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Abstract
In general, mechanical energy monotonically decreases in a physically consistent system, constructed with conservative force 
and dissipative force. This feature is important in designing a particle method, which is a discrete system approximating 
continuum fluid with particles. When the discretized system can be fit into a framework of analytical mechanics, it will be 
a physically consistent system which prevents instability like particle scattering along with unphysical mechanical energy 
increase. This is the case also in incompressible particle methods. However, most incompressible particle methods do not 
satisfy the physical consistency, and they need empirical relaxations to suppress the system instability due to the unphysi-
cal energy behavior. In this study, a new incompressible particle method with the physical consistency, moving particle 
full-implicit (MPFI) method, is developed, where the discretized interaction forces are related to an analytical mechanical 
framework for the systems with dissipation. Moreover, a new pressure evaluation technique based on the virial theorem is 
proposed for the system. Using the MPFI method, static pressure, droplet extension, standing wave and dam break calcula-
tions were conducted. The capability to predict pressure and motion of incompressible free surface flow was presented, and 
energy dissipation property depending on the particle size and time step width was studied through the calculations.

Keywords  Particle method · Incompressible fluid flow · Physical consistency · Numerical stability · Full-implicit 
algorithm · MPS · SPH · Analytical mechanics · Extended Lagrangian mechanics · Energy dissipation · Virial theorem

1  Introduction

Particle methods are widely used to calculate the complex 
motion of free surface flows in various engineering fields. 
Smoothed particle hydrodynamics (SPH) for weakly com-
pressible free surface flow was proposed by Monaghan [1] 
as an extension from astrophysics, while moving particle 
semi-implicit (MPS) was developed by Koshizuka and Oka 
[2, 3] to calculate strictly incompressible free surface flows 
in the nuclear engineering field.

In designing a numerical methodology for physical 
simulation, it is important to take fundamental physics 
into consideration. In general, continuum mechanics, e.g., 
fluid dynamics, satisfies the fundamental laws of physics 
such as the second law of thermodynamics, which claims a 

monotonic decrease in mechanical energy. However, it is not 
always satisfied in a discrete system approximating the con-
tinuum equations. When a discrete particle system does not 
satisfy the second law of thermodynamics, the mechanical 
energy may increase and cause instability like particle scat-
tering. Therefore, it is important to satisfy the fundamental 
laws of physics in formulating interaction forces in particle 
methods.

The physical consistency is taken care of using analyti-
cal mechanical frameworks in various scales of calcula-
tion. For example, molecular dynamics [4] and astrody-
namics [5], where the energy dissipation is negligible, are 
constructed following the classical analytical mechanics, 
and the mechanical energy is conserved in their systems. 
Besides, dissipative particle dynamics (DPD) [6, 7], which 
is for the mesoscale simulation where the thermal fluctua-
tion is taken into consideration, is formulated based on the 
general equation for the nonequilibrium reversible–irrevers-
ible coupling (GENERIC) framework [8, 9], and the system 
satisfies the first and the second laws of thermodynamics. As 
an extension of DPD to the larger-scale problems, Espanol 
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and Revenga [10] proposed a thermodynamically consist-
ent version of SPH, smoothed dissipative particle dynamics 
(SDPD), and they also applied the GENERIC framework 
[8]. These systems in various scales stand on the frameworks 
of analytical mechanics and satisfy the fundamental laws of 
physics.

The fundamental laws of physics are to be satisfied also 
in a discrete particle system for the continuum calculation. 
In the continuum scale, thermal fluctuation is usually negli-
gible, and only the conservative force and dissipative force 
are to be considered. In fact, the governing equation for fluid 
dynamics, Navier–Stokes equation, usually consists of con-
servative pressure term and dissipative viscosity term. For 
the system having dissipative force as well as a conservative 
force, a simple analytical mechanical framework, which is an 
extension of Lagrangian mechanics [11], is available.

However, it is not easy to apply the theoretical frame-
works for the physical consistency together with incom-
pressibility, which is an effective approximation in many 
industrial situations where the Mach number is small. In 
fact, the DPD [6, 7] and SDPD [10], which are the physi-
cally consistent mesoscale particle methods, do not satisfy 
the incompressible condition, even though the Mach number 
tends to be small in the smaller scale. The SPH method [1] is 
also not strictly incompressible, and it is usually expressed 
as weakly compressible. Conversely, most of the particle 
methods for strictly incompressible flows do not have the 
physical consistency, and currently, there are only a limited 
number of methods having such features. They are incom-
pressible SPH (ISPH) proposed by Ellero et al. [12] and 
Hamiltonian MPS (HMPS) proposed by Suzuki et al. [13], 
respectively. They constructed incompressible particle meth-
ods within the framework of the energy-conserving system 
with geometric constraints. They used symplectic time inte-
grator [14], SHAKE and RATTLE, respectively. However, 
their algorithm needed to solve nonlinear equations in every 
time step, which is not favorable for numerical efficiency.

Because of this difficulty in building up a particle method 
with both the strict incompressibility and the physical con-
sistency, most of the incompressible particle methods scarify 
the physical consistency. The MPS method [2], which is the 
first strictly incompressible particle method, chose to solve 
a discretized version of pressure Poisson equation (PPE) in 
the semi-implicit algorithm which was similar to the one 
adopted in the finite difference method [15]. Subsequently, 
several researchers proposed the various PPE-based incom-
pressible particle methods [16–19]. However, the PPE-based 
methods often suffered specific instability due to the igno-
rance of the physical consistency, and a lot of stabilization 
techniques are proposed such as the ones with respect to 
PPE formulation [20–24], particle regularization [25–27] 
and surface detection [28–31]. However, these PPE-based 
incompressible particle methods [2, 16–19] might suffer 

instability like particle scattering in some condition even 
with such stabilization techniques [20–31] because it is dif-
ficult to fit their formulations into the framework of analyti-
cal mechanics [11], and the systems may allow unphysical 
increase in mechanical energy.

