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Abstract This paper presents numerical studies of powder
compaction in cold uniaxial pressing. The powder com-
paction in this work is considered as an initial stage of a
hot pressing process so it is realized with relatively low
pressure (up to 50 MPa). Hence the attention has been
focused on the densification mechanisms at this range of
pressure and models suitable for these conditions. The dis-
crete element method employing spherical particles has been
used in the numerical studies. Numerical simulations have
been performed for two different contact models—the elastic
Hertz–Mindlin–Deresiewicz model and the plastic Storåk-
ers model. Numerical results have been compared with the
results of laboratory tests of the die compaction of the NiAl
powder. Comparisons have shown that the discrete element
method is capable to represent properly the densification
mechanisms by the particle rearrangement and particle defor-
mation.

Keywords Discrete element method · Simulation · Powder
compaction · Cold uniaxial pressing

1 Introduction

Uniaxial pressing is one of the techniques of powder com-
paction and consolidation. The uniaxial pressing involves
compaction of powder into a rigid die by applying pressure
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in a single axial direction through a punch. Figure 1 shows
a schematic of this process. In this work, the powder com-
paction is considered as the initial stage of the hot pressing
process; thus, the process conditions are determined. The
investigated uniaxial pressing is performed at an ambient
temperature and under low pressure. The compaction of the
powder in hot pressing is performed under pressure which is
lower than that of conventional powder compaction and it is
usually up to 50 MPa. Hence the attention has been focused
on the densificationmechanisms at this range of pressure and
models suitable for these conditions.

Densification during powder compaction has an influence
for overall manufacturing process. Success of hot pressing
depends on the density and microstructure achieved during
uniaxial pressing.Mechanical properties of the material after
sintering and dimensional accuracy of themanufactured parts
are related to the density obtained in the die compaction.

The process of powder pressing in a die is influenced by
a number of factors, including particle size, shape, compo-
sition, and size distribution. The present paper is aimed to
verify possibility to reproduce behaviour of a metallic pow-
der under pressure using the discrete element model.

Powder compaction has been typically modelled using
two different approaches: the continuum modelling and the
discrete one. Different models of powder compaction are
reviewed in [4,25]. In the continuum approach, the porous
powder under compaction is treated as a continuous medium
at the macro-scale. Its deformation behaviour is usually
described by phenomenological elastoplastic models. Dif-
ferent cap plasticity models are commonly used [3,8]. In the
phenomenological modelling, constitutivemodel parameters
are obtained by fitting experimental data [3].

Discrete models are based on a discrete representation of
the compacted powder. A number of discrete models of pow-
der compaction have been developedwithin the framework of
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Fig. 1 Schematic of uniaxial pressing

the discrete element method [21]. A model assuming rigid-
plastic behaviour according to the Hollomon stress–strain
curve has been developed by Storåkers et al. [26,27]. The
Storåkers model is based on the assumption of the rigid plas-
ticity therefore the contact force has a plastic character from
the contact initiation. More accurate elasto-plastic models,
cf. [1,24,30], consider both the elastic and plastic ranges of
the contact interactions. The discrete element method allows
us to model interaction of very large collections of particles.
The contact interaction and deformation of individual pow-
der particles can be analysed; in this way the microstructure
evolution during the compaction can be analysed [33].

The powder compaction modelling in the present work is
viewed upon as a preliminary step in simulation of the whole
hot pressing process in which the stage of uniaxial pressing
is followed by the stage of pressure assisted sintering. The
discrete element method has also been used to model the
powder sintering [9,12,14,19,32].Most of theseworks, how-
ever, consider the unconstrained sintering in which there is
no additional pressure. There are few investigations in which
the DEM is used to model the pressure assisted sintering, cf.
[9,14,18]. The attention in these works is concentrated more
on a proper representation of sintering mechanisms than on
modelling of the initial pre-sintering compaction. Since the
results of the sintering stage depend on the initial conditions it
is important to reproduce properly the die compaction being
the initial stage of the whole manufacturing process. The
present work is aimed to investigate the basic assumptions
for the contact model of the powder compaction within a
pressure range typical for the hot pressing. The elastic and
plastic contact models will be studied. The numerical results
will be compared with own experimental results.

