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Abstract Micro–macro transition methods can be used to,
both, calibrate and validate continuum models from discrete
data obtained via experiments or simulations. These meth-
ods generate continuum fields such as density, momentum,
stress, etc., from discrete data, i.e. positions, velocity, orien-
tations and forces of individual elements. Performing this
micro–macro transition step is especially challenging for
non-uniform or dynamic situations. Here, we present a gen-
eral method of performing this transition, but for simplicity
we will restrict our attention to two-component scenarios.
Themapping technique, presented here, is an extension to the
micro–macro transition method, called coarse-graining, for
unsteady two-component flows and can be easily extended
to multi-component systems without any loss of generality.
This novel method is advantageous; because, by construction
the obtained macroscopic fields are consistent with the con-
tinuum equations of mass, momentum and energy balance.
Additionally, boundary interaction forces can be taken into
account in a self-consistent way and thus allow for the con-
struction of continuous stress fields even within one element
radius of the boundaries. Similarly, stress and drag forces
can also be determined for individual constituents of a multi-
component mixture, which is critical for several continuum
applications, e.g. mixture theory-based segregation models.
Moreover, the method does not require ensemble-averaging
and thus can be efficiently exploited to investigate static,
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steady and time-dependent flows. The method presented in
this paper is valid for any discrete data, e.g. particle simula-
tions, molecular dynamics, experimental data, etc.; however,
for the purpose of illustration we consider data generated
fromdiscrete particle simulations of bidisperse granularmix-
tures flowing over rough inclined channels. We show how to
practically use our coarse-graining extension for both steady
and unsteady flows using our open-source coarse-graining
tool MercuryCG. The tool is available as a part of an efficient
discrete particle solver MercuryDPM (www.MercuryDPM.
org).

Keywords Micro–macro mapping · Coarse graining ·
Granular media

1 Introduction

To formulate accurate continuum models one constantly
needs to calibrate and validate themwith the available exper-
imental or numerical data, which are discrete in nature. To
implement this mapping in an efficient manner, accurate
micro–macro transition methods are required to obtain con-
tinuum fields (such as density, momentum, stress, etc.) from
discrete data of individual elements (positions, velocities,
orientations, interaction forces, etc.). This is the focus of this
paper: How to perform the micro–macro transitional step?

Many different techniques have been developed to per-
form the micro–macro transition, from discrete data, includ-
ing Irving & Kirkwood’s approach [19] or the method of
planes [39]; we refer the interested reader to [27,44] and
references therein. Here, we use an accurate micro–macro
transitional procedure called coarse-graining, as described
in [2,3,12,14,32,44,45,48].When comparedwith other sim-
pler methods of performing the micro–macro transitions, the
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coarse-graining method has the following advantages: (i) the
resulting macroscopic fields exactly satisfy the equations of
continuummechanics, even near the boundaries, see [45], (ii)
the elements are neither assumed to be spherical or rigid, (iii)
the resulting fields are even valid for a single element and a
single time step, hence no ensemble-averaging is required,
i.e. no averaging over several time steps or stamps. However,
the coarse-graining method does assume that (i) each pair
of elements has a single contact; i.e. elements are assumed
to be convex in shape; (ii) the contact area can be replaced
by a single contact point, implying that the overlaps are not
too large; (iii) the collisions are enduring (i.e. not instan-
taneous). Often, micro–macro methods employ ensemble-
or bulk-averaging to obtain accurate results; therefore, the
methods are only valid for homogeneous, steady situations.
The coarse-graining method overcomes these challenges by
applying a local smoothing kernel, coarse-graining function,
with a well-defined smoothing length, i.e. coarse-graining
scale, that automatically generates fields satisfying the con-
tinuum equations. As an example, one could consider a
Gaussian as a coarse-graining function with its standard
deviation as a coarse-graining scale. For more details con-
cerning the choice of the coarse-graining functions, see
Sect. 2.4.