In this study, a new incompressible particle method 
with the physical consistency, moving particle full-implicit 
(MPFI) method, is developed. The interaction forces can 
be fit into the extended Lagrangian mechanics [11], which 
is an analytical mechanical framework for the system with 
dissipation. Therefore, the discretized system in this method 
is physically consistent although the mechanical energy con-
servation as in the previous studies [12, 13] is not satisfied. 
Instead of directly solving the constant density constraint, a 
control equation which constrains velocity divergence was 
adopted to keep the density constant. The control equation 
could be solved in a linear matrix system, where velocity 
and pressure are calculated implicitly at the same time. In 
addition, a new pressure evaluation methodology for the 
physically consistent system is proposed based on the virial 
theorem [32]. Using the MPFI method, static pressure, drop-
let extension, standing wave and dam break calculations are 
conducted. In the static pressure calculation, the results are 
compared with those of the MPS method [2] and the SPH 
method [1]. Moreover, the energy dissipation property of the 
MPFI method depending on the particle size and time step 
width is studied. In the droplet extension and standing wave 
calculation, the fluid motion is compared with the theoretical 
solutions. Finally, the fluid motion and pressure in the dam 
break calculation are compared with the experiment [33].

2 � Numerical method

2.1 � Governing equation

The Navier–Stokes (NS) equation with a bulk viscosity term 
is described as

and

where ρ, u, Ψ, g, λ and κ are the density, velocity, pressure, 
gravity, bulk viscosity and bulk modulus, respectively. Here, 
the shear viscosity term is not included in the NS equation 
because only the calculation cases without shear viscosity 
are going to be shown in this study. When an infinite value is 
assigned to the coefficients, λ and κ, Eq. (2) will be changed 
to

(1)�
d�

dt
= −∇� + ��

(2)� = −�∇ ⋅ � + �
� − �0

�0
,
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using the ratio, γ = κ/λ, because the pressure, Ψ, is finite. 
Substituting the continuity equation

into Eq. (3), a time development equation

is obtained, where the first-order approximation at, ρ = ρ0, is 
applied. Therefore, Eq. (3) controls the density to be, ρ = ρ0, 
with the time constant 1/γ, and it is equivalent to the incom-
pressible conditions, the null-velocity divergence condition:

and the constant density condition:

when the initial condition: ρ|t=0=ρ0, is given. Therefore, the 
governing equations [Eqs. (1) and (2)] will be equivalent to 
the incompressible Navier–Stokes equation when the coef-
ficients, λ and κ, are infinite. The strategy in this study is 
taking the limit of, λ, κ → ∞ after discretizing Eqs. (1) and 
(2), and consequently, the control equation [Eq. (3)], which 
can be solved by a linear matrix system, is calculated instead 
of the constant density condition [Eq. (7)] which required 
nonlinear calculation [12, 13].

2.2 � Discretization

In this section, the partial differential operators in the gov-
erning equations [Eqs. (1) and (2)] are firstly discretized. 
In particle methods, the partial differential operators are 
replaced with particle interaction models expressed by 
weighted averages using effective radius and weight func-
tion. Since this manner is common in the previous particle 
methods, the SPH method [1] and the MPS method [2], a 
similar interaction model is adopted in this study.

In the SPH method [1], a bell-shaped kernel function is 
used to define the continuum field, and the partial differen-
tial operators, such as the gradient (∇) and divergence (∇∙), 
are derived from the field. As a result, the partial differential 
operators are replaced by the interaction models including 
the differential of the kernel function. The formulation with 
the kernel differential can be used to make a physically con-
sistent system. However, the interaction model in the SPH 
method has a disadvantage on the instability with respect to 
particle clustering. Since it yields only small repulsive force 
when particles are so close to each other, the particles easily 

(3)−∇ ⋅ � + �
� − �0

�0
= 0

(4)
1

�

d�

dt
= −∇ ⋅ �

(5)
d�

dt
= −�

�(� − �0)

�0
≈ −�(� − �0)

(6)∇ ⋅ � = 0

(7)� = �0

agglomerate. This is why the SPH method had to adopt some 
smoothing treatment such as the artificial viscosity [1].

On the other hand, in the MPS method [2], the parti-
cle interaction models for partial differential operators are 
directly formulated with a weight function. The weight func-
tion in the MPS method [2] gives a larger value when two 
particles get closer. This helps to avoid the clustering. How-
ever, the interaction model of the MPS method does not fit 
to the framework of analytical mechanics [11]. It is because 
the interaction model in the MPS method does not include 
the differential of the weight function, which will emerge 
when potential energy is differentiated following the analyti-
cal mechanical framework [11].

Therefore, in this study, a similar but new particle interac-
tion model is adopted, taking the good points of the models 
in the SPH method [1] and the MPS method [2]. Here, the 
following normalized weight function wij is used:

where re is the effective radius and dij is the distance between 
particles i and j. The normalization parameter N0 is calcu-
lated at the particle i around which the neighbor particles 
are well arranged. Using the weight function, the particle 
interaction models for the gradient and divergence operators 
are formulated as

where ϕ, A and rij are an arbitrary scalar, an arbitrary vector 
and the relative position between particles i and j, respec-
tively. In Eq. (9), S∇ is a normalization parameter and wij′ is 
the differential of the weight function with respect to particle 
distance dij. These formulations include the differential of 
the weight function as in the SPH method [1]. This choice 
has an advantage in constructing a particle method within 
the analytical mechanical framework [11]. However, the 
shape of the weight function is more like that adopted in 
the MPS method [2]. The gradient of the weight function 
will be larger, when the particle distance dij is smaller. This 
feature plays an important role in avoiding particle clustering 
because larger repulsive force emerges between closer parti-
cle pairs. Since the formulations in Eq. (9) are the weighted 
averages very similar to the ones used in the SPH and MPS 

(8)

wij =
Wij

N0

Wij =

{
(re − dij)
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0 (dij > re)
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∑
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methods [1, 2], it is expected that it can also evaluate the 
partial differentials when the normalization parameter S∇ 
is calibrated properly. In fact, the parameter S∇ can be cali-
brated using the virial theorem [32], which will be shown 
later [Eq. (32) in Sect. 2.6].