2 Experimental studies

Uniaxial pressing of an intermetallic nickel aluminide (NiAl)
powder has been studied experimentally. The same powder

Fig. 2 Morphology of the NiAl powder before the compaction

Fig. 3 Particle size distribution of the NiAl powder

material has been used in experimental investigation of the
complete hot pressing process presented in [2,17]. Those
studies were focused on the densification during the sintering
stage. The present studies have been aimed to provide more
details for validation of a numerical model of the compaction
stage.

Morphology of the intermetallic powder used for the stud-
ies is shown in Fig. 2. It can be clearly seen that the powder
particles are characterized by high sphericity. The particle
size of the starting powder was analysed with the Clemex
image analysing system. The particle size distributions of
the intermetallic NiAl are presented in Fig. 3.

The bulk density of the powder has been determined by
measuring the volume of a known quantity of the powder
in the loose poured condition. The results of these measure-
ments are shown in Fig. 4. The histogram shows the relative
bulk density obtained in six measurements. The relative den-
sity is obtained as a ratio of the bulk density of the powder
to the density of the NiAl material, 5910 kg/m3. The relative
density is equivalent to the packing fraction (or packing den-
sity) which is defined as a fraction of space occupied by the
particles. Table 1 presents the statistical data of the measure-
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Fig. 4 Measurements of the relative bulk density of the NiAl powder

Table 1 Statistics of the relative bulk density measurements

Parameter Value

Mean value 0.650

Standard deviation 0.017

Maximum value 0.680

Minimum value 0.625

Fig. 5 Evolution of the powder height and relative bulk density during
the compaction process

ments of the bulk density. The mean value of 0.65 has been
obtained for the bulk relative density of the NiAl powder.

The compaction tests have been performed on the press
HP50-7010 Thermal Technology. The powder has been com-
pressed in a graphite cylindrical diewith a diameter of 10mm
with a pressure exerted by a punch. The pressure has been
increased slowly (50 MPa has been achieved in 15 min) in
order to obtain quasi-static conditions. Figure 5 shows the
evolution of the powder height and relative bulk density as
functions of the applied pressure. Evolution of the powder
height in Fig. 5 is represented by the change of the pow-
der height �H normalized with respect to the initial powder
height H0 = 16.65 mm. As can be seen, the densification
of the powder has a nonlinear character. It is faster in the
initial stage and slower in the final stage of the process. The
initial growth of the powder density can be related mainly to
the particles rearrangement. Contribution of the elastoplastic
particle deformation becomes more important at higher val-
ues of the pressure; however, nonsmooth density evolution

Fig. 6 Morphology of the NiAl powder with visible traces of contacts
after the compaction process

indicates that the particle rearrangement occurs not only in
the initial stage of powder compaction, which is in agreement
with observations of other researchers [11].

Figure 6 shows the morphology of the NiAl powder after
the compaction process. It can be noticed that the particles
have maintained the spherical shape. This indicates that the
particle deformation at this level of pressure is small. Never-
theless, the traces of contacts can be noticed at someparticles.
The traces have been mainly produced by the indentation of
small particles into bigger ones. This proves that the local
stresses at contact points during the compaction exceed the
yield stress.

3 Discrete element model

3.1 Basic assumptions

Apowdermaterial is treated as an assemblyof spherical parti-
cleswhose translational and rotationalmotion is described by
means of the Newton–Euler equations of rigid body dynam-
ics. The equations of motion are integrated in time using an
explicit central difference type algorithm, which is charac-
terized with high efficiency of the solution at each time step.
The known drawback of the explicit time integration scheme
is its conditional numerical stability imposing the limitation
on the time step.

The particles interact among one another with con-
tact forces. Two different contact interaction models will
be considered in this work. The first one is the Hertz–
Mindlin–Deresiewicz model in which the normal interaction
is described by a nonlinear relationship representing the
elastic contact behaviour between two spheres. The second
model will include the interaction law derived by Storåkers
et al. [26,27] assuming the plastic deformation of contacting
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spheres. A damping component will be included in the nor-
mal interaction force in bothmodels. The tangential forcewill
represent the effect of friction. Amoment-type interaction or
cohesionwill not be taken into account. Thedetailed formula-
tion of these contact models will be given below. The contact
models have been implemented in the authors’ in-house ver-
sion of the discrete/finite element code DEMpack [6].

