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Abstract Discrete element methods are extremely helpful
in understanding the complex behaviors of granular media,
as they give valuable insight into all internal variables of
the system. In this paper, a novel discrete element method
for performing simulations of granular media is presented,
based on the minimization of the potential energy in the
system. Contrary to most discrete element methods (i.e.,
soft-particle method, event-driven method, and non-smooth
contact dynamics), the system does not evolve by (approxi-
mately) integrating Newtons equations of motion in time, but
rather by searching for mechanical equilibrium solutions for
the positions of all particles in the system,which ismathemat-
ically equivalent to locally minimizing the potential energy.
The new method allows for the rapid creation of jammed
initial conditions (to be used for further studies) and for the
simulation of quasi-static deformation problems. The major
advantage of the new method is that it allows for truly sta-
tic deformations. The system does not evolve with time, but
rather with the externally applied strain or load, so that there
is no kinetic energy in the system, in contrast to other quasi-
static methods. The performance of the algorithm for both
types of applications of the method is tested. Therefore we
look at the required number of iterations, for the system to
converge to a stable solution. For each single iteration, the
required computational effort scales linearlywith the number
of particles. During the process of creating initial conditions,
the required number of iterations for two-dimensional sys-
tems scales with the square root of the number of particles in
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the system. The required number of iterations increases for
systems closer to the jamming packing fraction. For a quasi-
static pure shear deformation simulation, the results of the
new method are validated by regular soft-particle dynamics
simulations. The energy minimization algorithm is able to
capture the evolution of the isotropic and deviatoric stress
and fabric of the system. Both methods converge in the limit
of quasi-static deformations, but show interestingly different
results otherwise. For a shear amplitude of 4%, as little as
100 sampling points seems to be a good compromise between
accuracy and computational time needed.

Keywords Energy minimization · Quasi-static · Granular
materials · Discrete element method · Soft-particle ·
Initial conditions

1 Introduction

Granular materials are omnipresent in many industrial and
natural processes, yet their complex behaviors are far from
understood. Discrete element methods are able to capture
these complex behaviors and help us understand them. These
methods all have in common, that all the particles in the sys-
tem are individually modeled, and thus give full information
on all positions, velocities, and forces. The three most well-
knowndiscrete elementmethods are the soft-particlemethod,
the event-drivenmethod, and the non-smooth contact dynam-
ics.

In the soft-particle method [1], the forces on all particles
are calculated from the positions and velocities according to
some contact law. Once all these forces are known, they are
integrated usingNewton’s second law. Themajor advantages
of this method are, that it is relatively easy to program and
understand and that it allows for a whole range of different
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contact laws. Themethod has themajor disadvantage that it is
computational extremely expensive, due to the sharp restric-
tion on the allowed time step. Several attempts have been
made to reduce its computational complexity, for example
by coarse-graining (i.e., reducing the number of particles
and thus degrees of freedom) or by artificially decreasing
the particle stiffness (increasing the allowed time step). The
second approach can help for dynamic flows, since for simu-
lations usually a certain amount of timeneeds to be simulated.
For quasi-static flows reducing the stiffness of the parti-
cles does increase the maximum allowable time step, but it
also decreases the wave and information propagation speed.
Therefore, in many situations, the required simulation time
needs to be increased by the same amount to keep the inertial
number constant, i.e., there is no gain.

In the event-driven method [2–4], particle collisions are
instantaneous andbinary.Once twoparticles touch each other
their contact is handled according to some collision rule and
the particles will move apart. After the collision, the algo-
rithm jumps to the time frame where the next two particles
interact. The advantage of this method is, that in essence, the
particles are modeled as infinitely stiff, without the steep
restriction on the time step. However, if a dense state is
approached, the allowable time step between two consecutive
contacts diminishes, increasing the numerical effort. In the
presence of dissipation, this will eventually lead to an artifi-
cial phenomenon known as inelastic collapse, i.e., a complete
stop of the simulation. Attempts to solve this problem have
been made, for example by González [5] and Luding [6].

In the non-smooth contact dynamics [7–10] method, all
particles are modeled as perfectly rigid and the interactions
are modeled by means of a Signorini condition. Either two
particles are not in contact and thus also haveno forces associ-
atedwith them, or they are in contact and the forces associated
with the contact are determined from the fact that the two par-
ticles cannot overlap. The main advantage of this method is
that in the integration process much larger time steps can be
made compared to the soft-particle method, due to the way of
modeling of particle interactions. Disadvantages are that the
uniqueness of the solutions at each time step is not guaranteed
and that the computational effort scales super linearly with
the number of particles. Krabbenhoft et al. [8] extended the
method with an infinite “time step” to perform quasi-static
simulations.

