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Abstract Metal cutting is one of the most common metal-
shaping processes. In this process, specified geometrical
and surface properties are obtained through the break-up
of material and removal by a cutting edge into a chip. The
chip formation is associated with large strains, high strain
rates and locally high temperatures due to adiabatic heating.
These phenomena together with numerical complications
make modeling of metal cutting difficult. Material models,
which are crucial in metal-cutting simulations, are usually
calibrated based on data from material testing. Nevertheless,
the magnitudes of strains and strain rates involved in metal
cutting are several orders ofmagnitude higher than those gen-
erated fromconventionalmaterial testing. Therefore, a highly
desirable feature is a material model that can be extrapolated
outside the calibration range. In this study, a physically based
plasticity model based on dislocation density and vacancy
concentration is used to simulate orthogonal metal cutting
of AISI 316L. The material model is implemented into an
in-house particle finite-element method software. Numerical
simulations are in agreement with experimental results, but
also with previous results obtained with the finite-element
method.
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1 Introduction

The numerical simulation of metal-cutting processes is com-
plicated mainly by two factors. First one is the material
constitutive model. It must adequately represent deforma-
tion behavior during high strain rate loading as well as low
strain rate loading under a range of temperatures, and account
for hardening and softening processes. Material models are
usually calibrated based on experimental data from material
testing covering the relevant range of loading conditions of
the intended application. The magnitudes of strain and strain
rate involved in metal cutting are several orders of magni-
tude higher than those generated from conventional material
tension and compression testing. A highly desirable feature
is therefore a material model that can be extrapolated out-
side the calibration range. This is not trivial since materials
exhibit different strain hardening and softening characteris-
tics at different strains, strain rates, and temperatures. The
advantage of using a physically based plasticity model is
an expected larger domain of validity compared with phe-
nomenological models, because physically based models are
related to the underlying physics of the deformation coupled
to themicrostructural evolution. The second challenge is con-
cerned with the modeling and numerical realization of large
configuration changes. Numerical simulations of machining
process involves large strains and angular distortions, multi-
ple contacts and self-contact, generation of new boundaries,
and fracture with multiple cracks and defragmentation. All
of them are difficult to handle using standard finite-element
methods.

The purpose of this paper is to apply the particle finite-
element method (PFEM) [1–3] to solve the problems asso-
ciated with the large changes in configuration and use a
physically based plasticity model [4,5] to extrapolate the
material behavior outside the calibration range.
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The rest of the paper is organized as follows. Section 2
is devoted to the description of PFEM and the modifica-
tions introduced here concerning insertion and removal of
particles. In Sect. 3, the basic equations for conservation
of linear momentum, mass conservation, and heat transfer
for a continuum using a generalized Lagrangian framework
is presented. Section 4 deals with the variational formula-
tion of the continuous problem presented in Sect. 3. Then
the mixed finite-element discretization using simplicial ele-
ment with equal order approximation for the displacement,
the pressure, and the temperature is presented, and the rel-
evant matrices and vectors of the discretized problem are
given in Sect. 5. Section 6 presents the J2 plasticity model
at finite deformation and a description of the physical-
based plasticity model. Details of the implicit solution of
the Lagrangian FEM equations in time using an updated
Lagrangian approach and a Newton–Raphson-type iterative
scheme are presented in Sect. 7. Section 8 focuses on a
set of representative numerical simulations of metal-cutting
processes using PFEM and a physical-based constitutive
model. Finally, in Sect. 9, some concluding remarks are
presented.

2 The particle finite-element method

The particle finite-element method (PFEM) is a FEM-based
particle method [1], initially proposed for the solution of the
continuous fluid mechanics equations. The main objectives
were, on the one hand, to develop a method to eliminate the
convective terms in the governing equations. On the other
hand, the introduction of a technology, based on the alpha
shape method used in other areas, able to deal with free
boundary surfaces is a secondary objective. The interpre-
tation of the method has evolved from a meshless method,
in which the nodes are supposed to be particles that move
according to simple rules of motion, to a sort of updated
Lagrangian approach in which the advantages of the stan-
dard FEM formulation for the solution of the incremental
problem are used.

Although PFEM was initially applied to problems in the
field of fluid mechanics, it is being currently applied to
a wide range of simulation problems [6–9]: filling, ero-
sion,mixing processes, thermoviscous processes and thermal
diffusion problems, among others. First applications of
PFEM to solid mechanics are found in [10–15] to prob-
lems involving large strains and rotations,multibody contacts
and creation of new surfaces (riveting, powder filling, and
machining).

Applications to the response of rockfill dams on overtop-
ping conditions, via a non-Newtonian fluid, can be found in
[16].

2.1 The particle finite-element method on fluid
mechanics

In the PFEM approach, the continuum material is modeled
using an updated formulation, and the finite-element method
is used to solve the variational incremental problem.Hence, a
mesh, discretizing the domain, is generated in order to solve
the governing equations. In this context, discretization nodes
can be regarded as material points whose motion is followed
during the time stepping solution. The PFEM, typically, con-
sists of the following steps

1. Fill the domain with a set of points referred to as ‘parti-
cles’. The accuracy of the numerical solution is clearly
dependent on the considered number of particles.

2. Generate a finite-element mesh using the particles as
nodes. This is achieved using a Delaunay triangulation
[17,18].

3. Identify the external boundaries to impose the boundary
conditions and to compute the domain integrals. In this
step, the Alpha Shape method [19,20] is used for the
boundary recognition.

4. Solve the nonlinear Lagrangian form of the governing
equations finding displacement, velocity and pressure at
every node of the mesh.

5. Update the particle positions using the computed values
of displacement, velocity and pressure.

6. Go back to step 2 and repeat for the next time step.

The continuous reconnection introduced in step 2 is the
key strategy to circumvent the typical mesh distortion gen-
erated when a description is used with problems involving
large strains.

In this solution scheme, not only is the numerical solu-
tion of the equations critical from the computational point
of view, but also are the generation of a new mesh and the
identification of the boundaries.