The coarse-graining method is very flexible and can
be used with discrete data from any source, e.g. molec-
ular dynamics, smoothed particle hydrodynamics, discrete
particle simulations, experimental data [4], etc. Previously
coarse-graining has been successfully extended to allow its
application to bulk flows near the boundaries or discontinu-
ities [32,45] and to analyse shallowgranular flows [44].Here,
we systematically extend the method to a multi-component
unsteady, non-uniform situations, and demonstrate its appli-
cation by considering the granular flow of spherical particles
(convex-shaped). Recently, the technique of coarse-graining
was used to analyse steady bidisperse granular mixtures
of spheres varying in size alone [43]. Besides extending
the technique to unsteady multi-component mixtures, we
apply it—for demonstration purpose—to a bidisperse flow
of spherical particles, varying in both size and density, over
inclined channels for both steady and unsteady configura-
tions. Here, we lay special focus upon the often neglected
topic of how to coarse grain in time for unsteady scenar-
ios?

Granular materials, conglomerates of discrete macro-
scopic objects, are omnipresent, both in industry and nature.
Therefore, understanding the dynamics of granular materi-
als [22,31,34] is crucial for a diverse range of important
applications, such as predicting natural geophysical haz-
ards [15] to designing efficient material handling equipments
[5,21,23,46,49]. Although, in the past 30 years, extensive
studies have been carried out in the field of granular materi-
als, today several open questions in both static and dynamic

granular materials are yet to be answered, e.g. failures in
static grain silos, rheology of non-spherical flowing grains
and many more. In nature, and often in industry, granular
materials are polydisperse (multi-component); comprised of
elements varying in size, shape, density and many other
physical properties [9]. Therefore, in the past few years,
much work has been focused on multi-component systems,
both experiments and simulations, in a host of different
applications, including granular mixture flows in rotating
drums [1,20], over non-rotating or rotating inclined channels
[37,40], in vibrated beds [33,47], in statics near jamming [30]
and many more. Consequently, new continuum models are
being formulated that attempt to model the dynamics, e.g.
particle segregation, of these multi-facetted granular con-
stituents in different applications [10,17,28,36,38,40]. In
particle segregation, particles often tend to arrange them-
selves in distinct patterns due to relative differences in
their physical attributes. For example, if a bidisperse (two-
component) mixture—varying in size alone—flows over an
inclined channel, eventually the larger particles end up near
the free surface,whereas the smaller particles find themselves
to appear near the base of the flow [8].

For granular materials, the discrete particle method
(DPM) is a very powerful computational tool that allows
for the simulation of individual particles with complex inter-
actions [18], arbitrary shapes [24], in arbitrary geometries,
by solving Newton’s laws for each particle, see [7,26].
Moreover, complex interactions such as sintering, breaking
and cohesional particles can be captured, by an appropri-
ate contact model; however, this method is computationally
expensive. Nevertheless, with the continuous increase in
computational power it is now possible to simulate mixtures
containing a few million particles; but, for 1mm particles
this would represent a flow of approximately 1 litre, which
is many orders of magnitude smaller than the real life flows
found in industrial or environmental scenarios.

Continuum methods, on the other hand, are able to sim-
ulate the volume of real environmental and industrial flows,
but need simplifying assumptions that often require effective
macroscopicmaterial parameters, closure relations or consti-
tutive laws, etc. In order to correctly apply these continuum
models, both the continuum assumptions must be validated
and the effective material parameters must be determined for
a given application; e.g. the Savage-Hutter model [35] for
granular geophysical mass flows requires the effective basal
friction for closure [44]. However, these continuum models
oftenmake assumptions that need to be validated, and contain
new continuum properties that must be determined for given
materials. These are the so-called validation and calibration
steps, which need to be undertaken either by careful exper-
iments or using well chosen small DPM simulations. Thus,
motivating the need for an accuratemicro–macromethod that
can deal with multi-component scenarios.
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Fig. 1 A snapshot of a
bidisperse mixture flowing in a
periodic box inclined at 26◦ to
the horizontal (discrete particle
simulation). Colours/shades
indicate the base/boundary
(yellowish green, Fb), species
type-1 and type-2 (blue, F1 and
red, F2). We define the bulk as
F1 ∪ F2. (Color figure online)