As said earlier, soft-particle methods integrate Newton’s
equation ofmotion for each particle, where the forces on each
particle consist of damping, stiffness, and external forces.
The damping terms mainly depend on the velocities of the
particles and the stiffness termsdependmainly on the (history
of the) positions of the particles. In quasi-static simulations,
however, the applied load changes slowly over time with
respect to the inertial forces. Therefore, one can obtain a
significant speed up in the simulation if one does not have

to fully resolve the timescale of the inertial forces, but just
the one for the external forces. In this paper, this is done by
not integrating the movement of all particles over time, but
by just searching for equilibrium positions at certain time
intervals, where the number of time intervals depends on the
rate of change of the external forces and not on the internal
forces. Finding these equilibrium positions for the granular
system is naturally equivalent to minimizing the potential
energy of the system.

One has to note however that soft-particle method simu-
lations with slow deformations will not necessarily yield the
same result as energy minimization simulations with a large
number of time intervals. This can be understood by imaging
the potential energy landscape of the system. At each time
step, the system will be in a minimum of this energy land-
scape. Due to the slowly changing external forces the energy
landscape will gradually change. Usually the minimum will
just shift slowly with changing external force. In this case,
both the soft-particle method and the energy minimization
method will move the particles to the exact same positions.
However, it is also quite possible that the nature of the equi-
librium position changes from a minimum to a saddle point.
In this case, the systemwill slide from the saddle point toward
a new minimum position; both methods are then not neces-
sarily ending up in the same energyminimum, nomatter how
slow the deformation may be.

Luckily in most applications, it is not necessary that both
methods converge to exactly the same particle positions. This
is, for example, also not the case for soft-particle simulations.
Due to the chaotic nature of granular materials it is possible
that the positions of particles in two systems with identical
initial particle positions diverge over time due to machine
inaccuracy. It is, however, important that the trend and
characteristics of global properties (like fabric, stress, and
potential energy) are the same for all simulation techniques.

Another way of justifying the energy minimization
approach is by realizing that soft-particlemethods essentially
are minimization methods, at least, whenever some damp-
ing terms are present. In this paper, however, different, more
efficient, techniques are employed to minimize the potential
energy. This idea was also used by O’Hern et al. [11], where
energyminimization is used to generate packings of particles
at different packing fractions, but not to simulate quasi-static
deformations.

One can also look on the minimization approach as a kind
of multi body contact problem [12–14] or a local-global
solution strategy [15]. In these approaches, just as in the
non-smooth contact dynamicsmethod, contacts are generally
modeled as infinitely stiff. An approach to solve such prob-
lems is using*penalty regularizationorLagrangemultipliers.
Using a square penalty method results into a comparable
algorithm as the energy minimization methods suggested in
this paper. The philosophy, however for bothmethods is quite
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different. In our method, the goal is not to model infinitely
stiff particles, but to work with deformations of the particles
at their contacts to resemble their elastic deformation. In the
light of such methods (both rigid contacts and those with
finite deformations of contacting particles have been fully
considered in literature), the solution strategy suggested in
this paper, i.e., a trust-region method in combination with
the conjugate gradient algorithm is novel to our knowledge.
This solutions strategy allows for an elegant algorithm,which
does not require any additional, special treatment of rattlers.

The algorithm is analyzed concerning its computational
efficiency and convergence. Furthermore, its accuracy has
been tested by comparing it with an alternative simulation
method, which has only rarely been performed.

In this paper, only a simple contact model (penalty or min-
imization criterion) without tangential forces is considered.
Even though this might be an oversimplification as com-
pared to more physically sophisticated models, it already
leads to quite interesting phenomenology in sheared two-
dimensional systems. The advantage is that the simple model
allows for a more direct interpretation of the performance
results of the algorithm, since no additional non-linearity
arise from the contact model. When friction and cohesion
are employed even more interesting behavior is observed.
[15–18].

InSect. 2,wewill explain the energyminimization process
in more detail, while in Sect. 3, we will test the algorithm.
The first test will be a simple relaxation to demonstrate the
algorithm’s convergence. We will show the scaling of the
computational time based on the number of particles and
the packing fraction. A second test is performed to compare
the energy minimization method with soft-particle simula-
tions. For this, we use a quasi-static pure shear test case,
showing that the global behavior of the fabric and stress for
both approaches is the same. Furthermore, we report on the
scaling of the computational time based on the number of
simulation time intervals. Finally, in Sect. 4, we end with
some conclusions and recommendations. In this section also
a small discussion is started for possible extensions of the
algorithm to more complex particle interaction laws.