In addition to the particle interaction models for discretizing 
the partial differential operators, a parameter called particle 
number density is used to evaluate the fluid density. It is a 
summation of the weight function:

It is assumed that the value is proportional to the fluid 
density, and it is desired to be constant when the fluid is 
regarded as incompressible. In this study, the base value for 
the particle number density is 1.0 because the weight func-
tion is normalized in Eq. (8).

With the particle interaction models [Eq.  (9)] and the 
particle number density [Eq. (10)], the governing equations 
[Eqs. (1) and (2)] are discretized to

and

respectively, where �̃ is the particle velocity at the previous 
time step, and the backward Euler method is adopted for the 
time integration. In this study, the effective radius, re = 2.5 
l0, was adopted for Eqs. (11) and (12), where l0 is the initial 
particle spacing.

With dividing Eq. (12) by λ, and taking the limit of, λ, 
κ → ∞,

is obtained, where the ratio, γ = κ/λ, is applied. This is a dis-
cretized version of Eq. (3), controls the particle number den-
sity to be constant, ni = 1, and is equivalent to the discretized 
version of the null-velocity divergence condition [Eq. (6)]:

and the discretized version of the constant density condition 
[Eq. (7)]:

(10)ni =
∑

j

wij.
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�
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− �

i
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ij

w�
ij

dij
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(15)ni = 1

when the initial condition ni|t=0=1 is given. However, in the 
region close to the free surface, the initial condition ni = 1 
is not satisfied, and even the proportionality between the 
particle number density ni and density ρ cannot be assumed. 
In such a region, the null-velocity divergence condition 
[Eq. (14)] is to be applied instead. Therefore, the control 
equation [Eq. (13)] is replaced by

and this equation is going to be calculated in the full-implicit 
algorithm shown in the next section.

The free surface boundary in the MPFI method is natu-
rally given by the vacant space from which no force works 
to the particles. Therefore, no explicit pressure boundary 
is needed. Besides, to express walls surrounding the fluid 
particles, a symmetric boundary condition was adopted in 
this study.

2.3 � Full‑implicit algorithm

The discretized motion equation [Eq. (11)] and the incom-
pressible control equation [Eq. (16)] are solved in a full-
implicit algorithm shown in Fig. 1. First, the velocity u and 
the pressure Ψ of the particles are calculated at the same 
time solving Eqs. (11) and (16). In contrast to the previous 
studies [12, 13] where the constant density condition was 
directly posed and the nonlinear calculation was required, 
the alternative use of Eq. (16) can avoid the nonlinear calcu-
lation because Eqs. (11) and (16) form a linear system with 
a symmetric coefficient matrix. In this study, the conjugate 
residual (CR) method [34] was applied for the matrix solver. 
After the full-implicit calculation, the position x of the par-
ticles is updated explicitly as

(16)−
1

S∇

∑

j

(�
j
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ij
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ij

dij
=

{
−𝛾(ni − 1) ni ≥ 1

0 ni < 1
,

Fig. 1   Full-implicit algorithm in moving particle full-implicit (MPFI) 
method
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Although the shear viscosity term was not included in the 
governing equation in this study, the full-implicit algorithm 
can be an advantage for the incompressible high-viscous 
fluid calculation when the viscosity term is incorporated into 
the matrix equation. In a high-viscous calculation, the diffu-
sion number usually restricts the time step width to be small. 
In contrast, the implicit velocity calculation may allow the 
usage of larger time step width because it is basically free 
from the restriction.

2.4 � Incompressible control

The incompressible conditions [Eqs.  (6) and (7)] are 
equivalent under the initial condition ρ|t=0=ρ0, and their 
spatially discretized versions [Eqs.  (14) and (15)] are 
also equivalent to each other under the initial condition 
ni|t=0=1. When ni is differentiated with respect to time,

is obtained. This is interpreted as a discrete version of the 
continuity equation [Eq. (4)] because the right-hand side 
of Eq. (18) is the same as the divergence model in Eq. (9) 
except for the coefficient, S∇. By substituting Eq. (18) into 
Eq. (14),

can be derived. Therefore, Eqs. (14) and (15) are equivalent 
to each other under the initial condition, ni|t=0=1, if the time 
discretization error could be ignored. However, they are dif-
ferent in a practical calculation. When the discretized null-
velocity divergence constraint [Eq. (14)] is adopted, the error 
accumulates and the density may gradually change. On the 
other hand, when the constant density condition [Eq. (15)] 
is adopted, the density is kept strictly constant. The reason 
for this difference is the time discretization error. Since the 
time differential, ∂n/∂t, remains in Eq. (18), time discretiza-
tion error will be introduced in a practical calculation where 
the finite time step width has to be used.

The equation adopted to control the particle number 
density in this study [Eq. (16)] is a hybrid type, and it can 
stop the error accumulation to some extent without solving 
nonlinear equations. To understand how the particle num-
ber density is controlled, it is helpful to derive the control 
equation with respect to the particle number density ni. By 
substituting Eq. (18) into Eq. (16),

(17)�
i
= �̃

i
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i
Δt.
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(19)
1

S∇

�ni

�t
= 0

is obtained. Even though Eq. (20) is not directly calculated 
in the program, it underlies this calculation. Since the con-
trol equation [Eq. (20)] is not satisfied perfectly because of 
the time discretization error included in Eq. (18), the particle 
number density may deviate from the base value. When the 
fluid is compressed (ni > 1), the deviation is reduced by the 
upper line on the right-hand side of Eq. (20), and the gradual 
density change will be suppressed. On the other hand, when 
the fluid is expanded (ni < 1), the deviation may accumulate 
and the fluid density may gradually change.