2.1.1 Identification of the boundaries

In a Lagrangian framework, the external boundary and the
reference volume are defined by the position of the material
particles. Every time the mesh is regenerated, the particles
belonging to the boundary may change, and the new bound-
ary nodes (and therefore the particles) have to be identified.
The Delaunay triangulation generates the convex hull of the
set of particles.Moreover, the convex hull may not be confor-
mal with the external boundaries. A possibility to overcome
this problem is to correct the generated mesh using the so-
called α-shape method to remove the unnecessary triangles
from the mesh using a criterion based on the mesh distortion.
The α-shape method can also be used for the identification of
the fluid particles which separate from the rest of the domain.
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2.2 The particle finite-element method solid mechanics

The PFEM is a set of numerical strategies combined for
the solution of large deformation problems. The standard
algorithm of the PFEM for the solution of solid mechanics
problems contains the following steps.

1. Definition of the domain(s)�n in the last converged con-
figuration, t = nt , keeping existing spatial discretization
�̄n .

2. Transference of variables by a smoothing process—from
Gauss points to nodes.

3. Discretization of the given domain(s) in a set of particles
of infinitesimal size—elimination of existing connectiv-
ities �̄n .

4. Reconstruction of the mesh through a triangulation of the
domain’s convex-hull and the definition of the boundary
applying the α-shape method [19,20], defining a new
spatial discretization �̄n .

5. A contact method to recognize themultibody interaction.
6. Transference of information, interpolating nodal vari-

ables into the Gauss points.
7. Solution of the system of equations for n+1t = nt + �t .
8. Go back to step 1 and repeat the solution process for the

next time step.

2.3 The particle finite-element method in the numerical
simulation of metal-cutting processes

The standard PFEMpresents someweaknesses when applied
in orthogonal cutting simulation. For example, the external
surface generated using α-shape may affect the mass con-
servation, the chip shape, the absence of equilibrium on the
boundary due to the introduction of artificial perturbations,
and generation of unphysical welding of theworkpiecemate-
rial and the chip.

To deal with this problem, in this work, the use of a
constrained Delaunay algorithm is proposed. Furthermore,
addition and removal of particles are the principal tools,
which are employed for sidestepping the difficulties, asso-
ciated with deformation-induced element distortion, and for
resolving the different scales of the solution.

In the numerical simulation of metal-cutting process,
despite the continuous Delaunay triangulation, elements
arise with unacceptable aspect ratios; for this reason, the
mesh is also subjected to a Laplacian smoothing algorithm
to smooth a mesh. For each node in a mesh, a new position
is chosen based on the position of neighbors, and the node
is moved there. In the case that a mesh is topologically a
rectangular grid, then this operation produces the Laplacian
of the mesh. These procedures are applied locally and not
in every time step. Specific size metrics control node inser-

tion and removal, while the Laplacian smoothing algorithm
drives the repositioning of nodes.

In summary, the enhancement of the PFEM takes place
in three main areas: the dynamic process for the discretiza-
tion of the domain into particles, varying the number of them
depending on the deformation of the body; transference of
the internal variables, from a nodal smoothing through a vari-
able projection; and the boundary recognition, eliminating
the geometric criterion of the α-shape method.

2.3.1 Data transfer of internal variables

The transference of internal variables or element informa-
tion between evolving meshes within the field of PFEM is
critical in the numerical simulation of process like machin-
ing as is shown in [14,15]. In this work, the authors show
that the nodal scheme presented in [10] generates unphysical
spring back of the machined surface and sub-estimation of
the cutting and feed forces.

Due to the insertion, removal, and relocation of particles
throughLaplacian smoothing, the transference of gauss point
variables is set directly through a mesh projection instead of
traditional nodal smoothing [13]. The projection is carried
out by a direct search of the position of the integration point
of the new connectivity, over the former mesh. The use of
this transference scheme give an improved computational
efficiency. The use of the projector operator to transfer inter-
nal variables guarantees the preservation of the stress free
state for the portions of the domains that do not yield. In this
zone, there is no insertion, removal or relocation of particles,
most of the finite elements of the stress free region remain
the same before and after the Delaunay triangulation, getting
as a result no diffusion of the internal variables in the stress
free zone. More details about the data transfer of internal
variables in the numerical simulations are found in [13–15].

3 Governing equations for a Lagrangian
Continuum

Consider a domain containing a deformable material which
evolves in time due to the external and internal forces and pre-
scribed displacements and thermal conditions from an initial
configuration at time t = 0 to a current configuration at time
t = tn . The volume V and its boundaries � at the initial and
current configurations are denoted as (0V, 0�) and (nV, n�),
respectively. The aim is to find a spatial domain that themate-
rial occupies, and at same time obtain velocities, strain rates,
stresses and temperature in the updated configuration at time
n+1t = nt + �t . In the following, a left super index denotes
the configuration where the variable is computed.
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3.1 Momentum equations

The equation of conservation of linear momentum for a
deformable continuum are written in a Lagrangian descrip-
tion as

ρ
Dvi

Dt
− ∂n+1σi j

∂n+1x j
− n+1bi = 0, i, j = 1, . . . , ns in

n+1V

(1)

In Eq. (1), n+1V is the analysis domain in the updated
configuration at time n+1t with boundary n+1�, vi and bi
are the velocity and the body force components along the
Cartesian axis, ρ is the density, ns is the number of space
dimensions, n+1x j is the position of the material point at
time n+1t and n+1σi j are the Cauchy stresses in n+1V and
Dvi
Dt is the material derivative of the velocity field.
The Cauchy stresses are split in the deviatoric si j and

pressure p components as

σi j = si j + pδi j (2)

where δi j is the Kronecker delta. The pressure is assumed to
be positive for a tension state.