2 Energy minimization

In the energy minimization method, the granular material is
simulated by keeping the potential energy of the system in
a local minimum at all “times” (i.e., after each step). In this
paper, the potential energy of the granular system is defined
as

E =
∑

c∈C

1

2
kδ2c , (1)

whereC is the collection of all contacts in the system, k is the
particle stiffness, and δc is the overlap between the two parti-
cles associated with contact c. This definition of the potential
energy corresponds to a soft-particle method where particle–
particle interactions aremodeled as linear (repulsive) springs.
This is one of the simplest contact models available and
serves as a good candidate to show the power of the sim-
ulation technique. Some more realistic particle systemmight
requiremore complex particle–particle interactions.Apoten-
tial approach for modeling such systems will be discussed in
the outlook and is a good candidate for further research. Fur-
thermore, in this paper a constant particle stiffness is used,
but the model in general allows for a variable stiffness (i.e.,
depending on particle sizes) without major alterations. Addi-
tional simulations have been performed to check the scaling
with the particle radius. Results have shown no influence of
the particle size on the resulting potential energy and stress
(data not shown).

Finding a (local) minimum in the potential energy is
difficult because it is highly non-linear in the positions of
all the particles. This non-linearity mainly comes from the
opening and closing of contacts, but also, in a lesser extent
due to particles rotating around and sliding past each other.
Furthermore, realistic granular systems consist of countless
numbers of particles, leading to a huge number of degrees of
freedom, making the minimization problem computational
expensive.

One method which is quite capable of solving those kind
of problems is the trust-region approach coupled to Stei-
haugs algorithm for solving the trust-region problem [19,20].
Both are described in Sects. 2.2 and 2.3 respectively, how-
ever, these methods require the Jacobian (first derivative
or force vector) and Hessian (second derivative or stiffness
matrix, in more dynamic situations related to the dynamic
matrix) of the system to be known and we shall derive them
first.

2.1 Jacobian and Hessian

For a single contact c, the potential energy is defined as

Ec = 1

2
kδ2c , (2)

with δc the overlap, which is defined as

δc = |x1 − x2| − r1 − r2, (3)

where x1 and x2 are the positions of particle 1 and 2 and r1
and r2 their respective radii. The first derivatives of the single
contact potential energy are thus
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∂Ec

∂x1
= fc = kδcnc

∂Ec

∂x2
= −fc = −kδcnc, (4)

with

nc = x1 − x2
Lc

. (5)

and

Lc = |x1 − x2| . (6)

The second derivatives

∂Ec

∂x1∂x1
= ∂Ec

∂x2∂x2

= ¯̄Kc = k

(
nc ⊗ nc

(
1 − δc

Lc

)
+ ¯̄I δc

Lc

)

∂Ec

∂x1∂x2
= − ¯̄Kc = −k

(
nc ⊗ nc

(
1 − δc

Lc

)
+ ¯̄I δc

Lc

)
, (7)

with ⊗ the dyadic product of two vectors and ¯̄I the identity
matrix. From these single contact force vector fc and stiff-

ness matrix ¯̄Kc we can assemble the full force vector f and
stiffness matrix ¯̄K of the system and apply the minimization
algorithm.

2.2 Trust-region

Trust-region methods are a general type of methods used to
minimize or maximize an objective function. They assume
that in a subset of the domain (i.e., the trust-region), the
objective function can be modeled by a much simpler model
function. If an adequate model of the objective function is
found within the trust-region, the region can be expanded;
conversely if the approximation is insufficient the region
should be contracted.

In this paper, the trust-region is defined as a higher dimen-
sional sphere with radius Δ around the current positions of
all particles, x. From these current positions an improvement
step p is made to reduce the potential energy. To calculate
this improvement, we use themodel function,m (p), which is
simply a quadratic Taylor expansion of the objective function
(i.e., the potential energy):

E (x + p) ≈ m (p) ≡ E (x) + fTp + 1
2p

T ¯̄Kp (8)

with f the force vector and ¯̄K the stiffness matrix as defined
in the previous section. The problem of finding a minimum
in the potential energy is now reduced to finding a minimum
of the model function, within the trust-region:

min
p

m (p) with |p| ≤ Δ. (9)

where || is the l2 or Euclidean norm. To solve this trust-
region problem we use the Steihhaug algorithm (see Sect.
2.3). Once we have calculated an (approximate) solution, p,
we check the quality, ρ, of our trusted region by comparing
the reduction in energy of our approximation with the real
reduction in energy

ρ = E (x) − E (x + p)

m (0) − m (p)
. (10)

If the quality is low (i.e., ρ < 1
4 ) the model function is not

an adequate model of the objective function and we need to
reduce the size of our trust-region. On the other hand, when
the quality is good (i.e., ρ > 3

4 ) and the solution lies on the
border of the trust-region (|p| = Δ), we expand it. Further-
more, we accept updates only if they reduce the potential
energy (or equivalently when ρ > 0). This trust-region algo-
rithm is described in more detail in Algorithm 1.