The limitation for the parameter γ can also be known from 
Eq. (20). Denoting the change of particle number density in 
a single time step as Δn, the upper line of Eq. (20) can be 
written as

Since the particle number density is explicitly calculated 
from the particle position, the magnitude of Δn should be 
smaller than the deviation, ni − 1, to avoid numerical oscil-
lation. Therefore,

is to be satisfied at least.

2.5 � Physical consistency

For the system with conservative force and dissipative force, 
the extended Lagrangian mechanics for the system with dis-
sipation [11] is useful. The Lagrangian equation is written as

where L and D are Lagrangian and Rayleigh dissipative 
function, respectively. In the framework of the Lagrangian 
mechanics, the Lagrangian is defined by

where T and U are the kinetic energy and potential energy of 
the system. Moreover, the dissipative function has to be pos-
itive to ensure the monotonic decrease in mechanical energy. 
If the discretized equations in the MPFI method can be fit 
into the framework of the extended Lagrangian mechan-
ics [Eq. (23)], the physical consistency, i.e., the monotonic 
decrease in mechanical energy, is assured. Since Eq. (16) is 
a constraint and it is not easy to relate them to the framework 
[Eq. (23)], the relation to the equations before taking the 
limit of λ, κ → ∞ [Eqs. (11) and (12)] is firstly considered 

(20)
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𝜕t
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instead. When the Lagrangian L and the dissipative function 
D are given as

and

the Lagrangian equation [Eq. (23)] coincides with the gov-
erning equations [Eqs. (11) and (12)], except that the time 
differential on the left-hand side of Eq. (11) is discretized. 
Thus, the equations before taking the limit of, λ, κ → ∞ 
[Eqs. (11) and (12)], can be fit into the framework of the 
analytical mechanics [11], and they form a physically con-
sistent system with dissipative force. Since the coefficients 
λ and κ were the arbitrary parameters in deriving the gov-
erning equations [Eqs. (11) and (12)] from the Lagrangian 
[Eq. (25)] and the dissipative function [Eq. (26)], Eq. (12) 
can be replaced with Eq. (16) by taking the limit of λ, κ → ∞ 
or by further specifying the parameters as γ = κ/λ = 0. There-
fore, it is expected that the discrete system expressed by 
Eqs. (11) and (16) is also a physically consistent system 
including dissipation.

2.6 � Pressure evaluation based on the virial theorem 
[32]

The pressure Ψi calculated via Eqs. (11) and (16) suffers 
large fluctuation. However, in a physically consistent system, 
a smooth pressure field can be obtained in a physically jus-
tifiable way based on the virial theorem [32] which is used 
in the molecular dynamics. For the smooth pressure field, 
the virial pressure P is evaluated in a post-process using the 
interaction force and particle position, which are obtained 
in the main calculation.

The virial theorem [32] gives a relation between pres-
sure, kinetic energy and interaction forces in a statistical 
manner as

where sdim, P, V, K, Fi and ri are the spatial dimension, virial 
pressure, volume of the space, kinetic energy of particles 
due to fluctuation, force acting on particle i and position of 
particle i, respectively. The blanket 〈〉 indicates the average 
with respect to time. The first term on the right-hand side 
of Eq. (27) is the fluctuation energy of the particles, which 
can be neglected in this study because neighbor particles 
mostly move along with each other. The second term on the 
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right-hand side of Eq. (27) relates to the interaction forces 
among particles. Because the particle interactions in the pre-
sent method are all defined by pair-wise forces conserving 
linear momentum, the second term can be rewritten as

where Fij and rij are the interaction force and relative posi-
tion between particle i and particle j, respectively.

The virial theorem evaluates the pressure in the whole 
system at equilibrium state by averaging the physical 
quantity with respect to time and space as in Eq. (27). 
However, pressure at a certain time and at a certain point 
is to be evaluated in continuum-scale fluid calculations. To 
evaluate such local values, local averaging is to be taken 
with assuming the local equilibrium. To take the local 
average, a test region and a test period are to be given to 
define a range for averaging. When the range is larger, the 
obtained value suffers from less fluctuation but has less 
local information. Therefore, the range for averaging is to 
be given properly depending on the desired resolution with 
respect to time and space.

To evaluate the local pressures, the summation in Eq. (28) 
must be taken over the test region. To obtain equations for 
the smaller region, the separation of the region is to be 
considered. A splitting with respect to Eq. (28) is shown in 
Fig. 2, where one region is divided into two smaller regions. 
The interaction forces traversing the boundary are halved 
and added to the summation in each region such that the 
summation in the original region should equal the sum of 
those in the two separated regions. This reversibility must be 
satisfied in dividing the regions. In this manner, the division 
can be repeated until the single-particle regions are obtained. 
The equation for the single-particle region with respect to 
particle i at a certain time step is expressed as

where ΔV is the volume of the single-particle region, which 
is assumed to be constant as

where l0 is the particle distance at the initial state. By replac-
ing the interaction force Fij in Eq. (29) with the pressure 
gradient force in the governing equation [Eq. (11)],

is obtained. With Eq. (31), the virial pressure Pi in the sin-
gle-particle region can be calculated.
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Additionally, Eq. (31) can also be used to calibrate the 
normalization parameter S∇. Since the virial pressure Pi 
should be consistent with the pressures Ψi and Ψj, the val-
ues for Pi, Ψi and Ψj should be the same when the pressure 
field is uniform. Therefore, Eq. (31) has to hold when the 
same value is inserted into Pi, Ψi and Ψj. This condition 
determines the normalization parameter S∇ as

In this study, the initial lattice particle distribution was used 
for this calibration.

The virial pressure Pi obtained via Eq. (31) is not smooth 
because the single-particle region is not large enough to 
apply the virial theorem. One reasonable choice for the 
larger test region is the region inside the effective radius. In 
this study, the region in the radius was adopted. The physical 
quantity in the larger region can be calculated by summing 
up the ones in the single-particle regions as

where N{i|dij<re} is the number of particles inside the radius. 
Subsequently, the virial pressure in the region around parti-
cle i is calculated as

(32)S∇ =
2

sdimΔV

∑

j

dijw
�
ij
.