3.2 Hertz–Mindlin–Deresiewicz model

We consider a dynamic contact of two spherical particles,
i and j , with radii Ri and R j from different materials.
Assuming the elastic deformation of the particles we adopt
the Hertz theory to describe the normal contact and the
Mindlin–Deresiewicz model for the tangential contact inter-
action associated with the elastic deformation of the spheres
[15]. Additionally, we introduce a viscous damping in the
normal direction and a friction in the tangential direction
as dissipative mechanisms. The rheological scheme of this
model is shown in Fig. 7. The normal contact force Fn is a
sum of the elastic force in the spring Fe

n and the damping
component Fd

n

Fn = Fe
n + Fd

n . (1)

The elastic part of the normal contact force Fe
n is evaluated

according to the nonlinear Hertz equation

Fe
n = −4

3
E∗√R∗|h| 32 , (2)

where E∗ is the effective modulus of elasticity defined in
terms of the Young’s moduli, Ei and E j , and the Poisson’s
ratios, νi and ν j , of the two contacting particles

1

E∗ = 1 − ν2i

Ei
+ 1 − ν2j

E j
, (3)

R∗ is the effective radius defined in terms of the particle radii,
Ri and R j

1

R∗ = 1

Ri
+ 1

R j
, (4)

Fig. 7 Rheological scheme of the contact model

and h is the particle overlap

h = di j − Ri − R j , (5)

where di j is the distance of the particle centres. Since no
cohesion is allowed Eq. (2) is valid if h ≤ 0, otherwise
Fe
n = Fn = 0.
The damping force Fd

n is assumed to be a linear function
of the normal relative velocity vrn

Fd
n = −cnvrn (6)

where cn is the damping coefficient. The value of the damp-
ing coefficient cn can be taken as a fraction ξ of the critical
damping Ccr for the system of two rigid bodies with masses
mi and m j , connected with a spring of the stiffness kn

cn = ξCcr (7)

where the critical damping can be calculated as, cf. [29]:

Ccr = 2

√
mim jkn
mi + m j

. (8)

The normal stiffness kn can be obtained as the derivative of
the relationship (2)

kn = dFe
n

dh
= 2E∗√R∗|h| . (9)

Using Eq. (2) in Eq. (9) the stiffness kn can be written in
terms of the force Fe

n

kn = 3
√
6R∗(E∗)2|Fe

n | (10)

The stiffness kn will be used below to evaluate the damping
coefficient.

The tangential contact force is calculated using an algo-
rithmbasedon theMindlin andDeresiewicz non-slip solution
of the contact problem [15], which is commonly used in the
framework of the DEM, cf. [7]. The tangential force Ft is
calculated incrementally, and its increments are given by the
following expression

�Ft = −ktvrt�t (11)

where kt is the tangential stiffness,vrt is the relative tangential
velocity and �t is the time step. The relative tangential
velocity at the contact point depends on the linear and angular
velocities of the contacting particles [23].

The tangential stiffness kt depends on the particle overlap
h

kt = 8G∗√R∗|h| (12)
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where R∗ is the equivalent radius defined by Eq. (4) and G∗
is the equivalent shear modulus

1

G∗ = 2 − νi

Gi
+ 2 − ν j

G j
. (13)

The tangential force Ft is limited by the Coulomb friction

‖Ft‖ ≤ μ |Fn| , (14)

where μ is the Coulomb friction coefficient.
Remark The contact model based on the Hertz and non-
slip Mindlin–Deresiewicz theories, similar to the model
described above, was labelled as H-MDns by Di Renzo
and Di Maio [7]. These authors used the label H-MD for a
model based on the implementation of the completeMindlin–
Deresiewicz theory for the tangential contact accounting
more accurately for the effects of micro-slips. Further on,
we will adopt the terminology of Di Renzo and Di Maio and
wewill use the nameH-MDns for themodel described above.
The Hertz–Mindlin or Hertz–Mindlin–Deresiewicz theories
are used in many implementations of contact models in the
DEM [31]. The Hertz and Mindlin–Deresiewicz models are
formulated for quasi-static contact problems, while in the
DEM, we have a dynamic framework; therefore a dashpot
providing viscous dissipation is usually incorporated in the
Hertz–Mindlin–Deresiewicz models in the DEM in parallel
to the spring representing the normal elastic interaction [5].