Data: Given x and Δ

Result: A local minimum in the potential energy (Eq. 1)
while Not converged do

Calculate f and ¯̄K ;
Obtain p by (approximately) solving (Eq. 9);
Evaluate ρ from (Eq. 10);
if ρ > 0 then // Accept improvement

set x = x + p;
end
if ρ < 1

4 then // Low quality
set Δ = 1

4 |p|;
end
if ρ > 3

4 and |p| = Δ then // High quality
set Δ = 2Δ;

end
end
return x

Algorithm 1: Trust-Region

2.3 Steihaug algorithm

The Steihaug algorithm tries to find a solution to the trust-
region problem (Eq. 9). It is based on the conjugate gradient
algorithm, which is able to solve quadratic unbounded min-
imization problems for positive definite Hessian. However
since our domain is bounded (i.e., it has to be within the
trust-region) and the Hessian is not necessarily positive defi-
nite, two additional exit constraints are added. The first kicks
in if the iteration would give a solution outside the trust-
region. The second kicks in if the current search direction is
one of negative curvature in the Hessian. In both cases, the
algorithm returns with a final solution on the boundary of the
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trust-region domain. This Steihaug algorithm is described
in more detail in Algorithm 2. In this algorithm, pi is the
solution, ri the residual and di the search direction.

Data: Given f , ¯̄K , Δ and ε

Result: An approximate solution to Eq. 9
set p0 = 0; // Solution
set r0 = f ; // Residual
set d0 = −r0; // Search direction
for j = 1, 2, 3, . . . do

if dTj Kd j ≤ 0 then // Negative curvature
Find τ such that p = p j + τd j minimizes m (p), within
|p| ≤ Δ;
return p j + τd j ; // Return solution on edge
of trust-region

end

set α j = rTj r j

dTj
¯̄Kd j

;

set p j+1 = p j + α jd j ; // Update solution

set r j+1 = r j + α j
¯̄Kd j ; // Update residual

if
∣∣p j+1

∣∣ ≥ Δ then // Solution outside
trust-region

Find τ such that p = p j + τd j minimizes m (p), within
|p| ≤ Δ;
return p j + τd j ; // Return solution on edge
of trust-region

end
if

∣∣r j+1
∣∣ < ε |r0| then // Accuracy reached

return p j+1;
end

set β j+1 = rTj+1r j+1

rTj r j
;

set d j+1 = r j+1 + β j+1d j ; // Update search
direction

end
Algorithm 2: Steihaug algorithm

2.4 Rattlers

The trust-region and Steihaug algorithms require no special
action for rattlers. This can easily be understood by distin-
guishing the case of real rattlers (i.e., particles without any
contacts) and pseudo rattlers (i.e., particles with too few con-
tacts to be stable). The real rattlers have no contacts at all
and thus do not give any contribution to the force vector or
stiffness matrix. The Steihuag algorithm will not give any
displacement to these particles in the new improvement step.
If new strong contacts arise due to themovement of other par-
ticles, the quality of the improvement step in the trust-region
method will be negative, the improvement will be discarded
and a smaller trust-region will be chosen to calculate a better
improvement. Due to this smaller trust-region no new strong
contact will arise. Pseudo rattlers do have at least one con-
tact and thus will show up in the force vector and stiffness
matrix. Naturally, these particles give an easy way to reduce

the potential energy. This is already picked up by the Steihaug
algorithm in the first iteration. Due to the force inequality the
pseudo rattler will be pushed away from its contact partners.
Just as with other particles, the pseudo rattler may pick up
new contacts during this displacement, but the trust-region
method will make sure that these new contacts are weak
and do not give a substantial contribution to the potential
energy.

3 Test cases

To demonstrate the method two test cases are studied. The
first is a simple relaxation test of a static packing. The goal
of this test is to check the performance of the method. Also
the scaling of its computational time with the number of par-
ticles and the packing fraction are reported. The second test
is a pure shear deformation test case, to compare the results
of the energy minimization scheme with regular soft-particle
simulations. The soft-particle simulations are performedwith
the open access particle mechanics simulator MercuryDPM
[21–24]. In all test cases, we use a uniform distribution of
particle radii between rmin and 2rmin, to prevent crystalliza-
tion [25], i.e., long-range order and an associated increase
in packing efficiency and thus reduction of potential energy
[26].