3.2 Thermal balance

The thermal balance equation in the current configuration is
written in a Lagrangian framework as

ρc
DT

Dt
− ∂

∂n+1xi

(
k

∂T

∂n+1xi

)
+ n+1Q = 0,

i, j = 1, . . . , ns in
n+1V (3)

where T is the temperature, c is the thermal capacity, k is the
thermal conductivity and Q is the heat source.

3.3 Mass balance

The mass conservation equation can be written for solids
domain as

− 1

κ

Dp

Dt
+ εV = 0 (4)

where κ is bulk elastic moduli of the solid material, Dp
Dt is

the material derivative of the pressure field, and εV is the
volumetric strain rate defined as the trace of the rate of defor-
mation tensor defined as

di j = 1

2

(
∂vi

∂x j
+ ∂v j

∂xi

)
(5)

For a general time interval
[
nt, n+1t

]
, Eq. (4) is discretized

as

− 1

κ
(n+1 p − n p) + εV�t = 0 (6)

Equations (1), (3) and (4) are completed by the standard
boundary conditions.

3.4 Boundary conditions

3.4.1 Mechanical problem

The boundary conditions at the Dirichlet �v and Neumann
�t boundaries with � = �v ∪ �t are

vi − vP
i = 0 on �v (7)

σi j n j − t Pi = 0 on �t , i = 1, . . . ns (8)

where vP
i and t Pi are the prescribed velocities and the pre-

scribed tractions, respectively.

3.4.2 Thermal problem

n+1T − n+1T P = 0 on n+1�T (9)

k
∂T

∂n
+ n+1q p

n = 0 on n+1�q (10)

where T p and q p
n are the prescribed temperature and the

prescribed normal heat flux at the boundaries �T and �q ,
respectively, and n is a vector in the direction normal to the
boundary.

4 Variational formulation

4.1 Momentum equations

Multiplying Eq. (1) by arbitrary test functionwi with dimen-
sions of velocity and integrating over the updated domain
n+1V gives the weighted residual form of the momentum
equations as [21,22]

∫
n+1V

(
−∂n+1σi j

∂n+1x j
− n+1bi

)
wi = 0 (11)

In Eq. (11), the inertial term ρ
Dvi
Dt is neglected because in the

problems of interest in this work, this term is much smaller
than the other terms appearing in Eq. (11).

Integrating by parts the terms involving σi j and using the
tractions boundary conditions (8) yields the weak form of the
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momentum equation as

∫
n+1V

δεn+1
i j σi jdV −

∫
n+1V

wi
n+1bidV

−
∫

n+1�t

n+1wi
n+1t pi dV = 0 (12)

where δεi j = 1
2

(
∂wi

∂n+1x j
+ ∂w j

∂n+1xi

)
is a virtual strain rate

field. Equation (12) is the standard form of the principle of
virtual power [21,22].

Using (2), Eq. (12) gives the following expression

∫
n+1V

δεn+1
i j si jdV +

∫
n+1V

δεn+1
i j pδi jdV −

∫
n+1V

wi
n+1bidV

−
∫

n+1�t

wi
n+1t pi dV = 0 (13)

Introducing, w, s and δe, the vectors of test function, devi-
atoric stresses and virtual strain rates respectively; b and t p

the body forces and tractions vectors, respectively, andm an
auxiliary vector in Eq. (13), yields

∫
n+1V

δεTn+1sdV +
∫

n+1V

δεTmn+1 pdV

−
∫

n+1V

wT n+1bdV −
∫

n+1�t

Twn+1t pdV = 0 (14)

where the matrices introduced in Eq. (14) are defined in ref-
erence [23,24].

4.2 Mass conservation equation

To obtain the mass conservation, Eq. (6) is multiplied by an
arbitrary test function q, defined over the analysis domain.
Integrating over n+1V yields

∫
n+1V

−q

κ
(n+1 p − n p)dV +

∫
n+1V

qεV�tdV = 0 (15)

4.2.1 Stabilized mass conservation equation: the
polynomial pressure projection (PPP)

Mixed formulations have to satisfy additional mathematical
conditions, which guarantee its stability. This condition is
known as BB-condition, named after its inventors Babuska
and Brezzi. In this approach, a stabilized formulation based

on the so-called polynomial pressure projection (PPP) is pre-
sented and applied to Stokes equation in [25,26] is used. The
method is obtained by modification of the mixed variational
equations using a local L2 polynomial pressure projection.
Unlike other stabilization methods, the PPP does not require
the specification of a mesh-dependent stabilization parame-
ter or the calculation of higher-order derivatives. In addition,
PPP can be implemented at the elementary level and reduces
to a simple modification of the mass conservation equation
as follows:
∫

n+1V

−q

κ

(
n+1 p − n p

)
dV +

∫
n+1V

qεV�tdV

+
∫

n+1V

(
q − �

q
) α

μ

(
p − �

p
)
dV = 0 (16)

where α is a stabilization parameter, μ the material shear
modulus and

�
p is the best approximation of the pressure in

the space of polynomial of order 0.
The best approximation of the pressure field in the space

of polynomial of order 0 is given by

∫
n+1V

�
q(p − �

p)dV = 0 (17)

4.3 Thermal balance equation

Application of the standard weighted residual methods to the
thermal balance Eqs. (3), (9) and (10) leads, after standard
operations, to [22]

∫
n+1V

ŵρc
DT

Dt
dV +

∫
n+1V

∂ŵ

∂n+1xi

(
k

∂T

∂n+1xi

)
dV

+
∫

n+1V

ŵn+1QdV+
∫

n+1V

ŵn+1q p
n d� = 0 (18)

where ŵ are the space-weighting functions for the tempera-
ture.

5 Finite-element discretization

The analysis domain is discretized into finite elements with
n nodes in the standard manner leading to a mesh with a total
number of Ne elements and N nodes. In the present work, a
simple three-noded linear triangle (n = 3) with local linear
shape functions N e

i defined for each node n of the elemente
is used. The displacement, the velocity, the pressure, and
the temperature are interpolated over the mesh in terms of
their nodal values in the same manner using the global linear
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shape function N j spanning over the nodes sharing node j .
In matrix format and 2D problems, we have

u = Nu ū, v = Nv v̄, p = Npp̄, T = NT T̄ (19)

where

ū =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ū1

ū2
...