3.3 Storåkers model

The Hertz–Mindlin–Deresiewicz theory is valid for the
elastic deformation while in powder compaction processes
we usually deal with large deformation in which particles
undergo the plastic deformation. The plastic deformation
of the contacting spherical particles has been assumed in
the model proposed by Storåkers et al. [26,27]. This model
considers a general viscoplastic behaviour combining strain
hardening plasticity (for lower temperatures) and creep (for
higher temperatures). Since the present work encompasses
a quasi-static compaction at ambient temperature, only, our
interest is limited to the plastic behaviour. Therefore a sim-
plified formulation without strain rate effects is presented
below.

Assuming the rigid-plastic properties of the particle mate-
rials are defined by the Hollomon stress–strain relationships

σ = σ
(a)
0 εm (15)

where σ
(a)
0 , a = i, j , are material constants and m is the

hardening exponent, the normal interaction force Fp
n derived

by Storåkers is given by the following Eq. [27]:

Fp
n = −21−m/231−mπc2+mσ ∗

0 (R∗)1−m/2|h|1+m/2 , (16)

where R∗ is the effective radius defined by Eq. (4), h is the
particle overlap given byEq. (5), the parameter c2+m depends
on the strain hardening exponent m:

c2+m = 1.43 exp(−0.97m) (17)

and the equivalent Hollomon constant σ ∗
0 is defined as fol-

lows

(
σ ∗
0

)−1/m =
(
σ

(i)
0

)−1/m +
(
σ

( j)
0

)−1/m
(18)

The Storåkers model has been derived neglecting elastic
deformation, cf. [10]. In such a model, unloading would be
governed by the rigid behaviour (no change of deformation
during unloading). A certain regularization would be neces-
sary in the numerical algorithm in order to avoid non-unique
force-displacement relationship during unloading. This is
why Olsson and Larsson [20] combined the Storåkers model
with the elastic unloading according to the Hertz model. This
can be viewed upon as regularization of the Storåkers model.
Our implementation follow the formulation presented [20].
The contact force during unloading is updated incrementally
according to the following formula:

�Fp
n = kunln �h for �h > 0 and h < 0 , (19)

where kunln is defined analogously to Eq. (10):

kunln = 3
√
6R∗(E∗)2|Fp

n | . (20)

Consequently, the total force during reoading is updated
incrementally (until the previousmaximumforce is achieved)
according to the elastic Hertz contact law.

The tangential contact force is evaluated assuming the
regularized Coulomb friction model. The algorithm for cal-
culation of the tangential force uses the incremental formula
(11) with the tangential contact stiffness correlated to the
normal stiffness:

kt = βkpn , (21)

where β = 0.5−5 is suggested in [20], and the normal stiff-
ness kpn is determined as the derivative of the expression (16)

kpn = dFp
n

dh
=

(
1 + m

2

)
21−m/231−mπc2+m

σ ∗
0 (R∗)1−m/2|h|m/2 . (22)

The constant value of the Coulomb friction coefficient μ is
assumed in this work. A more accurate evaluation of the
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coefficient μ as a function of the angle of obliquity γ =
arc tan(vrt/vrn) is proposed by Martin et al. [13].

3.4 Stability of time integration

Equations of motion in DEM are integrated in time using an
explicit scheme. A known disadvantage of the explicit inte-
gration scheme is its conditional numerical stability imposing
the limitation on the time step �t , i.e.

�t ≤ �tcr (23)

where �tcr is a critical time step determined by the highest
natural frequency of the system ωmax

�tcr = 2

ωmax
. (24)

If damping exists, the critical time increment is given by

�tcr = 2

ωmax

(√
1 + ξ2 − ξ

)
, (25)

where ξ is the fraction of the critical damping corresponding
to the highest frequency ωmax.

An exact calculation of the highest frequency ωmax would
require solution of the eigenvalue problem defined for the
whole system of connected rigid particles. In practice, the
critical time step is estimated taking the minimum value
�tmin

cr of the critical time steps �t (i)cr for independent mass–
spring systems defined for each particle i with a certain safety
margin specified by the parameter α (0 ≤ β < 1):

�t ≤ α�tmin
cr , (26)

�tmin
cr = min

i
�t (i)cr , (27)

�t (i)cr = 2

ωi

(√
1 + ξ2i − ξi

)
, (28)

ωi =
√

ki
mi

. (29)

The value of β has been studied by different authors. A good
review can be found in [22], where the value close 0.17 is
recommended for 3D simulation and 0.3—for a 2D case.