3.1 Relaxation

In the relaxation test, we let a particle system with random
initial conditions evolve, until a minimum in potential energy
is obtained (see Fig. 1 for a schematic). More specifically, we
start with a system of Np particles, randomly distributed over
a unit square domain (i.e., particles can have arbitrarily large
overlaps), where the minimum radius, rmin, is chosen such
that the packing fraction of the system equals a selected φ.

Results froma single relaxation simulationwith Np = 104

particles at a packing fraction of φ = 0.86 are shown in
Fig. 2. In Fig. 2a, the potential energy is plotted as a func-
tion of the iteration number on a double logarithmic scale,
while in Fig. 2b the reduction in potential energy per iter-

Fig. 1 Schematic evolution of relaxation test. a Initial. b Middle.
c Final
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Fig. 2 Potential energy and reduction in potential energy per iteration as a function of the iteration number for random initial conditions with
Np = 104 and φ = 0.86. a Potential energy. b Reduction in potential energy

ation is plotted as a function of the iteration number. From
these graphs we can clearly distinguish three regimes. In the
first few iterations, the potential energy reduces quite quickly,
then for most of the simulation the reduction in energy per
iteration fluctuates around a constant value, while in the end
the energy reduction per iteration drops sharply until com-
puter accuracy is reached.

These three regimes can be explained by looking at what
happens in the system. In the beginning, particles can have
large overlaps due to the initialization procedure. Local,
small rearrangements can easily reduce these overlaps and
thus the potential energy, until all particles are roughly
homogeneously spread throughout the domain and no large
overlaps remain. In a potential energy landscape perspective,
the simulation starts somewhere on the slope of a large hill
and quickly runs into one of the valleys below.

In the second phase, medium- to large-scale rearrange-
ments are required to further reduce the potential energy,
until the system reaches a local minimum. These large-scale
rearrangements lead to particles loosing or gaining contacts,
such that the approximate potential energy is only accurate in
a small neighborhood. In the potential energy landscape per-
spective, the systems walks through different valleys looking
for a deeper local minimum.

In the final phase, the system is close to a local minimum
and quickly ends up there. In this stage, no new contacts are
formed or old contacts are broken, therefore the approximate
potential energy is quite accurate, such that the conjugate
gradient algorithm almost becomes an exact solver. In the
potential energy landscape perspective, the system is able
to see the local minimum and walks straight into it without
making any detours.

3.1.1 Scaling with packing fraction

The influence of the packing fraction on the required number
of iterations to reach the potential energy minimum is shown
in Fig. 3a. For this study, simulations with 104 particles at
different packing fractions are performed. Each simulation is
repeated 50 times with different initial conditions. From the
graph, it becomes clear that the required number of iterations
increases when the system is closer to the average jamming
packing fraction (φj ≈ 0.8425). This behavior has three
possible explanations. Firstly, the number of local potential
energy minima could decrease as the packing fraction comes
closer to the jamming packing fraction. If there are fewer
minima, the system has to travel further to reach one of those
minima and thus the second phase of the relaxation will take
longer. Secondly, there could be the same number of local
minima, but the valleys between them can become shallower
and curved, resulting into a slower approach. Thirdly, the
scale of the eigenmodes of the system changes from local to
global once the packing fraction approaches the jammingvol-
ume fraction. These larger scale eigenmodes need less energy
to activate and will result into a more smooth energy land-
scape, where the system has to travel further to reach a local
minimum. One has to note however that there is no certain
jamming packing fraction, but rather a range of packing frac-
tions where a system can be in both jammed and unjammed
states. The green line in the figure is a least-squares fit to the
data of the form

Nit = Cφ∣∣φ − φj
∣∣αφ

, (11)

with αφ = 1.5 and Cφ = 29.
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Fig. 3 Required number of iterations to reach a potential energy mini-
mumfromrandom initial conditions, for different packing fractionswith
Np = 104 particles (left) and different number of particles at packing
fraction φ = 0.86. Red crosses are single simulations, green lines are

least-squares fits (Eqs. 11 and 12). a Influence of packing fraction at
Np = 104 . b Influence of number of particles at φ = 0.86. (Color
figure online)

3.1.2 Scaling with number of particles

The influence of the number of particles on the required
number of iterations to reach the potential energy minimum
is shown in Fig. 3b. For this study, simulations at packing
fraction φ = 0.86 with different number of particles are per-
formed. Each simulation is repeated 50 times with different
initial conditions. From the graph, it becomes clear that the
required number of iterations increases with the number of
particles. This can also be explained by the fact that in sys-
tems with more particles also more large scale eigenmodes
exists. Due to these large-scale eigenmodes the energy land-
scape flattens, therefore the system has to travel further in
the energy landscape resulting in a larger required number of
iterations.