ūN

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

with ūi =
{
ui1
ui2

}
, v̄ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v̄1

v̄2
...

v̄N

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

with

v̄i =
{

vi1
vi2

}
, p̄ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p̄1

p̄2

...

p̄N

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, T̄ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T̄ 1

T̄ 2

...

T̄ N

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Nu = Nv = [
N1 N2 · · · NN

]
Np = NT = [

N1 N2 · · · NN
]

(20)

with N j = N j I2 where I2 is the 2 × 2 identity matrix.
Substituting Eq. (19) into Eqs. (13),(16) and (18) while

choosing a Galerkin formulation with wi = q = 
wi = Ni

leads to the following system of algebraic equations

Fres,mech = Fu,int(ū, p̄) − Fu,ext = 0

Fres,mass = Fp,press(p̄) − Fp,vol(ū)

+Fp,stab(p̄) − Fp,press,n(
n p̄) = 0

Fres,therm = Fθ,dyn(
˙̄T) − Fθ,int(T̄)

+Fθ,ext(T̄) = 0 (21)

where

Fu,int(ū, p̄) =
∫

n+1V

BT
u
n+1σdV (22)

Fu,ext =
∫

n+1V

NT n+1bdV −
∫

n+1�t

NT n+1t pd� (23)

Fp,press(p̄) =
∫

n+1V

1

κ
NTNp̄dV (24)

The term Fp,press,n(
n p̄) is exactly the same term as in Eq.

(24), but the nodal pressure is evaluated at time nt

Fp,vol(ū) = QTn+1ū (25)

where the element form of the Q matrix is given by

Q(e) =
∫

n+1V (e)

B(e)T
ui mN (e)

j dV (26)

Fp,stab(p̄) = Ne
A
e=1

∫
n+1V (e)

α

μ

(
N(e)NT (e)− Ñ(e)ÑT (e)

)
p(e)dV

(27)

FT,dyn(
˙̄T) =

∫
n+1V

ρcNNT ˙̄TdV (28)

Fθ,int(T̄) =
∫

n+1V

kBT
θ Bθ T̄dV −

∫
n+1V

NT QdV (29)

Fθ,ext(T̄) =
∫

n+1�q

NT q p
n d� (30)

In Eq. (21), ˙̄T denotes the material time derivative of the
nodal temperature.

In finite-element computations, the above force vectors
are obtained as the assemblies of element vectors. Given a
nodal point, each component of the global force associated
with a particular global node is obtained as the sum of the
corresponding contributions from the element force vectors
of all elements that share the node. In this work, the element
force vectors are evaluated using Gaussian quadrature.

Note that Eq. (21) involves the geometry at the updated
configuration (n+1V ). This geometry is unknown; hence the
solution of Eq. (21) has to be found iteratively. The iterative
solution scheme proposed in this work is presented in the
next section.

6 The constitutive model

6.1 Thermoelastoplasticity model at finite strains

In metal-forming processes like machining, elastic strain are
in the order of 10−4, whereas plastic strains can be of the
order of 10−1 to 10 [27]. In case elastic strains are neglected,
the model is not able to predict residual stresses and the
springback of the machined surface. For this reason, the con-
stitutivemodel is developed for small elastic and large plastic
deformation, instead of a more complex model that use large
elastic large plastic deformation (See. [13–15]). An example
of modeling of machining processes using a fluid mechan-
ics approach is presented in [28]. A valuable implication of
the small elastic strains is that the rate of deformation ten-
sor di j = 1

2

(
∂vi
∂x j

+ ∂v j
∂xi

)
inherits the additive structure of

classical small strain elastoplasticity:

d = de + dp (31)

where de and dp are the elastic and plastic parts of the rate
of deformation tensor, respectively.
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6.1.1 Elastic response

Let a material with a hypo-elastic constitutive equation like

Lv(τ ) = c : (d − dp) (32)

where Lv(·) denotes the Lie objective stress rate, and τ

denotes the Kirchhoff stress tensor. It can be assume that
the special elasticity c tensor is given by

c = 2μ

(
I − 1

3
1 ⊗ 1

)
+ κ1 ⊗ 1 (33)

where I and 1, with components Iabcd = (δacδbd+δadδcd)/2
and 1ab = δab, are the fourth- and second-order symmetric
unit tensors, respectively. The parameters μ and κ represent
the shear and the bulk elastic modulus, respectively.

6.1.2 Yield condition

The yield condition used in this work is the von Misses–
Huber yield criterion. This criterion is formulated in terms
of the second invariant of the Kirchhoff stress tensor J2 =
1
2devτ : devτ . Hence, the von Mises yield criterion (hence-
forth simply called the Mises criterion) can be stated as

f (τ ) = √
2J2 −

√
2

3
σy = ‖devτ‖ −

√
2

3
σy(ε̄

p, ρi , cv) = 0

(34)

where σy denotes the flow stress, ε̄ p is the hardening para-
meter or plastic strain, ρi denotes the immobile dislocations
density, and cv is the vacancy fraction. The set of nonlinear-
coupled differential equations describing the evolution of ρi
and cv are presented in Sect. 6.2.

6.1.3 Flow rule

As is customary in the framework of incremental plasticity,
the concept of flow rule is applied to obtain the plastic rate of
deformation tensor dp in terms of the plastic flow direction
tensor n = devτ

‖devτ‖ associated to the yield surface:

dp = λ̇n = λ̇
devτ

‖devτ‖ (35)

and the evolution equation for the accumulated effective plas-
tic strain ε̄ p is governed by

˙̄ε p =
√
2

3
λ̇ (36)

where λ̇ is the consistency parameter or plastic multiplier
subject to the standard Kuhn–Tucker loading/unloading con-
ditions

λ̇ ≥ 0, f(τ ) ≤ 0 , λ̇f(τ ) = 0 (37)

Along with the consistency condition [29] complete the for-
mulation of the model.