The stiffness ki for the calculation of the eigenfrequency
according to Eq. (29) for the Hertz model is given by Eq. (9).
Evaluation of the eigenfrequency for the Storåkers model
requires consideration the type of loading. For the plastic
loading, the stiffness kpn given by Eq. (22) is taken, and for
the elastic unloading/reloading, the stiffness kunln defined by
Eq. (20) is taken. Thus, under the conditions of the elas-
tic loading/reloading, the critical time step for the Storåkers
contact model is the same as for the Hertz model.

A similar stability analysis can be performed for the rota-
tional particle motion depending on the tangential stiffness.
It can be shown that for equal values of the normal and tan-
gential stiffness the rotational eigenfrequency is higher than
the translational one [23]. In order to avoid the limitation
imposed by the rotational eigenfrequency the rotational iner-
tia of the particles in our simulations is scaled by factor 10.

4 Studies of particle interaction

Detailed studies of interaction of single NiAl particles under
compression have been performed using the two contact
models presented earlier, the elastic Hertz model and the
plastic Storåkers one. The studies have been carried out for
the particle settings shown in Fig. 8. In the first case (Fig. 8a),
the compression of two equal particles with radii R = 10µm
has been analysed, while the other case (Fig. 8b) consists in
compression of three particles aligned along a line, two of
the particles are bigger (R = 10 µm) and one of them, the
middle one is smaller (r = 2 µm). The assumed particle
sizes are typical for the real powder particles, cf. Fig. 3.

The purpose of these studies was to: (i) identify the range
of contact forces and particle deformations which can be
expected in powder subjected to uniaxial compression under
external pressure typical for hot pressing (up to 50 MPa),
(ii) compare the force–indentation relationships for different
models and model parameters, and (iii) explain experimental
observations presented in Sect. 2.

The material properties of the NiAl are given in Table 2.
The elastic properties have been determined in the authors’
own measurements [2], and the yield stress has been taken
from [16]. The Storåkers model has been studied assuming
the rigid-plastic behaviour without hardening and with strain
hardening defined by three different exponentsm = 0.05, 0.1
and 0.2 in the Hollomon Eq. (15). All the stress–strain curves
used in the Storåkers model are plotted in Fig. 9. The follow-
ing pairs of the Hollomon constants have been investigated:
(i) m = 0, σ0 = 800 MPa, (ii) m = 0.05, σ0 = 1480 MPa,
(iii) m = 0.1, σ0 = 1375 MPa, (iv) m = 0.2, σ0 = 2363
MPa. The Hollomon constants σ0 corresponding to the strain
hardening exponents m have been evaluated assuming that
all the curves pass through the point corresponding to the
yield point in the elasto-plastic model: (σY /E, σY ).

The compressive loading has been introduced by prescrib-
ing the displacements to the particle centres. In the second
case, the displacement has been applied to the bigger parti-
cles, only. The displacement-driven loading has been applied
with a constant velocity 10−4 m/s. Quasistatic loading condi-
tions have been assumed so no damping has been considered.
No rotation and no shear have been taken into account. The
evolution of the contact forces F predicted by the Herz and
Storåkers models as functions of the particle overlap (inden-
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Fig. 8 Particle settings for
numerical studies a compression
of two equal particles, b
compression of three unequal
particles

(a) (b)

Table 2 Material properties of NiAl

Material constant Parameter value

Density, ρ 5910 kg/m3

Young’s modulus, E 183 GPa

Poisson’s ratio 0.318

Yield stress, σY 800 MPa

Fig. 9 Stress–strain curves for the Storåkers model

tation) h is shown in Figs. 10 and 11 for compression of two
and three particles, respectively. Figure 12 shows the critical
time step evolution for compression of two particles.

Fig. 10 Force versus indentation curves for compression of two equal
spheres for different contact models

It is seen in Figs. 10 and 11 that initially the Hertz model
predicts a softer behaviour; however, its response gets stiffer
quickly and the stiffness of the Hertz contact becomes higher
than that of theStoråkersmodel. The stiffness in theStoråkers
model depends the exponentm. With the increasing exponent
m, the response predicted by the Storåkers model gets stiffer.
The critical time step evolution is correlated with the model
stiffness. It is seen in Fig. 12 that initiallywhen the stiffness in
the Hertz model is smaller the critical time step is higher than
in the Storåkers models. The critical time step gets smaller
when the stiffness increases.