Furthermore, from the results we can distinguish two
regimes, one for a small system size (Np < 7000) and one for
larger system sizes (Np > 7000); both are fitted by a power
law function.

Nit = CpN
αp
p (12)

For the small systems sizes, the exponent αp = 0.81 and
for large systems sizes αp = 0.56 (values for Cp are 6.68
and 50.12 for small and large systems sizes, respectively).
The fact that for large system sizes the numbers of iterations
approximately scales with the square root of the number of
particles, confirms the idea that the required number of iter-
ations depends on the scale of the largest eigenmode. Since
in two-dimensional systems, the system size scales with the
square root of the number of particles. This also leads us
to believe that for three-dimensional systems, the required

Fig. 4 Schematic evolution of shear test (shear amplitude is exagger-
ated). aInitial. bMiddle. c Final

number of iterations should scale with the cubic root of the
number of particles, however, this has not yet been confirmed.

3.2 Shear

In this test, we compare the energy minimization technique
with regular soft-particle dynamics simulations. Therefore, it
is chosen to run a two-dimensional pure shear test experiment
with periodic boundaries on one of the packings generated
with the energy minimization scheme. A shear test case is
chosen since it usually gives a more severe restriction on the
required inertial number for quasi-static flows than compres-
sion or expansion tests. More specifically, we use a system
with Np = 104 particles at packing fraction φ = 0.86 and
shear it, keeping the volume conserved, until its true shear
strain equals γmax = 0.04, where γ is defined as

γ = log
x

x0
− log

y

y0
. (13)

where x0 and y0 are the initial domain width and length and
x and y are the current domain width and length (see Fig. 4).
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To compare the two methods, we look at the evolution of

the non-dimensional fabric ¯̄F and the stress ¯̄σ in the system,
defined as (other definitions are possible [27])

¯̄F = 1

A

∑

c∈C
π

(
r21 + r22

)
nc ⊗ nc, (14)

¯̄σ = k

A

∑

c∈C
δcLcnc ⊗ nc. (15)

with A the surface area between the periodic walls. More
specifically, we look at the isotropic and deviatoric parts
(denoted by subscripts iso and dev, respectively) of these
tensorial quantities, where the isotropic part is defined as the
mean of the two eigenvalues and the deviatoric part is half
the difference between the two eigenvalues.

3.2.1 Soft-particle dynamics simulation

In the soft-particle dynamics simulation, the stiffness, mass,
and damping are chosen such that the collision time for
the smallest particles is tc = 10−3[s] and that they have
a restitution coefficient of r = 0.8.1 Furthermore, a small
background damping has been added equal to a tenth of the
particle collision damping to provide some additional damp-
ing for global particle movements. The periodic walls are
moved sinusoidal, such that the system undergoes a smooth
transition from static to moving and no shock waves are trig-
gered. For more details see, for example, Krijgsman [28] and
Luding [29].

The deformation speed is determined by the number, Nsim,
of time steps (Δt = tc/50 = 2 × 10−5[s]) simulated before
themaximum shear strain amplitude is reached. This number
of time steps has been varied to test how slow we need to
go to be in the quasi-static regime with maximal strain rate
γ̇max ≈ 0.06/(NsimΔt). In Fig. 5, we plot the kinetic energy
of the system versus the shear strain for simulations with
different shear rates. The kinetic energy of the system for the
fastest simulations is determined by the global motion of the
particles. For the slowest simulation, however, the curve has
a clear lower bound that represents the global (affine) motion
of the particles, but there are also a lot of smaller individual
peaks. These peaks correspond to the small and large scale,
non-affine, reorganizations that happen in the system during
shear. For these slow deformation speeds, these fluctuations
clearly dominate the kinetic energy and we can say that the
system is in the quasi-static regime.

This observation is also confirmed by looking at the
isotropic and deviatoric fabric and stress of the system (see

1 The results in the paper do not depend qualitatively on r , however,
neither a too large, nor a too small restitution coefficient should be used,
since both lead to inefficient energy dissipation.
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Fig. 5 Kinetic energy as a function of the amount of shear for different
shear velocities, during pure shear deformation

Fig. 6). For all deformation rates, we see an increase in the
deviatoric values for fabric and stress up to amaximumvalue.
For the isotropic values the global behavior already depends
on the deformation speed. At small deformation rates this
results in an approximately constant value for the isotropic
fabric and a small decreasing value for the isotropic stress
(this behavior highly depends on the initial conditions and
will be studied in detail elsewhere). Higher deformation rates
show a decrease in the isotropic fabric and an increase in the
isotropic stress, even though only the static contributions are
shown. This shows that for the highest shear velocities the
flow is definitely not in the quasi-static regime. When we
look closer at the graphs we also see a transition from smooth
curves for fast shear to more fluctuating behavior for small
deformation rates for both fabric and stress. Especially for
the stress at low deformation rates a saw-tooth-like behav-
ior can be seen. The stress generally increases in magnitude
with increasing shear strain, but after an amount of stress has
been build up, the system is not able to withstand the stress
anymore and the particles rearrange, leading to an abrupt
reduction of stress. For the faster deformations, the particles
almost have no time to settle into their new position before
new global rearrangements happen.