(33)sdimP̄iN{i|dij<re}ΔV =
∑

{i|dij<re}
sdimPiΔV ,

This implies that the virial pressure for the test region can 
be evaluated by averaging the viral pressure for the single-
particle region. This physically justified averaging process 
[Eqs. (31) and (34)] enables to obtain smooth pressure field, 
even when the pressure, Ψi, directly calculated via the dis-
cretized governing equations [Eqs. (11) and (16)] suffers 
from large fluctuations.

Since the virial theorem [Eq. (27)] is to be applied not 
only with the spatial averaging but also with the time aver-
aging, it is also possible to take time averaging in a certain 
period as

where p is the period for the averaging. In this study, no time 
averaging is adopted unless otherwise noted.

For the justification of the pressure evaluated by numeri-
cal calculations, the accuracy of the discretization scheme 
is often discussed by showing that the truncation term goes 
zero by reducing the particle size and time step size. This 
feature is usually called “consistency,” but here, we call 
it “scheme consistency” to distinguish from the “physical 
consistency” shown in Sect. 2.5. The interaction models 
[Eq. (9)] do not always reproduce the gradient correctly 
even in a linear field mainly due to the non-uniform distri-
bution of neighbor particles. Therefore, the models may have 
zeroth-order accuracy at most, and it is difficult to show the 
“scheme consistency” which stands purely on a mathemati-
cal discussion. However, the pressure in the “physically con-
sistent” system can be justifiably evaluated through the virial 
theorem, without showing the “scheme consistency.” This is 
one of the merits to achieve “physically consistency.”

3 � Calculation examples

3.1 � Hydrostatic pressure calculation

The basic property of the MPFI method was studied using a 
hydrostatic pressure calculation. The initial particle arrange-
ment is shown in Fig. 3. The parameters used in the base 
case are shown in Table 1. For the comparison, the same 
geometry was calculated using the MPS method [2] and the 
SPH method [1], where MPS-SW-MAIN-Ver.2.0 (2010) 
and DualSPHysics_v4.4 (2019) were used, respectively. 
In the MPS calculation, the empirical parameters, such as 
the relaxation factor for PPE calculation and the threshold 
for surface detection, were tuned so as to avoid particle 

(34)P̄i =

∑
{i�dij<re}

Pi

N{i�dij<re}
.

(35)
�
P̄i

�
(t) =

∑
t−p<𝜏<t

P̄i(𝜏)

p∕Δt
,

Fig. 2   Separation of the region for the local virial pressure evaluation
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scattering. The effective radius and the time step width were 
set the same as the MPFI calculation. In the SPH calculation, 
the sound speed is set 10.0 m/s which is thought to be large 
enough for the static pressure calculation where the flow 
speed is basically zero. The artificial viscosity is set large 
enough to suppress the oscillation caused by initial unbal-
ance. The cutoff radius, which is the double length of the 
smoothing length in the SPH method, was set the same as 
the effective radius in the MPFI calculation, and the smaller 
time step width, Δt = 0.0001 s, was applied so as to obtain a 
stable result in the explicit SPH calculation.

The pressure distributions at t = 10.0 s obtained by the 
MPFI, MPS and SPH methods are shown in Figs. 4, 5 and 
6, respectively. For the MPFI results, the pressure evaluated 
using Eq. (34) was shown, whereas for the MPS and SPH 
results, the pressure outputs from the program were directly 
shown. The smooth pressure distribution is obtained with all 
the three methods. The particles stayed at the initial posi-
tion in the MPFI calculation because the static balance was 
made by the initial lattice distribution, whereas the particle 
movement from the initial lattice distribution was observed 
in the MPS and SPH calculations. The pressure history at 
the center (A in Fig. 3) is plotted in Fig. 7. The pressure 
obtained with the MPFI method was almost constant at the 

theoretical value. On the other hand, the pressure fluctua-
tions were observed in the MPS and SPH calculations. In the 
MPS calculation, the fluctuation started along with the par-
ticle movement and was maintained at a certain level. The 
pressure on average was a little bit smaller than the theoreti-
cal value. Since one of the reasons for the underestimation 
is the usage of the zeroth-order scheme [2], the higher-order 
schemes [35] may help to improve the prediction. In the 
SPH calculation, the pressure periodically oscillated due to 
the initial unbalance and the oscillation gradually decayed. 
The decay was due to the artificial viscosity which was set 
large to suppress the oscillation. The pressure in the SPH 
calculation was overestimated. The reason for the overesti-
mation was mainly because of the density calculation, which 
is discussed later.
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Fig. 3   Initial particle arrangement for the static pressure calculation

Table 1   Parameters for the static pressure calculation

Parameters Base case

Gravity g 9.8 m/s2

Particle size l0 0.02 m
Effective radius re 0.05 m
Time step width Δt 0.004 s
Ratio γ = κ/λ in Eq. (13) 10.0/s
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Fig. 4   Pressure distribution in the static pressure calculation with the 
MPFI method (l0 = 0.02 m, Δt = 0.004 s, t = 10.0 s)
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Fig. 5   Pressure distribution in the static pressure calculation with the 
MPS method (l0 = 0.02 m, Δt = 0.004 s, t = 10.0 s)
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The density deviations in the MPFI, MPS and SPH cal-
culations are shown in Figs. 8, 9 and 10, where the red color 
shows the particles with larger density than the base value 
and the blue color shows the particles with smaller density. 
In Figs. 8 and 9, the deviation of the particle number density 
calculated by the MPFI and MPS methods is shown, respec-
tively. In the MPFI calculation, the particle number density 
was kept constant because the particles moved very little. In 
the MPS calculation, the deviation was around 2% although 
the whole system was kept almost incompressible. In con-
trast, Fig. 10 shows two types of density. One is continuum 
density, which is calculated by integrating the continuity 
equation in the SPH method, and is shown on the left side 
of Fig. 10. The other is summation density, which is the sum 
of kernel function similar to the particle number density 
in the MPFI and MPS methods, and it is a dependent vari-
able of the particle position. Since the SPH method did not 
calculate the summation density, it is calculated afterward 
and shown on the right side of Fig. 10. These two density 

evaluations are ideally equivalent, but they were different 
from each other. The compression at the center (A in Fig. 3) 
evaluated by the summation density was less than 1%, but 
the value evaluated by the continuum density was larger than 
3%. This contradiction in density estimation is thought to be 
the reason for the overestimation of the pressure shown in 
Fig. 7. When only the continuum density used in the SPH 
calculation increases and the summation density, which is 
interpreted as the reciprocal of the particle volume, is kept 
constant, the mass of the particle, which is represented by 
the product of the density and the volume, will increase. 
Since the number of particles in the system is constant, the 
total mass in the system will increase when the mass of each 