The Storåkers model is based on the assumption of the
rigid plasticity; therefore, the contact force has a plastic char-
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Fig. 11 Force versus indentation curves for compression of three
spheres for different contact models

Fig. 12 Critical time step versus indentation curves for compression
of two equal spheres for different contact models

acter from the contact initiation. If we consider both the
elastic and plastic ranges of the contact interactions, the tran-
sition between these ranges can be defined by the incipient
yielding. The Hertz contact force corresponding to the onset
of the yield in the contact of two equal spheres is given by
the following formula:

FY = (1.61)3
π3R2(1 − ν2)2

6E2 σ 3
Y (30)

obtained assuming the Mises yield criterion [31]. The inden-
tation producing incipient yielding can be obtained by
inverting Eq. (2) and substituting the value of the force cal-
culated from Eq. (30). The point (h = 2.09 × 10−9 m,
F = 2.822 × 10−5 N), calculated in this way, represent-
ing the onset of yielding is plotted in Fig. 10. It can be seen
that the yielding is initiated at very low values of indentation
and force. A further increase of the compressive loading is
associated with an increase of the plastic zone in the contact
area and development of the plastic deformation in the sphere
volume. Since the range of purely elastic deformation is very

small it is justified to neglect it and apply the Storåkers model
based on the assumption of the rigid-plastic deformation of
the contacting spheres. It can be observed, however, that in
the initial range the Storåkers model predicts a higher con-
tact force than the elastic Hertz model. This is contradictory
to the expectation that the plastic response should be softer
than the elastic one. This problem can be cured simply by
taking a minimum of the two forces, the one predicted by the
Hertz elastic model and the other one given by the Storåkers
plastic model, as it was done by Martin et al. [13]. On the
other hand, the difference between the forces predicted by
the two models is relatively small. The effect of the model
will be studied in the next section for a specimen consisting
of a large number of particles.

Now, we will determine a level of the forces and indenta-
tion which can be expected in compression in a real process
of hot pressing. For this purpose, let us transform the equa-
tions defining the forces in the Hertz and Storåkers models.
Let us divide both sides of Eqs. (2) and (16) by 4R2. Taking
Fe
n = F , E∗ = E/(2(1 − ν2)) and R∗ = R/2 Eq. (2) can

be rewritten as follows:

F

4R2 = −1

3

E

1 − ν2

( |h|
2R

) 3
2

. (31)

Similarly, Eq. (16) can be rewritten as follows:

F

4R2 = −21−m/231−mπc2+mσ0

( |h|
2R

)1+m/2

. (32)

It can be easily noted that the pressure-type parameter F/4R2

can be a reasonable estimate of the external pressure exerted
on the particle assembly which is illustrated graphically in
Fig. 8a. The parameter F/4R2 would give exactly an external
pressure for a regular cubic arrangement of equal spheres.
Equations (31) and (32) express the pressure as functions
of the dimensionless parameter |h|/2R. Taking advantage of
these equations, the force–displacement diagrams in Fig. 10
can be alternatively presented as the relationships (F/4R2)

versus (|h|/2R). The respective axes are scaled appropriately
in Fig. 10.

The graphs in Fig. 10 allowus to estimate values of contact
forces and particle deformations induced by a given external
pressure exerted on an assembly of equal spheres. It can be
found that the external pressure of 50 MPa exerted on an
assembly of spheres with radii of 10µm can produce contact
interactions of around 0.02 N and the indentation between
the spheres according to the considered models is around
0.8–0.9% of the diameter. The indentation is very small, and
so must be the deformation of the powder particle in the
performed tests when they are in contact with other particle
of a similar size. This can explain why the deformation of
the powder particles after tests in Fig. 6 is barely visible.
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A similar analysis can explain traces of the contact with
smaller particles. Let us assume a similar value (0.02 N) of
the contact force for the compression of three spheres shown
in Fig. 8b. Then, the indentation between spheres with radii
10 and 2 µm predicted by the Storåkers model (Fig. 11) is
around 0.4–0.5µm (around 10–12.5% of the smaller particle
diameter) and it is much larger than the indentation between
spheres with equal radius of 10 µm. If similar arrangements
of particles (a small particle compressed between two larger
ones) occur in a compressed powder, traces due to plastic
indentation appear on the surfaces of the larger particles. The
force–indentation diagrams in Fig. 11 show that in this case
the difference between the elastic and plastic models for the
level of expected forces is significant. The traces due to plas-
tic deformation observed in the real powder indicate that the
contact interaction assuming plasticity is more appropriate
in this case.