3.2.2 Energy minimization

For the energy minimization, there is no such thing as defor-
mation speed or kinetic energy of the system. However, we
can choose the number of sampling points (Nmin) we take
between the initial state and the final shear deformation.

Just as for the soft-particle simulations, we plot the
isotropic and deviatoric fabric and stress evolution of the
system as a function of the shear strain (see Fig. 7). With
increasing number of steps, the nature of the curves changes
from smooth, for Nmin = 101, to highly fluctuating, for
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Fig. 7 Comparison of the isotropic and deviatoric fabric and stress between energy minimization simulations with different number of sampling
points. Blue dotted lines have Nmin = 10 sampling points, green dashed lines Nmin = 103 and red solid lines Nmin = 105. a Fabric. b Stress.
(Color figure online)

Nmin = 105. The nature of this change, however, differs
quite significantly. While for the soft-particle dynamics sim-
ulations it was due to the fact that particles have no time
to relax after a rearrangement, for the minimization there
are simply no additional sampling points. For the minimiza-
tion in 10 steps, the fabric and stress in the system are only
known at 10 different strains and thus automatically result in
smooth curves, avoiding the saw-tooth-like behavior. In the
minimization algorithm, simulations with a small number of
steps already give results quite comparable to the simulations
with much more steps, which indicates that the differences
between Figs. 6 and 7 are due to the kinetic energy.

When one is not interested in the global trend, but more
in specific details at certain points during the simulation, the
energy minimization algorithm can provide these quite well.
One has to increase the number of sampling points at these

interesting locations, while for the less interesting parts a low
number can be used. In this respect, it is also interesting to
note that while for the soft-particle mechanics simulation the
computational time scales linearly with the number of time
steps, the computational time for the energy minimization
does not scale linearly, as shown in Fig. 8. In this figure,
the total sum of the number of iterations has been plotted
versus the number of sampling points. The green line is a
power law fit with a power of 0.31, so the required iterations
scale approximately with the cubic root of the number of
deformation steps.

3.2.3 Comparison

As a last step, the results from both the soft-particle dynamics
simulation in the quasi-static case and the energy minimiza-
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tion method are compared in Fig. 9. Here, the stresses and
fabric of the slowest deformation speed in the soft-particle
dynamics case and the highest number of sampling points in
the minimization algorithm are plotted. As can be seen no
perfect agreement between the two has been obtained, but
that also was not expected due to the chaotic nature of the
system. For sufficiently large systems sizes, all four variables
for both simulations show the same trends and structures,
indicating that the energy minimization method is able to
simulate quasi-static problems. The largest difference here is
that the soft-particle dynamics simulations give higher fluc-
tuations in the isotropic fabric. These differences are caused
by very weak contacts in the simulation (otherwise it would
also have resulted in fluctuations in the stress).Weak contacts

give extremely small forces in the soft-particle dynamics sim-
ulations and incredibly slow deformation rates would have to
be applied to let the particles move due to this weak forces.
In the minimization algorithm, however, all contacts have
comparable influence on the next iteration step and the itera-
tion algorithm only quits once the whole system is in perfect
equilibrium (up to numerical accuracy), resulting into amuch
less fluctuating number of contacts and thus a more constant
(isotropic) fabric.

The observation that both simulation methods give com-
parable results is also confirmed by looking at the average
isotropic and deviatoric fabric and shear,when continuing the
simulation for another 4% shear. These averages are plotted
in Fig. 10 as a function of the simulation time. All curves
converge with increasing computational time, which indi-
cates that in the quasi-static regime both approaches give
the same results. From the graphs, it also becomes clear that
the isotropic fabric gives the most stringent condition on the
allowed deformation rate for the soft-particle simulations.
For the minimization algorithm, however, both isotropic val-
ues already give good results at the first point on the curve
(at tcomp = 1.6 · 103[s] using just 10 sampling points), while
the deviatoric values required more sampling points. There a
good compromise between accuracy and computational time
seem to be the third point on the curve (at tcomp = 1.0 ·104[s]
using 100 sampling points).