λ̇ḟ(τ ) = 0. (38)

6.2 Physical-based models

Physical-based models are models where the physical mech-
anisms are underlying the deformation in contrast to empir-
ical models, which are of a more curve-fitting nature.
However, due to the need for averaging and also limited
knowledge about some of the relations making up the model,
physical-based models need also be calibrated. Two differ-
ent types of physical-based models exist. One option is to
explicitly include variables from physics as internal state
variables. The other possibility is to determine the format
of the constitutive equation based on knowledge about the
physical mechanisms causing the deformation. The latter is a
so-called “model-based-phenomenology” Some advantages
of physical-basedmodels is the possibility to link effects from
other scales, e.g. via parameters for grain size or models for
microstructural evolution that extends the model validity to a
larger domain. This may extrapolate the validity of themodel
outside their range of calibration. This requires that the phys-
ical mechanisms implemented in the models still dominate
the deformation in the extended range.

The dislocation density model considers dislocation glide
and climbprocesses contributions to the plastic straining. The
yield limit in this approach is separated into two components
according to [4,5,30–32]

σy = σG + σ ∗ (39)

σG and σ ∗ are the long-range athermal component and the
short-range contributions to the flow stress, respectively. The
first componentσG , is the stress needed to overcome the long-
range interactions lattice distortions due to the dislocation
substructure. The second component, σ ∗, is the stress needed
for the dislocation to pass through the lattice and to pass short-
range obstacles. Thermal vibrations will then also assist the
dislocation when passing an obstacle. The long-range stress
component is commonly written as;

σG = mαμb
√

ρi (40)

where m is the Taylor orientation factor, α is a proportion-
ality factor, μ is the temperature dependent shear modulus,
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b is the magnitude of Burgers vector and ρi is the immobile
dislocation density. The short-range stress components may
be written as,

σ ∗ = 
τμ

⎧⎨
⎩1 −

[
kT

�Fb3μ
ln

( ˙̄εref
˙̄ε p

)] 1
q

⎫⎬
⎭

1
p

(41)

where �F denote the required free energy needed to over-
come the lattice resistance or obstacles without assistance
from external stress, 

τ denote the athermal flow strength
required to move the dislocation past barriers without assis-
tance of thermal energy, ˙̄εre f denote the reference strain rate.
The exponent p and q characterize the barrier profiles and
usually have values between 0 ≤ p ≤ 1 and 0 ≤ q ≤ 2
respectively.

6.2.1 Structure evolution

The evolution of the structure is considered to consist of a
hardening and a recovery process. The used model assumes
that the mobile dislocation density is stress and strain inde-
pendent and much smaller than the immobile ones. Hence
the evolution equation is written;

ρ̇i = ρ̇
(+)
i − ρ̇

(−)

i(glide)
− ρ̇

(−)

i(climb)
(42)

where index i denotes the immobile dislocations. The
increase in immobile dislocation density is assumed to be
related to the plastic strain rate and may therefore be written
according to

ρ̇
(+)
i = m

b

1

�
˙̄ε p (43)

where m is the Taylor orientation factor, b is the Burgers
vector and �denote the mean free path. Mobile dislocations
in this model are assumed tomove an average distance (mean
free path), �, according to the relation

1

�
= 1

s
+ 1

gs
(44)

gs and s denote the size of the grains and the subcell, respec-
tively.

The effect of grain size on flow stress, the Petch–Hall
effect, is accounted for this way and contributes to the hard-
ening. The size of subcells is related to the immobile DD by
the parameter Kc

s = Kc
1√
ρi

(45)

The recovery may occur by dislocation glide and/or climb.
The former is described by

ρ̇
(−)

i(glide)
= �ρi ˙̄ε p (46)

where � is a recovery function which depends on the tem-
perature and strain rate. Recovery by climb is describe by

ρ̇
(−)

i(climb)
= 2cγ

Dv

ceqv

μb3

kT
(ρ2

i − ρ2
eq)cv (47)

where cv is the vacancy fraction, ceqv is the thermal equilib-
rium vacancy concentration, Dv is the diffusivity and cγ is a
calibration parameter.

6.2.2 Vacancy generation and migration

Recovery of dislocations and diffusion of solute atoms are
associated with the control generation and motion of vacan-
cies. They affect recovery by climb, as described above.
Climb is a nonconservative motion, where a dislocation
moves out of the glide plane onto another glide plane.Motion
of jogged screw dislocations creates vacancies by noncon-
servative motion of jogs [4], while annihilation of vacancies
may take place at grain boundaries and at dislocations. The
mono-vacancy evolution equation presented in [4,5] is used
in this study:

ċv =
[
χ

�0

Qvf
σy + ζ

c j
4b2

�0

b

]
˙̄εp − Dvm

(
1

K 2
c
ρi + 1

g2

)

×(cv − ceqv ) + ċeqv (48)

where σy is the flow stress, χ is the fraction of mechani-
cal work used for vacancy generation, Qvf is the activation
energy for vacancy formation, ζ is the net neutralization
effect of vacancy emitting and vacancy-absorbing jogs, c j
is the concentration of thermal jogs, �0· is the atomic vol-
ume, and Dvm refers to vacancy migration.

6.3 Stress update algorithm

6.3.1 Thermoelastoplasticity model at finite strains

An implicit integration of the constitutive model presented
in Sect. 6.1 is summarized in Box 1.