6000

5000

4000

3000

2000

1000

0

Pressure

(Pa)

Fig. 6   Pressure distribution in the static pressure calculation with the 
SPH method (l0 = 0.02 m, Δt = 0.0001 s, t = 10.0 s)

Fig. 7   Pressure at the center (A in Fig. 3) in the static pressure calcu-
lations
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Fig. 8   Particle number density deviation in the static pressure calcu-
lation using the MPFI method (l0 = 0.02 m, Δt = 0.004 s, t = 10.0 s)
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Fig. 9   Particle number density deviation in the static pressure calcu-
lation using the MPS method (l0 = 0.02 m, Δt = 0.004 s, t = 10.0 s)
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particle increases. Therefore, the difference between the two 
densities in Fig. 10 implies that the total mass in the system 
increased in the SPH calculation. This is against the mass 
conservation law, and it is a possible reason for the pres-
sure overestimation in Fig. 7. The other SPH methods using 
the continuum density might suffer a similar problem with 
respect to the contradictory density evaluations.

The history of kinetic energy is shown in Fig. 11. The 
kinetic energy was almost zero throughout the MPFI cal-
culation because there was almost no particle movement. 
In the MPS calculation, the kinetic energy increased and 
was maintained at a certain level. It implies that the parti-
cles were kept moving in the MPS calculation. This unin-
tended particle movement is not favorable, not only because 

it causes pressure fluctuation but also because it might 
cause system instability like particle scattering. However, 
the usage of smaller time step size, Δt = 0.001 s, could not 
suppress this fluctuation, or rather resulted in larger fluctua-
tion as shown in Fig. 11. This fluctuation was against the 
second law of thermodynamics, because it gave rise to the 
mechanical energy increase. One possible reason for this 
instability in the MPS calculation is the formulation of the 
discretized pressure Poisson’s equation (PPE), whose source 
term diverges in the limit of Δt → 0. The other PPE-based 
incompressible particle methods [16–19], which adopted 
the source term having this property, may also have such 
undesired dependency on the time step width, Δt. In the SPH 
calculation, after the kinetic energy arose at the beginning 
of the calculation, it gradually decayed with the periodic 
oscillation as the energy in the system was dissipated by the 
artificial viscosity.

The calculation time of the hydrostatic pressure calcula-
tion using the MPFI, MPS and SPH methods is 175 s, 67 s 
and 76 s, respectively. The calculation time was measured 
by conducting a single thread calculation with Intel Core 
i7-8656U 1.9 GHz. The MPFI method took a longer time 
than the MPS and SPH methods because it solves the larger 
matrix system. The size of matrix equation was three times 
larger than that in the MPS method because not only the 
pressure but also x and y elements of the velocity vector 
were the unknowns to be calculated. Following the theory of 
computational complexity of matrix solver, the calculation 
time could be more than three times longer than that of the 
MPS method, but it was shorter. This is because the particles 
were almost stopped in this case, and not so many solver 
iterations were needed. It is thought that more calculation 
time is needed in the case where particles move, and in fact, 
it took 12 min 20 s for the case with initial fluctuation, which 
is going to be shown later.

Although the calculation time is much longer with the 
MPFI method, it could calculate the static balance of the 
incompressible hydrostatic pressure problem much better 
than the MPS and SPH methods. The MPS method suffered 
the unintended fluctuation, and the SPH method faced the 
contradictory density evaluation. They were against funda-
mental physics, and such an unphysical feature may cause 
system instability or incorrect evaluation. In contrast, the 
MPFI method did not show such unphysical behavior and the 
static balance was calculated very well. This tendency was 
the same when various particle sizes l0 = 0.04, 0.02, 0.01 m 
and time step widths Δt = 0.008, 0.004, 0.002, 0.001 s were 
applied. In the MPFI calculation, the particles will not move 
once the balance is reached, and even when it deviates from 
the balance, the system will return to the balance. Therefore, 
it is advantageous in calculating static balance problems.

However, the initial lattice distribution seldom appears in 
a problem where the particles dynamically move around, and 
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Fig. 10   Continuum density and summation density deviation in 
the static pressure calculation using the SPH method (l0 = 0.02  m, 
Δt = 0.0001 s, t = 10.0 s)

Fig. 11   Kinetic energy in the static pressure calculations using the 
MPFI, MPS and SPH
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it is not certain whether the system can approach the static 
balance when the lattice distribution is destroyed. Therefore, 
the static pressure problem is also calculated with a given ran-
dom initial velocity to see the response against fluctuation. The 
x and y elements of the initial velocity are set following the 
Gaussian distribution, N(0,0.06), where the variance, 0.06, was 
chosen so as not to affect the macroscopic behavior. The cal-
culation is conducted with varying the particle size l0 = 0.04, 
0.02, 0.01 m and the time step width Δt = 0.008, 0.004, 0.002, 
0.001 s, respectively. The history of the pressure at the center 
(point A) in the base case is shown in Fig. 12. The pressure 
fluctuated due to the particle motion, and the fluctuation got 
smaller as the system energy was dissipated. The kinetic 
energy of the system is shown in Figs. 13 and 14. They imply 
that the MPFI method has an energy dissipating feature, and 
the dissipation is larger when the particle size is smaller and 
the time step width is larger. In the limit of Δt → 0, the density 
control equation [Eq. (16)] is equivalent to the constant density 
constraint [Eq. (15)]. However, in practical calculations, the 
time step width has to be finite and the particle number density 
deviates due to the time discretization error. When the time 
step width is larger, the density deviation will be also larger 

due to the larger time discretization error, and it causes the 
larger energy dissipation. This is why the energy dissipation 
was larger when the larger time step width was adopted as 
shown in Fig. 14.