4 Conclusion

Discrete element or, more general, particle simulation meth-
ods are extremely helpful in understanding the complex
behaviors of granular media. Different implementations
exist,which all excel at a certain range of the possible states in
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which granular media occur. In this paper, a novel method is
developed based on the minimization of the potential energy
in the system; the newmethod is then compared to traditional
soft-particle simulations. To minimize the energy we use the
trust-region minimization technique in combination with the
Steihaug algorithm to solve the trust-region problem. The
energy minimization framework is more general in the sense
that different minimization techniques could be employed;
however, this is not studied here. The method can be applied
to either rapidly generate initial conditions or to perform truly
static deformation steps of jammed granularmaterials, which
closely resembles very slow quasi-static soft-particle simu-
lations.

One advantage of the method is that it allows for static
deformations without fluctuations, since in the method the
system does not evolve with inertia during time, but rather
with the externally applied strain or load. This makes sure
that at no point in the simulation there is any kinetic energy
and that the system is always in complete mechanical equi-
librium. The stiffness matrix of the system is semi-positive
definite and it can be used to calculate the small strain
stiffness of the system, without performing any additional
simulations. Rattlers that do not contribute to the contact
network are handled automatically by the algorithm. Also
the method can be easily extended to increase the range of
viable simulation types, for example by adding a term to the
potential energy to simulate gravity. Compared to the soft-
particle method large steps can be made between snapshots,
due to the fact that the small scales of particle–particle inter-
actions do not have to be fully resolved. The method differs
from the non-smooth contact dynamics in that it allows for
overlaps to mimic the deformation of the particles.

The energy minimization method works for both two-
and three-dimensional systems, but has been tested for two-
dimensional systems only. In the first test, we have shown
that, when creating static initial conditions, the required num-
ber of iterations in the minimization scheme, for sufficiently
large systems sizes, scales with the square root of the num-
ber of particles in the system. This has been explained by
looking at the spatial-scale of the largest eigenmodes, which
in two dimensions also scales with the square root of the
number of particles. Furthermore, this leads us to believe
that for three-dimensional systems the computational time
scales with the cubic root of the number of particles, but
this has not been tested. Also the dependence of the required
number of iterations on the packing fraction has been tested,
where it has been shown that for systems closer to the
jamming volume fraction the number of required iterations
increases.

A second test has been run to show the performance of
the energy minimization method in comparison with quasi-
static deformation simulations. Here, we have run a pure
shear experiment and compared the newmethod against soft-
particle simulations. It has been shown that in the limit of
quasi-static deformations (extremely small deformation rates
for the soft-particle simulations and a high number of sam-
pling points in the energy minimization scheme) the values
of the isotropic and deviatoric fabric and stress converge for
both simulation techniques. For large strains, both methods
do not exactly agree, but feature the same mean values and
variations in amplitude and frequency. In some cases, we
tested that both methods strictly agree for some extremely
small strain amplitude (data not shown). Furthermore, while,
in the quasi-static regime, for the soft-particle simulation
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the isotropic fabric gives the most stringent condition on
the allowable deformation speed, in the energy minimization
scheme the deviatoric quantities are instrumental for themin-
imum required number of sampling points. For a large shear
amplitude of 4%, only about 100 sampling points seems to
be a good compromise between accuracy and computational
time needed in contrast to millions of time steps required in
the soft-particle algorithm. Finally, it has been shown that
the required computational effort of the minimization algo-
rithm scales with the cubic root of the number of sampling
points.

In its current form, the algorithm only is used with one
specific definition of the potential energy (or contact model).
Extending this to other definitions, which only depend on
properties of the current time step (i.e., no history-dependent
information is required) is trivial. An example of such a
model is the non-constant particle stiffness Hertzian-type
contact model. Extensions to models with static friction is
expected to be a bit more cumbersome and requires addi-
tional research. The problem with these contact models is
that friction generally depends on history parameters and
that sticking contacts can become sliding even for very small
time- or strain-steps and can lead to different phenomenol-
ogy [17,18]. A possibility to incorporate such contactmodels
could be to make the modeled potential energy a function of
multiple time frames, such that history can be taken into
account.

Modeling a Hertz–Mindlin contact for example requires
the addition of all tangential spring lengths to the proper-
ties of the current time frame. The problem however is, that
these lengths are not free variables in the sense that in a new
frame any value can be assigned to them. Instead, for each
individual contact, the previous tangential springs length has
to be used and a contribution has to be added dependent on
the movement of the particles and the state the spring is in
(sticking or sliding). Essentially, the tangential spring length
is integrated in a way similar to what soft-particle mechan-
ics simulations are doing. However, for accurate integration
between two time frames, both frames should be similar and
a control parameter has to be used to control this accuracy.
An idea to apply this is by re-using the trust-region idea,
which requires further research that goes beyond the scope
of this study.
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