Outline

To extract the averaged macroscopic fields, the coarse-
graining (CG) expressions are systematically derived in
Sect. 2. As a test case, Sect. 3, we apply the available CG
expressions to bidisperse mixtures flowing over an inclined
channel, see Fig. 1. In Sect. 3.2, for flows in steady state,
we show that there exists a range or plateau of smoothing
lengths (coarse-graining scale/width) for which the fields are
invariant. Although the technique does not require ensemble-
averaging, we nevertheless illustrate spatial coarse-graining
(averaging in space alone) to be well complemented by tem-
poral averaging (averaging in time). For bidisperse unsteady
flows, Sect. 3.4 illustrates how to define both spatial and tem-
poral averaging scale such that resolved scale independent
time-dependent fields can be constructed. Finally, Sect. 4
summarises and concludes our main findings.

2 Spatial coarse-graining

The current section comprehensively extends the approach
of [44,45] to bidisperse spherical systems, and can be eas-
ily extended to polydisperse mixtures without any loss of
generality. Traditionally, the coarse-graining formulae were
derived from the classical laws of conservation of mass,
momentum, energy, etc., see [14]. Thereby, leading to the
expressions for total density, stress, etc., in terms of the
properties of all the particles.Here,wegeneralise this to poly-
dispersemixtures (multi-components); therefore, our starting
point will be mixture theory [29], which constructs partial
mass, momentum and energy balances for each distinct con-
stituent of a mixture.

2.1 Mixture theory

As stated above, the coarse-graining formulae will be for-
mulated using the framework of mixture theory, which is

often used to study porousmedia flow problems (e.g. the flow
of gas, oil and water mixtures through a deformable porous
matrix) [29], sea ice dynamics [16], snow metamorphism
[6], determining the properties of concrete [41], swelling of
chemically active saturated clays [11] and many more appli-
cations.

Mixture theory dealswithpartialvariables that are defined
per unit volume of the mixture rather than intrinsic variables
associated with the material, i.e. the values one would mea-
sure experimentally. The basic mixture postulate states that
every point in the mixture is occupied simultaneously by all
constituents. Hence, at each point in space and time, there
exist overlapping fields (displacements, velocities, densities)
associated with different constituents.

Since each constituent is assumed to exist everywhere, a
volume fractionΦν is used to represent the percentage of the
local volume occupied by constituent ν. Clearly,

(
n∑

ν=1

Φν

)
+ Φa = 1, (1)

where n is the number of distinct granular constituents in the
mixture and Φa denotes the fraction of volume correspond-
ing to interstitial pore space filled with a passive fluid, e.g.
air. However, for convenience, studies often consider volume
fraction of the constituents per unit granular volume rather
than per unit mixture volume, e.g. [38]. As the volume frac-
tion of granular constituents per unit mixture is

Φg =
(

n∑
ν=1

Φν

)
, (2)

the volume fraction of each constituent per unit granular vol-
ume is defined as

φν = Φν/Φg, (3)
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which also sum to unity,

n∑
ν=1

φν = 1. (4)

For each individual constituent, conservation laws for mass,
momentum, energy and angular momentum can all be
obtained, but here for simplicity, we only consider mass
and momentum balance for bulk constituents and ignore the
interstitial fluid effects. Each bulk1 constituent satisfies the
following fundamental laws of balance formass andmomen-
tum [29],

∂tρ
ν + ∇ · (ρνuν) = 0,

∂t (ρ
νuν) + ∇ · (ρνuν ⊗ uν)

= −∇ · σ ν + βν + bν with ν = 1, 2. (5)

The above fundamental laws (5) are derived from the
classical principles ofmass andmomentumconservation cor-
responding to each constituent, see [29] for details. ∂t = ∂/∂t
and∇ = [∂/∂x, ∂/∂y, ∂/∂z] denote the partial temporal and
spatial derivatives, respectively. Symbols ‘ · ’ and ‘⊗’ denote
scalar and dyadic product. Furthermore,

(i) ρν and uν are the partial density and velocity.
(ii) σ ν is the partial stress tensor.
(iii) βν denotes the partial interconstituent drag force den-

sity (drag) which essentially accounts for the net effect
of tractions across the interfaces of different con-
stituents. The interconstituent drag is analogous to the
viscous shear tractions resisting the relative motion of
fluid through matrix pores.