6.3.2 Physical-based models

Given the increment in effective plastic strain and the effec-
tive plastic strain rate obtained in the radial-return stress
update algorithm (Box 1), the only unknowns of Eq. (42)
and (48) are immobile dislocation density and the vacancy
concentration. An implicit time discretization of the set of
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Box 1 Implicit integration scheme of the thermoelastoplastic model

at finite strains

Given n+1u, nτ, n ε̄ p, nρi ,
ncv,�t, μ

f = 1 + ∇un+1
n+1e = 1

2

(
1 − n+1f−T · n+1f−1

)
τ trialn+1 = n+1f ·n τ · n+1fT + c : n+1e
Check for plastic loading
dev(n+1τ trial) = n+1τ trial − 1

3 tr(
n+1τ trial)1 ⊗ 1

f (n+1τ trial) = ∥∥dev(n+1τ trial)
∥∥−

√
2
3σy(

n+1ε̄ p, nρi ,
ncv)

I F f (n+1τ trial) < 0
n+1τ = n+1τ trial

n+1ε̄p = n+1ε̄p
ELSE
Go to return-mapping
ENDI F
The return-mapping
n+1n = dev(n+1τ trial)

‖dev(n+1τ trial)‖
F I ND�λ from the solution of the yielding equation using
Newton–Raphson
dev(n+1τ) = dev(n+1τ trial) − 2μ�λn+1n
n+1ε̄p = n ε̄p +

√
2
3�λ

two coupled differential Eqs. (42) and (48) can be obtained
as [4,5]:

�ρi −
(
m

b

1

�
− �ρi

)
˙̄ε p�t + 2cγ

Dv

ceqv

μb3

kT

×(ρ2
i − ρ2

eq)cv�t = 0

�cv −
[
χ

�0

Qvf
σy + ζ

c j
4b2

�0

b

]
˙̄εp�t + Dvm

×
(

1

K 2
c
ρi + 1

g2

)
(cv − ceqv )�t − ċeqv �t = 0 (49)

where �ρi = n+1ρi − nρi , �cv = n+1cv − ncv and �t is the
time step increment.

This set can be written in a vector form as

H = 0 (50)

The linearization of the system gives

H(i) + ∂H(i)

∂q
δq = 0 (51)

where the subscript i is an iteration counter and q is a vector
containing the internal state variables

qT = (ρi , cv) (52)

The iterative changes in the internal state variables can now
be computed as

δq(i) = −
[
∂H(i)

∂q

]−1

H(i) (53)

This set is solved by an implicit Newton–Raphson method.
When the iterative changes δq are small enough, the iterations
are terminated, and the internal state variables are updated as

n+1q = nq + �q (54)

�q =
niter∑
i=1

δq(i) (55)

where niter is the number of iterations necessary to reach
the desired tolerance of the Newton–Raphson method. More
details about the matrix ∂H(i)

∂q are given in the Appendix and
in [4].

7 Transient solution of the discretized equations

Equation (21) are solved in time with an uncoupled
(mechanical–thermal) implicit Newton–Raphson-type iter-
ative scheme. The basic steps within a time increment
[n · n + 1] are

– Initialize variables

(n+1x1, n+1ū1, n+1τ 1, n+1p̄1, n+1T̄1, n+1ε̄ p, n+1ρi ,
n+1cv

)
← (nx, n ū, nτ, n p̄1, nT̄, n ε̄p,

nρi ,
ncv
)

– In the following, (·)i denotes a value computed at the i th
iteration.

– Iteration loop: i = 1, . . . , Niter . For each iteration

Mechanical problem
Step 1 Compute the nodal displacement increments and the
nodal pressure, from Eq. (21):

K
[

�u
�p̄

]
= −

[ n+1Fi
res,mech

n+1Fi
res,mass

]
(56)

The iteration matrix K is given by

K =
[
Kuu Kup

Kpu Kpp

]
(57)

where Kuu , Kup,Kpu and Kpp are given by the following
expressions

Kuu,i j =
∫

n+1V

BeT
i

(
Cdev
T − 2pI

)
Be

jdV +
∫

n+1V

GT
i σG jdV

Kup,i j =
∫

n+1V

BeT
i mN e

j dV

Kpu = Kup
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Kpp

∫
n+1V

1

κ
NeTNedV +

∫
n+1V

α

μ

(
NeNeT − ÑeÑeT

)
dV

(58)

whereCdev
T is the deviatoric part of the consistent algorithmic

matrix emanating from the linearization of Eq. (21) (a) with
respect to the nodal displacements [21].
Step 2 Update the nodal displacements and nodal pressure:

n+1ūi+1 = n+1ūi + �u
n+1p̄i+1 = n+1p̄i + �p̄ (59)

Step 3 Update the nodal coordinates and the incremental
deformation gradient:

n+1xi+1 = n+1xi + �u

n+1Fi+1
i j = ∂n+1xi+1

i

∂nx j
(60)

Step 4 Compute the deviatoric Cauchy stresses from Box 1.
Step 5 Compute the stresses:

n+1σi j = dev(n+1τ) + p̄δi j (61)

Step 6 Check convergence
Verify the following conditions:

∥∥∥n+1ūi+1 − n+1ūi
∥∥∥ ≤ eu

∥∥n ū∥∥∥∥∥n+1p̄i+1 − n+1p̄i
∥∥∥ ≤ ep

∥∥n p̄∥∥ (62)

where eu and ep are the prescribed error norms. In the
examples presented in this paper, the error norms are set to
eu = ep = 10−3 . If conditions (62) are satisfied, the solution
of the thermal problem in the updated configurationn+1x is
accepted. Otherwise, make the iteration counter i ← i + 1
and repeat Steps 1–6.

Thermal problem

– Iteration loop: i = 1, . . . , Niter . For each iteration:

Step 7 Compute the nodal temperatures

⎡
⎢⎣
∫

n+1V

ρc

�t
NNT dV +

∫
n+1V

kBT
θ Bθ

⎤
⎥⎦�T̄ = −n+1Fi

res,therm

(63)

Step 8 Update the nodal temperatures

n+1T̄i+1 = n+1T̄i + �T̄ (64)

Step 9 Check convergence

∥∥∥n+1T̄i+1 − n+1T̄i
∥∥∥ ≤ eT

∥∥nT̄∥∥ (65)

where eT is the error norm in the balance of energy. In the
examples presented in this work, the error norm is set to
eT = 10−5. If condition (65) is satisfied, the solution of the
physical-based plasticity model Eq. (49) is accepted. Other-
wise, make the iteration counter i ← i + 1 and repeat Steps
7–9.

