum tortuosity (calculated with the
Waterfall Algorithm) (–).

For the given data, s f ≈ 1.163 for calculating the
hydraulic tortuosity and s f ≈ 1.144 for calculating the geo-
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Fig. 12 Visualization of paths determined by the Waterfall Algorithm
(bed sample No. 1)

metric tortuosity. Similar scale factors may be calculated for
other methods of calculating the tortuosity, e.g. of binary
algorithms mentioned in the previous section. This issue
remains open and needs further investigation.

The time needed to obtain the hydraulic tortuosity by the
use of the Lattice Boltzmann Method reached hours, depen-
dent on the grid resolution used. The Path Tracking Method
turned out to be much faster. The average time of calculating
a single paths was equal to about 6 s. The average time for
calculating one single paths with theWaterfall Algorithm for
the same porous media was equal to 0.64 s.

3.3 The needed number of Start Points

Figure 13 shows the impact of the number of Start Points
on the average tortuosity value. The calculations were per-
formed 100 times, starting with 10 Start Points. Then, the
number of Start Points was increased by 10 in each repeti-
tion. In this test, the same geometry as in the Sect. 3.1 was
used. Assuming that the exact value is the mean tortuosity
obtained for 1000 paths (which is only an approximation
as the mean value fluctuates all the time), the relative error
can be calculated for any other number of Start Points. For
example, the tortuosity for 50 paths, which was determined
in Sect. 3.1, differs from the above-mentioned exact value by
0.17%. Such a difference may be neglected. The performed
test shows that accepting several dozen Start Points is prac-
tically as good as accepting hundreds or thousands of such

Fig. 13 Tortuosity as a function of the number of Start Points

Fig. 14 Schema for visualisation proposed geometry ratios

points. The same conclusion comes from other 2D and 3D
tests which are, not, however, shown in the paper.

It should be added that an excessive increase in the number
of Start Points does not have much justification for a couple
of reasons. First, it causes a linear increase in computation
time. Second, the high density of the Start Points causes that
many neighbouring paths have the same shape besides the
part located between the Start Point and the first Pout point
(see paths s3 and s4 in Fig. 14). Consequently, certain groups
of paths generate a very similar tortuosity value.

3.4 Proposition of new geometry indicators

The data obtained during the acting of the Waterfall Algo-
rithm may be used to define several new parameters or
indicators that can be used in a direct or comparative anal-
ysis of the geometrical features of different granular porous
media. They may be defined as follows (Fig. 14):

– global shift ratio—an indicator describing the relative
displacement of the first and the last point of a path in the
plane perpendicular to the main direction:
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Fig. 15 The number of particles
in function of φ and s
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, (17)

where dyglobal is the distance between the first and the last
point of the current path in the Y direction (m), dzglobal
is the distance between the first and the last point of the
current path in the Z direction (m), lx is the length of the
granular bed in X direction (m).

– collision density ratio—an indicator describing the num-
ber of contact points between the current lines and current
spheres per unit length

Icol = ncol
lx

, (18)

where ncol is the number of current spheres in the path
(–).

– consolidation ratio—an indicator describing the consol-
idation degree of paths beginning from different Start
Points

Icon = nstop
nstart

, (19)

where nstart is the number of Start Points defined in the
current calculation (–), nstop is the number of last path
points with independent coordinates (–).

In the next investigation, the idea of the so-called structural
element is used. It is a single object (here a circle) constituting
an independent fragment of the skeleton of a porous medium
[25]. The size of the structural element in the dimensionless
form is defined as follows

s = d

lx
, (20)

where d is a characteristic length (here, it is the particle diam-
eter) (m). Since in the test the unit size of 1m by 1m of the
computational domain is assumed, the value of s is always
the same as the particle diameter. For the same reason, the
value of the collision ratio may be here directly interpreted
as the number of Pin points.

3.5 Investigation of geometry indicators

In order to investigate whether and how the values of the indi-
cators described in previous subsection change, 1800 porous
structures were randomly generated in two-dimensional
space with the size of 1 × 1m for ten porosities (from 0.5
to 0.95, every 0.05) and eighteen particle diameters (from
0.005 to 0.09m, every 0.005m). Tries of generating struc-
tures with porosity of 0.45 or less failed despite the fact,
that the minimum theoretical porosity of uniform particles
is equal to 0.339 [45]. The geometry was created with the
use of an Author’s algorithm based on the random number
generator. The minimum distance between particles was set
to zero. It means that the particle could touch each other,
but they could not overlap. The number of particles needed
to obtain an assumed porosity for a chosen normalised size
of the structural element varied from 8 (for φ = 0.9 and
s = 0.09) to 25461 (for φ = 0.5 and s = 0.005). Each vari-
antwas repeated ten times.Due to the analytical approach, the
number of particles in each repetition was the same (Fig. 15),
but the particles had different locations. For every geometry,
100 Start Points was defined. In consequence, the obtained
data set contained 180,000 individual paths.
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Fig. 16 Paths obtained for φ = 0.5, first repetition and s = 0.02 (a), 0.04 (b), 0.06 (c) and 0.08 (d)