3.2 � Droplet extension calculation

The droplet extension is one of the benchmarks for an incom-
pressible free surface problem, which is adopted by Monaghan 
[1] and Ellero et al. [12]. The initial radius of the droplet is 
1.0 m, and the initial velocity was given by

where x and y are the coordinates whose origin is set at 
the center of the droplet. The calculation parameters used 
in the droplet extension calculations are shown in Table 2. 
The snapshots obtained by the calculation with the particle 
spacing, l0 = 0.02 m, are shown in Fig. 15. The deformation 
of the droplet is calculated with keeping the particle num-
ber density almost constant. Theoretically, the length of the 
short axis, a, and long axis, b, follows

(36)� =

(
100x

−100y

)
,

Fig. 12   Pressure at the center (A in Fig. 3) in the static pressure cal-
culation with fluctuation (l0 = 0.02 m, Δt = 0.004 s)

Fig. 13   Kinetic energy dissipation in the static pressure calculation 
using various particle sizes (l0 = 0.04, 0.02, 0.01 m)

Fig. 14   Kinetic energy dissipation in the static pressure calculation 
using various time step widths (Δt = 0.008, 0.004, 0.002, 0.001 s)

Table 2   Parameters for the droplet extension calculations

Parameters Cases

Gravity g 0.0 m/s2

Particle size l0 0.04 m 0.02 m 0.01 m
Effective radius re 0.10 m 0.05 m 0.025 m
Time step width Δt 0.00008 s 0.00004 s 0.00002 s
Ratio γ = κ/λ in Eq. (13) 1000.0/s
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where ω is the initial value of ab. Equation (37) is solved 
numerically, and the solution was compared with the MPFI 
results in Fig. 16. The results of the MPFI method agreed 
well with the solution, and the sensitivity with respect to 
particle size was small. The history of the total mechanical 

(37)

dA

dt
=

A2(a4 − �2)

a4 + �2

da

dt
= −aA,

energy is shown in Fig. 17. The small energy decrease was 
observed in this calculation.

3.3 � Standing wave calculation

The standing wave calculation is one of the benchmarks to 
check the property with respect to wave propagation, which 
was adopted by Suzuki et al. [13].

The initial particle distribution is shown in Fig. 18. The 
wavelength λwave was set the same as the pool width, and the 
velocity of all the particles was set zero at the initial state. 
The initial surface displacement was given by

where A = 0.1 h and h = 1.0 m were adopted in this study.
The parameters used in the calculation are shown in 

Table 3. The snapshots obtained from the MPFI calcula-
tion with l0 = 0.02 m are shown in Fig. 19. The elevation 
of the surface at the center of the pool is plotted in Fig. 20, 
where the origin in the vertical direction is set at the initial 
average elevation of the fluid surface. In Fig. 20, the calcu-
lation results are compared with the first- and second-order 
approximations given by

(38)�0(x) = A cos(�x),
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Fig. 15   Particle number density distribution in the droplet extension 
calculation (l0 = 0.02 m)

Fig. 16   Length of short and long axes, a, b, in the droplet extension 
calculation using the particle size of l0 = 0.04, 0.02, 0.01 m

Fig. 17   Total mechanical energy in the droplet extension calculations 
using the particle size of l0 = 0.04, 0.02, 0.01 m
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Fig. 18   Initial particle arrangement for the standing wave calculation
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and

respectively, where

Compared to the theoretical approximations, the wave 
decay was larger in the MPFI calculation. This is because 
the MPFI method has an energy dissipating feature. Suzuki 
et al. [13] reported that the wave decay occurred even when 
the mechanical energy was conserved because of the local 
randomness of the velocity distribution. In the MPFI cal-
culation, the local randomness was dissipated and the wave 
decay was accelerated compared with the calculation con-
ducted by Suzuki et al. [13]. The mechanical energy in the 
MPFI calculations is shown in Fig. 21. The total mechanical 
energy monotonically decreased.

(39)�1st(t) = −A cos(�2t)

(40)�1st(t) =
1

8g

{
2(�2A)

2 cos(2�2t) +
A2

�2

2

[
k2
2
g2 + �4

2
− (k2

2
g2 + 3�4

2
) cos(�4t)

]
}

,

(41)
km = m�∕�wave

�m =
[
kmg tanh(kmh)

] 1

2 .

3.4 � Dam break calculation

One of the major advantages of particle methods is that they 
can easily treat the complex motions of free surface flows 
including coalescence and breakup. To confirm the ability 
of the MPFI method in this aspect, the dam break calcula-
tion was conducted, and the results were compared with the 
experiment [33]. The dam break calculation with the same 
geometry was also conducted in the previous studies, e.g., 
Asai et al. [24]. The initial particle arrangement is shown in 
Fig. 22. The initial velocities of the particles are set zero. 
The calculation parameters are shown in Table 4.

The fluid motion obtained by the MPFI calculation is 
shown in Fig. 23. The fluid motion in the experiment, which 

Table 3   Parameters for the standing wave calculations

Parameters Cases

Gravity g 9.8 m/s2

Particle size l0 0.04 m 0.02 m 0.01 m
Effective radius re 0.10 m 0.05 m 0.025 m
Time step width Δt 0.004 s 0.002 s 0.001 s
Ratio γ = κ/λ in Eq. (13) 1.0/s
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Fig. 19   Pressure distribution in the standing wave calculation (l0 = 0.02 m)

Fig. 20   Elevation of the surface at the center in the standing wave 
calculations using the particle size of l0 = 0.04, 0.02, 0.01 m
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was provided in the literature [33], was well simulated by the 
calculation mostly with keeping the density error within 4%. 
The pressure distribution is shown in Fig. 24. The smooth 
pressure field can be obtained via Eq. (34) even in the flow 
with dynamic motion. The comparison with respect to dam 
front position x is shown in Fig. 25. In the figure, the non-
dimensional position, x/h, and time, t(g/h)1/2, are used, where 
h is the representative length shown in Fig. 22. The results 
mostly agreed with the experiment [33].