Physical-based models

– Iteration loop: i = 1, . . . , Niter . For each iteration:

Step 10 Compute the gauss point increment of dislocation
density ρi and vacancy concentration cv given the value of
temperature and strain rate obtained in in the solution of the
thermal and mechanical problems, respectively.

δq(i) = −
[
∂H(i)

∂q

]−1

H(i) (66)

Step 11 Update the gauss point value of the ρi and vacancy
concentration cv

n+1q = nq + �q (67)

Step 12Check convergence of the physical-based constitutive
model.

‖δρi (i)‖ ≤ ep
∥∥nρi∥∥

‖δcv(i)‖ ≤ ep
∥∥ncv∥∥ (68)

where ep is the error norm in the physical-based constitutive
model. In the examples presented in this work, a value of
ep = 10−8 is used. If conditions (68) are satisfied then make
n ← n+1 and proceed to the next time step.Otherwise,make
the iteration counter i ← i + 1 and repeat Steps 10–12.

8 Examples, result and discussion

The ability of PFEM to adaptively insert and remove par-
ticles and improve mesh quality is crucial in the problems
presented from here on. Then, it is possible to maintain a
reasonable shape of elements and also capture gradients of
strain, strain rate, and temperature. The PFEM strategy does
not require a criterion for modelling of the chip separation
from the workpiece.

The friction condition is an important factor that influ-
ences chip formation. Friction on the tool–chip interface is
a nonconstant function dependent of normal and shear stress
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distributions. Normal stresses are largest in the sticking con-
tact region near the tool tip. The stress in the sliding zone
along the contact interface from the tool tip to the point where
the chip separates from the tool rake face is controlled by
frictional shear stress. A variety of complex friction models
exists; however, the lack of input data to thesemodels is a lim-
iting factor. The model for tool–chip interface employed in
this study is the Coulomb friction model. The friction coef-
ficient μ = 0.5 was selected following the value used in
[30,33,34].

The heat generated in metal cutting has a significant effect
on the chip formation. The heat generation mechanisms are
the plastic work done in the primary and secondary shear
zones and the sliding friction in the tool–chip contact inter-
face. Generated heat does not have sufficient time to diffuse
away and temperature rise in the work material is mainly due
to localized adiabatic conditions. A standard practice in the
numerical simulations of mechanical cutting is to assume the
fraction of plastic work transformed into heat equal to 0.9,
see [30,32,34].

Table 1 Cutting data in simulations

Test no Cutting speed
vc (mmin−1)

Feed
(mmrev−1)

Cutting depth
(mm)

1 180 0.05 3.0

2 180 0.15 3.0

3 240 0.05 3.0

4 240 0.15 3.0

An orthogonal cutting operation was employed to mimic
2D plain strain conditions. The depth of cut, used for all the
test cases, was equal to 3 mm. The dimension of the work-
piece was 8 × 1.6 mm. A horizontal velocity corresponding
to the cutting speed was applied to the particles at the right
side of the tool as is given in Table 1. The particles along
the bottom and the left sides of the workpiece were fixed.
Material properties for the workpiece material are shown in
Appendix 2. Material properties of the tool were assumed as
thermoelastic.

Fig. 1 2D plane strain PFEM
model of orthogonal cutting:
a initial set of particles,
b initiation of the chip
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Fig. 2 Intermediate stages of
the chip formation: a time
3.14 × 10 − 4 s, b time
6.28 × 10 − 4 s

Table 2 Measured and simulated cutting forces

Measured Simulated PFEM Simulated FEM

Fc (N ) Ff (N ) Fc (N ) Error (%) Ff (N ) Error (%) Fc (N ) Error (%) Ff (N ) Error (%)

1 446 427 513.6 15.1 427.6 −2.15 485 8.7 400 −8.5

2 960 592 1100 14.5 557 −5.91 1100 14.6 545 −7.9

3 442 439 507 14.7 411 −6.38 480 8.6 390 −11.2

3 929 560 1094 17.7 549 −1.96 1075 15.7 530 −5.4

The workpiece was discretized with 105 particles, see
Fig. 1a. The tool geometry was discretized by 2298 tree-
node thermomechanical elements. Due to adaptive inser-
tion and removal of particles, the average number of
particles increased up to 4800. The effect of insertion
of particles near the tool tip is illustrated in Figs. 1b
and 2a, b for the test case no. 2. The insertion of par-
ticles was controlled by the equidistribution of plastic
power.

8.1 Cutting and feed forces

The loading histories of simulated forces for test no 2, see
Fig. 6b, were evaluated at the chip tool interface. Average
values of the computed forces in the steady state region are
compared with the experimental results in Table 2. The error
used for the evaluation of the computed results is computed as

Error = Computed − Measured

Measured
× 100 % (69)
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TheTable 2 shows that the cutting forcewas overestimated
in all tests by about 15 %. Meanwhile, the feed force was
underestimated by about 5 %. The results presented in the
table above were compared with the results in Svoboda et al
[30], showing that PFEM is able to predict results to those
obtained using (FEM). The errors in Table 2 must be related
to the contextwhere theywill be used, namely the cutting tool
manufacturing industry. Literature overview [4] show that in
the industrial production of nominally identical cutting tool
as well as variations in material properties of nominally the
samematerial can cause variations around the 10% in forces.
Estimated errors below 10 % indicate a good model fit for
the purpose.

Fig. 3 Effective plastic strain
rate

Fig. 4 Temperature
distribution
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Fig. 5 Dislocation density
distribution

Fig. 6 Excess of vacancy
concentration distribution

8.2 Material response

All figures presented in this section correspond to the steady
state conditions. The results shown are for the cutting veloc-
ity of 180m min−1 and feed of 0.15 mm. Figure 3 illustrates
distribution of plastic strain rates in the primary and the sec-
ondary shear zones. Figure 3 presents a maximum plastic
strain rate value of 80,000 s−1 .