(iv) bν represents the partial body force density, which
accounts for all the external body forces (generally due
to gravity) acting on each constituent ν.

The variables appearing in the theory arepartial not intrin-
sic2, these are defined such that their sum is equal to the total
mixture quantity. For example,

ρ =
n∑

ν=1

ρν + ρa . (6)

Thismakes the bulk quantities easy to calculate, by simply
summing over all bulk constituents. Various relations can be
shown between the intrinsic (by convention a superscript ‘ * ’
denotes an intrinsic variable) and partial variables. Inmodels

1 Bulk is defined as F1 ∪F2, see Fig. 1, excluding the interstitial pore
space.
2 The values which are measured experimentally, e.g. ρ∗ν := material
density.

based on mixture theory, the relationships for velocity and
density are

ρν = φνρν∗ and uν = uν∗. (7)

For the case where the stress tensor can be represented by
a hydrostatic pressure field, it is common in the application
of mixture theory [29] to assume a linear volume fraction
scaling for the pressure as well, i.e.

pν = φν pν∗. (8)

2.2 A mixture theory for coarse-graining

Consider a DPM simulation with three different types of
particles: (bulk) type-1, (bulk) type-2 and boundary, whose
interstitial pore space is filled with a zero-density passive
fluid, see Fig. 1. Each particle i ∈ F , whereF = F1 ∪F2 ∪
Fb, will have a radius ai , whose centre of mass is located at
ri with mass mi and velocity vi . The total force f i (9), act-
ing on a particle i ∈ F is computed by summing the forces
f i j due to interactions with the particles of the same type
j ∈ Fν and other type, j ∈ F/Fν , and body forces bi , e.g.
gravitational forces (mig).

fiα =
∑
j∈Fν

j �=i

fi jα +
∑

j∈F/Fν

fi jα+biα, for all i ∈ F and

ν = 1, 2, b, (9)

where the Greek subscript α = [x, y, z] denotes the vector
components. For each constituent pair, i and j , we define
a contact vector ri j = ri − r j , an overlap δi j = max(ai +
a j − ri j · ni j ,0), where ni j is a unit vector pointing from j
to i , ni j = ri j/|ri j |. Furthermore, we define a contact point
ci j = ri +(ai −δi j/2)ni j and a branch vector bi j = ri −ci j ,
see Fig. 2. Irrespective of the size of constituent i and j , for
simplicity, we place the contact point, ci j , in the centre of
the contact area formed by an overlap, δi j , which for small
overlaps has a negligible effect on particle dynamics.

To account for the interaction of the two bulk constituents,
type-1 and type-2, with the boundary, we will denote the
boundary as a third constituent. As the constituents of a
bidisperse system are classified under three categories – type-
1, type-2, boundary—a three-constituent continuummixture
theory [29] is considered, see Sect. 2.1. In other words, we
classify the bidisperse system constituents under three cate-
gories (i) type-1 constituent (ii) type-2 constituent and (iii)
boundary. The set F1 ∪ F2 denotes the bulk comprising
type-1 and type-2 constituents and Fb denotes the bound-
ary constituents, e.g. see Fig. 1. Although the illustration
(Fig. 1) depicts a flowing (dynamic) system scenario, the
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Fig. 2 An illustration of two interacting constituents i and j , where
the interaction is quantified by a certain amount of overlap δi j . If ri and
r j denote the particles’ centre of mass then we define the contact vector
ri j = ri − r j , the contact point ci j = ri + (ai − δi j /2)ni j and a branch
vector bi j = ri − ci j

above nomenclature is equally applicable to static bidisperse
systems.