Fig. 17 Distribution of the global shift ratio for φ = 0.5 (a) and for all porosities (b)
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Fig. 18 Distribution of the collision density ratio for φ = 0.5 (a) and for all porosities (b)

Figure 16 shows selected examples of paths obtained for
the lowest porosity and different normalized sizes of struc-
tural elements. It can be seen that despite the same porosity,
the obtained patterns differ qualitatively. The same effect
occurs in all other porosities. This shows that more than just
porosity is required to understand or describe the properties
of such porous media.

In Fig. 17a, values of the global shift ratio for all struc-
tures with the porosity equal to 0.5 are visible. A single point
on the graph represents the average value obtained from
100 independent paths. It was stated that the relationship
is nonlinear. The proposed fit the Ishift(s) = asb function,
where a = 0.187 and b = 0.517. Note, that the range of
global shift coefficient decreases in a significant way when
the normalized size of the structural element decreases. Such
a result was expected, but without appropriate investigations,
it was impossible to predict the character of the function. In
Fig. 17b, the average values of global shift ratio for all data
are compared. It may be seen that the impact of the nor-
malized size of the structural element is more noticeable for
smaller porosities.

In Fig. 18a, the collision density ratio for all pore struc-
tures with porosity 0.5 is shown. As expected, the number
of collisions decreases if the size of the structural element
increases. The proposed fit the Icol = a

sb
function, where

a = 0.666 and b = 1.013. The same function type was used
to fit the data representing the consolidation ratio (Fig. 19a).
Values of a and b coefficients are in this case equal to 0.032
and 0.456, respectively. Interestingly, the collision density
ratio is very stable for both, the chosen porosity and the nor-
malized size of the structural element. The collision density
may be a very good indicator characterising the geometrical
features of granular media. The consolidation ratio has sim-
ilar features; however, the range of values is higher for each
case. The collision density ratio grows when both, the poros-

ity and the normalized size of the structural element, decrease
(Fig. 18b). In turn, the consolidation ratio decreases for low
porosity and high values of the normalized size of the struc-
tural element (Fig. 19b). Such relationships were expected,
but the character of changes was unknown.

InFig. 20a, the porosity-tortuosity relation for the obtained
data is presented. As previously, a single point on the graph
represents the average value obtained from 100 independent
paths. In Fig. 20b, a comparison with two empirical formu-
las presented in the literature is shown [19,46]. Both of them
refer to hydraulic tortuosity obtained fromLBM simulations.
It may be seen that the general trend is correct; however,
Waterfall Algorithm significantly underestimates the tortuos-
ity values.Amiennoted [38] thatwhen compared to hydraulic
tortuosity, geometrical tortuosity has smaller values. The rea-
son is that hydraulic tortuosity is calculated on the basis of
the flow path which lies precisely along the streamline and
thus, its line is practically smooth. The obtained results are
in agreement with this remark. Note also that the scope of the
data corresponds well with the results obtained by Delarue
and Jeulin [35] (recall: tortuosity between 1.03 and 1.05),
who applied an algorithm which was very similar to the
Waterfall Algorithm. The data visible in Fig. 20a may be
described by a linear function with the slope equal to −0.14
and the intercept of 1.14.

In Fig. 21, the tortuosity in the function of the normalized
size of the structural element for the lowest porosity is shown.
The tortuosity decreases when this size grows. At the same
time, the scope of possible values increases significantly. The
results show that the confidence level of tortuosity is higher in
systemswith small values of the s parameter. The relationship
between porosity and the normalized size of the structural
element may be expressed as follows:

τ(s) = a

sb
+ c

sd
, (21)
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Fig. 19 Distribution of the consolidation ratio for φ = 0.5 (a) and for all porosities (b)

Fig. 20 Tortuosity in function of porosity: compilation of all data (a) and comparison with selected formulas (b)