Temperature fields are presented in Fig. 4.Maximum tem-
perature was generated in the contact between the chip and
rake face of the tool.

The dislocation density (DD) and vacancy concentration
are shown in Figs. 5 and 6, respectively. In the area close to
the outer surface of the formed chip with lower-temperature
level, the increased dislocation density controls the harden-
ing, Fig. 5. Initial value of DD 106 mm−2 was increased up
to 109 mm−3. In the domains of the highest temperature con-
centrated close to the tool rake face, Fig. 6, the significant
generation of vacancies coupled with the dislocation recov-
ery is present, see Fig. 5.
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Fig. 7 A comparison of the
predicted chip shape. a PFEM,
b FEM

8.3 A comparison between FEM and PFEM

In order to validate PFEM as an effective strategy to deal
with machining problems, we present a small comparison
with MSC.Marc based on the FEM. The comparison is per-
formed with test no. 2 presented in Sect. 8 of this work.
It is important to mention that there are some differences
and similarities between the formulations used inMSC.Marc
and our in-house PFEM code. They use distinct formulation,
finite elements, convergence criteria, and contact laws. Main
differences between the numerical models are listed below:

• MSC.Marc uses a quadrilateral finite element with
reduced integration, whereas PFEM uses a linear dis-
placement linear pressure-stabilized finite element.

• MSC.Marc uses Coulomb friction law, while PFEM uses
a regularized Coulomb friction law.

• MSC.Marc uses a convergence criterion of relative dis-
placement and forces of 0.01, whereas PFEM uses a
convergence criterion of relative displacement of 0.001.

• MSC.Marc is a FEM-based code implemented in nonin-
terpreting languages, while PFEM is implemented in a
vectorized Matlab-based code.

• MSC.Marc uses adaptive mesh refinement schemes,
whereas PFEM uses insertion, removal, and relocation
of particles for avoiding the difficulties, associated with
deformation-induced element distortion, and for resolv-
ing the different scales of the solution.

Figure 7 compares the predicted chip shapes using PFEM
and PFEM showing a reasonable agreement. In our previous
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work [30], the FEM predicted chip shape was compared with
experimental results showing similar shapes in the experi-
mental and the numerical approach.

For the reasons mentioned above, the numerical model
setup with PFEM is considered to be accurate enough to
compete with current commercial softwares based in the
FEM method (Abaqus, AdvantEdge, Deform, MSC.Marc)
[13,15]. Concerning with the computational cost, a MAT-
LAB code with the PFEM implementation was used for this
comparison. The calculation time in a serial execution was
similar to the commercial ones.We guess that, with an imple-
mentation in a more optimized programming language, the
PFEM would be clearly faster.

9 Conclusions

A Lagrangian formulation for analysis of metal-cutting
processes involving thermally coupled interactions between
deformable continua is presented. The governing equations
for the generalized continuum are discretized using elements
with equal linear interpolation for the displacement and the
temperature. Themerits of the formulation in terms of its gen-
eral applicability have been demonstrated in the solutions of
four representative numerical simulations of orthogonal cut-
ting using the PFEM.

In this work, a dislocation density model has been used
together with PFEM to virtually reproduce orthogonal cut-
ting of AISI 316L steel. Numerical results obtained using
PFEM have been compared with both experimental results
and numerical results. Also, results of the numerical model
developed within this work are in agreement with experi-
mental results and can predict forces close to the required
precision.

A comparison with FEM results show that the PFEM
model gives similar results and is accurate enough to compete
with the commercial software in the market.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix 1: Linearization of the physical-based
model presented in Section 6.2

Derivatives of the set of nonlinear Eq. (49) can be written as
follows

∂H
∂q 11

= 1 −
(
m

b

1

Kc

1

2
√

n+1ρi
− �(T )

)

× ˙̄εp�t + 4cγ (T )
Dv

ceqv

μb3

kT
ρi cv�t

∂H
∂q 21

= −χ
�0

Qvf
mαμb

1

2
√

ρi
˙̄εp�t

+ Dvm
1

K 2
c
(cv − ceqv )�t

∂H
∂q 12

= 2cγ (T )
Dv

cv

μb3

kT

(
ρ2
i − ρ2

eq

)
�t

∂H
∂q 22

= 1 + Dvm

(
1

K 2
c
ρi + 1

g2

)
�t

Appendix 2

See Tables 3, 4 and 5.

Table 3 SANMAC 316L—material parameters

Young’s modulus E
(GPa)

Poisson’s
ratio ν

Heat capacity Cp
(J kg−1 ◦C−1)

Thermal expansion
α(1/◦C)

Thermal conduct k
(W ◦C−1 m−1)

Density ρ

(kg m−3)

201 0.3 445 15.5e−6 14 7900

Table 4 Known or assumed parameters

k(JK−1) m b (m) ˙̄εref (s−1) Qvf (J) χ �0 (m3) ξ g (m)

1.38 × 10−23 3.06 2.58 × 10−10 1 × 106 2.46 × 10−19 0.1 1.21 × 10−29 2/3 90 × 10−6

α ρi0 (mm−3) p q cγ Qvm (J) Dvm0 (m2s−1) cv0 Dv0 (m2s−1)

0.4 1 × 1012 0.333 1.902 0.0275 2.38 × 10−19 1.37 × 10−5 2.7183 37 × 10−6
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Table 5 Temperature dependent parameters

Temperature (◦C) Kc

τ �F �

20 59.73 0.010390 0.5056 4.499

200 32.64 0.010000 0.8609 7.329

400 56.09 0.007392 0.9117 10.58

600 48.15 0.005643 0.9913 10.29

700 45.69 0.006256 0.9297 13.68

800 45.69 0.0007939 0.7789 13.54

900 55.13 0.005409 0.6795 13.05

1100 121.1 0.032410 0.6242 14.73

1300 200.0 0.050000 0.6615 28.62
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