The pressure history at the wall (A in Fig. 22) is plot-
ted in Fig. 26 and compared with the experimental results 
[33]. For the pressure evaluation on the wall, the test period 

was set in applying the virial theorem, and Eq. (35) is used 
instead of Eq. (34). In specific, the 0.04-s time averaging 
was applied to remove the fluctuation due to the particle 
movement. Compared to the experimental result [33], the 
first pressure peak, which appears when the fluid hit the 
wall, was underestimated in the calculations, but the second 
peak, which appears when the fluid fell down again, was well 
reproduced. The possible reason for the first underestima-
tion is the sparse particle distribution because of the particle 
reflection at the wall. Just after the fluid hit the wall, some 
particles detached from the main lump in the calculation, but 
the fluid in the experiment stayed in a lump at that moment. 
Even with such deviation, the pressure evaluation based on 
the virial theorem performed mostly well also in the flow 
including dynamic motion.

The history of the mechanical energy is shown in Fig. 27. 
The large energy decay was observed when the fluid col-
lides with each other. To reproduce the fluid motion, the 
energy decay is also to be calculated properly. Therefore, it 
is thought that the adequate energy decay was calculated by 
the MPFI method. However, the energy decay in the MPFI 
method is not intentionally introduced and is only calculated 
as a result of solving the incompressible control equation. 
Hence, the agreement in fluid motion here is just accidental 
from our current knowledge, and the proper evaluation of 
the energy dissipation is left as an issue for the future work.

4 � Conclusion

A new incompressible particle method with physical consist-
ency, the moving particle full-implicit (MPFI) method, was 
developed. The interaction forces were composed of the con-
servative force and dissipative force, which could be fit into 
the framework of the analytical mechanics [11]. It implies 
that the fundamental laws of physics, such as the second law 
of thermodynamics, were basically satisfied in the proposed 
system. Instead of directly posing the constant density con-
dition, the control equation which constraints the velocity 
divergence was adopted to keep the fluid incompressible. 
The control equation enables to avoid nonlinear equation as 
in the previous studies [12, 13] with introducing a certain 
energy dissipation. The equation was solved in a full-implicit 
algorithm, where the velocity and pressure were calculated 
implicitly at the same time. The implicit calculation only 
needed to solve the linear symmetric matrix equation once 
in each time step. Furthermore, a new pressure evaluation 
procedure based on the viral theorem [32] was proposed for 
the physically consistent system.

Using the MPFI method, static pressure, standing 
wave, droplet extension and dam break calculations were 
conducted.

Fig. 21   Total mechanical energy in the standing wave calculations 
using the particle size of l0 = 0.04, 0.02, 0.01 m
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Fig. 22   Initial particle arrangement for the dam break calculation

Table 4   Parameters for the dam break calculations

Parameters Cases

Gravity g 9.8 m/s2

Particle size l0 0.04 m 0.02 m 0.01 m
Effective radius re 0.10 m 0.05 m 0.025 m
Time step width Δt 0.004 s 0.002 s 0.001 s
Ratio γ = κ/λ in Eq. (13) 10.0/s
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In the static pressure calculation, the results were com-
pared with those of the MPS and SPH methods. All the 
three methods could obtain smooth pressure fields. How-
ever, in the MPS calculation, unintended fluctuation against 
the second law of thermodynamics was observed, whereas 
in the SPH calculation, the density evaluation against the 
mass conservation law was observed and it resulted in the 
overestimation of the pressure. In contrast, the MPFI could 
calculate the hydrostatic pressure balance very well although 
the calculation time was much larger than the other two 
methods. In addition, the energy dissipating property of the 
MPFI method depending on the particle size and the time 
step width was studied.

In the droplet extension calculation, the change in the 
length of the short and long axes agreed well with the 

theoretical solution, and the results depended little on the 
particle size. It implies that the MPFI method could well 
capture the incompressible free surface flow in this problem.

In the standing wave calculation, the wave was compared 
with the theoretical solution. In the MPFI calculation, the 
large wave decay was observed compared to the theoretical 
approximation because of the energy dissipative property of 
the MPFI method.

In the dam break calculation, the results were compared 
with the experiment [33]. The prediction of the dam front 
position mostly agreed with the experimental results. The 
pressure at the wall was also compared with the experi-
ment. It is confirmed that the pressure evaluation based on 
the virial theorem [32] was valid even under the flow with 
dynamic motion.
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Fig. 23   Particle number density deviation in the dam break calculation (l0 = 0.02 m)
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Fig. 24   Pressure distribution in the dam break calculation (l0 = 0.02 m)

Fig. 25   Dam front position in the dam break calculations using the 
particle size of l0 = 0.04, 0.02, 0.01 m

Fig. 26   Pressure history at the wall (A in Fig. 22) in the dam break 
calculations using the particle size of l0 = 0.04, 0.02, 0.01 m
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Overall, the MPFI method, satisfying the fundamental 
laws of physics, had an advantage in calculating hydrostatic 
balance, and the reasonable results could be obtained in 
other problems. Compared to the MPS and SPH methods, 
the MPFI method is thought to have an advantage in a prob-
lem where strict incompressibility and static balance are 
required, and the physical consistency may help conducting 
simulation without tuning artificial relaxation parameters 
to cope with unphysical behaviors. Moreover, it may have 
superiority in the high-viscous fluid calculation because the 
implicit velocity calculation is free from the restriction with 
respect to the diffusion number.
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