Fig. 21 Tortuosity in function of normalized size of the structural ele-
ment for φ = 0.5

where a = 0.54, b = −0.05, c = 0.536 and d = 0.041.
In Fig. 22, the tortuosity is presented as a function of both

parameters, namely the porosity and the normalized size of
the structural element. A specific feature of this function is
that the data range grows if porosity decreases and the nor-
malized size of the structural element increases. The obtained
relationship may be fitted with the following function:

τ(φ, s) = 1

φasb
, (22)

where a = 0.096, b = 0.0012.
In paper [25], a formula for calculating the tortuosity for

a specific porosity and normalized size of the structural ele-
ment was proposed. This function has the following form:

τ(φ, s) = 1

φbsc
+ d

φes f
, (23)
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Fig. 22 Tortuosity for different
porosities and normalized sizes
of the structural elements

Fig. 23 Comparison of
formulas (22) and (23)

where a = 1.1, b = 0.33, c = −0.01, d = 5.3e − 08, e =
6.8, f = 2.86.

In Fig. 23, a comparison between Eq. (22) denoted by blue
colour and Eq. (23) marked by red colour is presented. It may
be seen that the tortuosity obtained from the Waterfall Algo-
rithm is not as sensitive to the porosity and the normalized
size of the structural element as the tortuosity calculated by
thePathTrackingMethodor the hydraulic tortuosity obtained
from LBM simulations. Eq. (22) gives much smaller values
than Eq. (23). Although such a result was expected, it turned
out that the shape of the surface obtained from Eq. (22) has
a different qualitative character than the surface represent-
ing Eq. (23). It means that the earlier mentioned scale factor
s f is a function of porosity and the normalized size of the
structural element.

4 Summary

The following remarks and conclusions can be formulated
based on the results of the present study:

– The Waterfall Algorithm may be used in porous media
consisting of non-overlapping circular or spherical parti-
cles. Such virtual beds may be generated by appropriate
random algorithms or by the use of the Discrete Element
Method. The compatibility with DEM models may by a
significant advantage of the proposed approach.

– The Waterfall Algorithm may be used to calculate the
lower range of the geometric tortuosity for granular
porous media. The obtained values of the tortuosity can-
not represent the tortuosity of pore channels in Kozeny
or Carman meaning.
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– There is a possibility to recalculate the minimum tortuos-
ity to a representative tortuosity, but the knowledge about
function s f (φ, s) is needed. On this stage, the theory of
the so-called sensitivity analysis can be applied [47].

– The Waterfall Algorithm may be used to calculate dif-
ferent parameters which characterize the geometrical
structure of granular porous media, such as the global
shift ratio (in a similar way the local shift ratio may be
defined, in which the shift on a single sphere or circle will
be calculated), the collision density ratio and the consol-
idation ratio.

– The application of the proposed parameters is not limited
to the Waterfall Algorithm and may be also used in the
relation to other algorithms serving to calculate paths
lengths in porous media. The kind of the porous body as
well as the used algorithm does not matter.

– The applications of the parameters proposed in the paper
remain open. However, it seems that the parameters can
be used to define newmodelswhich could serve to predict
the pressure losses in fluidflows throughporousmedia. In
particular, there is a potential to use the collision density
ratio to estimate the beta factor responsible for the inertial
effects in the Forchheimer equation. To propose such a
model, a new study based on experimental data is needed.
In turn, the shift ratio and the consolidation ratio may
be applied to the issues related to mixing processes or
chemical reactors.

– The Waterfall Algorithm do not need a grid of nodes,
cells, pixels or voxels and works very fast. In the con-
sequence may be used in a very large systems, in which
other methods cannot be applied sue the limitation of
the available computational power. It is the main advan-
tage of this algorithm and can justify the need of further
investigations.

– The Waterfall Algorithm is limited by the assumption
about the shape of the particles. However, the idea can be
understood as a more general: the path goes straight and
if it will touch a body, than slides over its surface until it
can go straight again. In such a context, the particle shape
may by freely defined. Nevertheless, the implementation
of this ideawould require amodification of the algorithm.

– Since different algorithms give different tortuosity values
even at the same conditions, maybe we should always
base on the minimum tortuosity, which is always only
one. This question remains open.

– The Waterfall Algorithm may be understood as a result
of some kind of evolution. In Random Walk techniques,
the path moves randomly on all stages of acting the algo-
rithm. In additional, the space has to be expressed by a
grid of nodes. In the algorithm described by Boudreau
and Meysman, such a grid of nodes is unnecessary and
the path moves randomly only if the main direction is not
available. In the Waterfall Algorithm, a grid is also not

needed. The next change is that the path shape is deter-
mined only by the geometry and random procedures are
not in use at all.
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