5 Simulation of powder compaction in a
cylindrical die

The die compaction process of the intermetallic NiAl pow-
der, investigated experimentally in Sect. 2, has been studied
numerically using the models presented in Sect. 3. Sim-
ulations have been performed using a reduced cylindrical
specimen and keeping the real size and size distribution of
the powder particles shown in Fig. 14. The specimen has
been generated using a dynamic technique. A set of 1751
loose particles of diameters ranging from 1.5 to 18.5 µm
randomly distributed in space has been generated and poured
through a funnel (Fig. 13a) to a cylindrical container of diam-
eter 58 µm. The cylindrical sample formed by the particles
settled under gravity is shown in Fig. 13b. The simulation of
this stage has been performed assuming the frictionless Hertz

Fig. 13 Generation of the geometrical model a filling the container
with loose particles, b the cylindrical container with settled particles

contact model with the elastic properties given in Table 2. A
very small friction coefficient, 0.02, has been assumed for the
contact between the particles and the walls of the cylinder in
simulation of powder filling as well as pressing.

The particles have been generated using the real particle
size distribution shown in Fig. 3. Due to a small size of the
numerical specimen, the biggest particles of the intermetallic
powder (dp > 20µm) were not considered in the numerical
model. The particle size distribution in the discrete element
model according to the number and volume of particles is
presented in Fig. 14a, b, respectively. The numerical distrib-
ution according to the number in Fig. 14b is compared with
the experimental distribution, showing a good coincidence.

The top surface of the specimen shown in Fig. 13b has
been flattened by the plate representing the punch under a
prescribed small displacement of 3 µm downwards from the
first contact with particles (Fig. 15) and then unloaded. The
height, H0 = 95 µm, of the flattened specimen after unload-
ing has been used to determine the initial specimen volume
and the initial bulk density in the numerical model. The ini-
tial relative bulk density, 0.62, has been determined in this
way.

This value is slightly lower than 0.65, the relative den-
sity obtained experimentally in the poured condition.We can
suspect, however, that this value is strongly influenced by
the so-called wall effect. The container wall affects a local
packing structure of particles and the porosity near the wall is
higher than in the centre of the container [28]. This decreases
the value of the average bulk density calculated for the pow-
der specimen. This effect is especially important for small
containers and specimens.

In order to overcome this problem, an alternative way to
calculate the bulk density based on the concept of the rep-
resentative volume element (RVE) has been proposed here.
A spherical RVE with the centre coinciding with the centre
of the cylindrical sample has been introduced (Fig. 15). The
diameter of the RVE, 54 µm, has been assumed as possibly
large and suitable to avoid the zone affected by thewall effect.
The solid fraction in the RVE has been calculated exactly
using analytical formulae for the intersection of the spheres.
The relative bulk density of 0.66 has been determined for the
RVE, which is a little higher than the experimental value. In
further studies, the densities determined in both ways will be
given.

The particle specimen generated in this way has been used
in simulations of the die compaction. The powder has been
subjected to the compression exerted by the plate (Fig. 16)
loaded with a linearly rising pressure from 0 to 50 MPa in
time of 10−4 s. An appropriate damping (damping coef-
ficient ξ = 0.9) ensured a quasi-static character of the
compaction process. The time integration has been carried
out using the time steps estimated according to the procedure
explained in Sect. 3.4with the safety coefficientα = 0.1. The
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(a) (b)

Fig. 14 Particle size distribution in the discrete element model a number distribution, b volume distribution

Fig. 15 Idea of the bulk density evaluation

analyses have been performed assuming the Hertz–Mindlin–
Deresiewicz and Storåkers models with the parameters used
in the studies described in Sect. 4. The elastic material prop-
erties for the Hertz model are given in Table 2. The Storåkers
model has been used with the following pairs of the Hol-
lomon constants: (i) m = 0, σ0 = 800 MPa, (ii) m = 0.1,
σ0 = 1375 MPa, (iii) m = 0.2, σ0 = 2363 MPa. The prob-
lem has been studied without and with friction. Figure shows
the results of the simulation for the frictionless Hertz con-
tact model. The reduction of the specimen height can be

clearly observed. The change of the specimen height nor-
malized with respect to the initial height H0 obtained for
all the analysed cases with zero friction is plotted in Fig. 17.
The results are comparedwith the experimental data showing
quite a good agreement.

The curves showing the relative density as functions of the
applied pressure are given in Fig. 18. The numerical results in
Fig. 18 have been obtained for the Hertz and Storåkers mod-
els with zero friction conditions. The bulk density has been
obtained by averaging over the specimen and RVE. It can be
noticed that averaging over the specimen gives lower values
of the bulk density. Averaging over the RVE gives values
very close to the experimental results. Having in mind that
the averaging over the specimen volume is affected by the
wall effect the numerical results based on the RVE averaging
are more trustworthy. The evolution of the bulk density pre-
dicted in numerical simulations is similar to that determined
experimentally. We have a high densification rate in the ini-
tial phase caused by particle rearrangement and the density
changes slower in the later phase, at a higher density, when
the rearrangement of the particles is more difficult. Then,
the deformation of the particles becomes a more important
densification mechanism. Differences between the numer-
ical results obtained with different models are relatively

Fig. 16 Simulation of die compaction using the Hertz contact model a 0 MPa, b 2 MPa, c 25 MPa, d 50 MPa.
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Fig. 17 Evolution of the specimen height during die compaction
(numerical results for zero friction)

Fig. 18 Relative density as a function of pressure—comparison of the
numerical results for zero friction with the experimental data

small. This is because the differences between the force–
indentation curves predicted by the compared models in the
range of contact pressure in our studies are relatively small,
cf. Fig. 10.

Zero friction conditions are favourable for particle
rearrangement. The effect of friction on the densification
rate has been studied for both numerical models. The rela-
tive density evolution for different friction coefficients (µ =
0, 0.01, 0.02 and 0.05) for the Hertz–Mindlin–Deresiewicz
and Storåkers (m = 0.2) models is shown in Figs. 19 and 20,
respectively. It can be noticed that with the increase of fric-
tion the change of the density in the initial phase decreases.
This means that friction resisting particle sliding creates
mechanical locking between particles and blocks particle
rearrangement. This effect is clearly visible even for rela-
tively small friction coefficients. The friction coefficient is
one of the model parameters which should be determined in
model calibration. The results of the sensitivity studies pre-
sented in Figs. 19 and 20 show that changing the friction
coefficient allows us to tune the numerical density evolution
to the experimental results.

Fig. 19 Relative density as a function of pressure for the Hertz–
Mindlin–Deresiewicz model with different friction coefficients

Fig. 20 Relative density as a function of pressure for the Storåkers
model (m = 0.2) with different friction coefficients

6 Concluding remarks

The present work has been aimed to verify and validate dis-
crete element models of powder compaction. The present
work has been focused on the die compaction under a rel-
atively low pressure. Experimental investigations of the die
compaction of theNiAl powder have been performed in order
to provide data for validation of numerical models.

The range of contact forces and pressure expected in com-
paction with a pressure up to 50MPa has been identified, and
possible particle deformation has been estimated assuming
the elastic and plastic deformation. It has been shown that
yielding at the contact is initiated at an early stage of the
compression but the particle deformation at a low pressure
is relatively small, especially in contact between equal par-
ticles. It has been shown that a more significant deformation
can be produced between particles of different sizes. This
has been confirmed by microscopic observations of the NiAl
powder after compaction.

Numerical simulations of the die compaction have been
performed for a reduced size specimen of particles with the
size and size distribution the same as in the real powder. The
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use of the reduced specimen required a careful evaluation of
averaged density in order to avoid the wall effect. Numer-
ical evolution of the bulk density under pressure has been
compared with experimental results. The comparisons have
shown that under investigated range of pressure both mod-
els, the elastic Hertz model and the plastic Storåkers model,
produce quite similar macroscopic behaviour. Nevertheless,
studies of the local stresses indicate that the plastic Storåkers
contact model is more suitable to represent a local interaction
associated with yielding at the contact point.

The effect of the friction has also been investigated. It
has been shown that the friction between particles can block
their rearrangement. The results of the present work have
confirmed that the spherical discrete element method is a
suitable tool to model powder compaction.
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