For the bulk constituents, F1 ∪ F2, we define partial
densities, ρν , velocities, uν , stresses, σ ν , with ν = 1, 2.
Additionally, we also define interconstituent drag force
densities, βη→ν , corresponding to the interaction among dif-
ferent constituents with η, ν = 1, 2, b. When η = ν, by
definition βη→ν = 0.

For ν = 1, the partial interconstituent drag is the sum
of drags due to constituent type-2 and boundary, i.e. β1 =
β2→1 + βb→1. Similarly, the partial interconstituent drag
for constituent type-2 is β2 = β1→2 + βb→2. On summing
the partial mixture momentum balance law over ν = 1, 2,
leads us to the momentum balance law for the bulk excluding
the boundary, ν = b,

∂t (ρu) + ∇ · (ρu ⊗ u) = −∇ · σ

+ (β2→1 + β1→2)︸ ︷︷ ︸
0

+ (βb→1 + βb→2)︸ ︷︷ ︸
t

+b,

∂t (ρu) + ∇ · (ρu ⊗ u) = −∇ · σ + t + b, (10)

where ρ, u, σ , t and b are the bulk macroscopic density,
velocity, stress, boundary traction and body force density,
respectively,

ρ = ρ1 + ρ2, u = (ρ1u1 + ρ2u2)/ρ, σ = σ 1 + σ 2 and

b = b1 + b2. (11)

Additionally, we have used:

(i) By Newton’s third law, interspecies drag β1→2 =
− β2→1.

(ii) The drag on the bulk constituents due to the boundary
is defined as t = βb→1 + βb→2 and is equivalent to the
boundary interaction force density (IFD) defined in [45].

In the following sections, using the above postulates of
mixture theory, we systematically derive and arrive at the
coarse-graining expressions for both partial and bulk quan-
tities in terms of discrete particle data defined above.

2.3 Mass density

The partial microscopic (point) mass density for a system
(in a zero-density passive fluid) at the point r and time t is
given from statistical mechanics as

ρν,mic(r, t) =
∑

i∈Fν

miδ(r − ri (t)), (12)

where δ(r) is the Dirac delta function in R
3. This definition

complies with the basic requirement that the integral of the
mass density over a volume in space equals the mass of all
the particles in this volume.

To extract the partial macroscopic mass density field,
ρν(r, t), the partial microscopic mass density (12) is con-
voluted with a spatial coarse-graining function ψ(r), see
Sect. 2.4, leading to

ρν(r, t) :=
∫
R3

ρν,micψ(r−r′)dr′ =
∑

i∈Fν

mi ψ(r−ri (t))︸ ︷︷ ︸
ψi

.

(13)

Essentially, we replace the delta-function with an inte-
grable (real and finite support) coarse-graining function of
space, ψ(r), also known as a smoothing function. For bene-
fits seen later, we defineψi = ψ(r−ri (t)). From the partial
density (13), the partial volume fraction is defined as

Λν = ρν

ρν
p
, with ν �= b, (14)

where ρν
p is the (constant) material density of constituent

type-ν. Thereby, the bulk volume fraction is defined as Λ =
Λ1 + Λ2. Given the coarse-graining expressions for partial
densities (13), using (11), the bulk macroscopic density field
is defined as

ρ(r, t) =
∑
ν

ρν(r, t) with ν �= b. (15)

Thence, on utilising expressions (13)–(15), one can con-
struct spatially coarse-grained fields for partial and bulk
density. However, it is still unclear about the choice and
type of coarse-graining functions one could use in these
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expressions. Thereby, in the following section we briefly
reflect upon the characteristics and possible forms of coarse-
graining functions, ψ(r).

2.4 Which functions can be used to coarse-grain?

The coarse-graining functions ψ(r) need to possess certain
characteristics essential for the technique of coarse-graining:

(i) They are non-negative, i.e. ψ(r) ≥ 0 ensuring the den-
sity field to be positive.

(ii) They are normalised, such that
∫
R3 ψ(r) dr = 1, guar-

anteeing conservation of mass, momentum, etc.
(iii) There exists a compact support c ∈R such thatψ(r) =

0 for |r| > c.

As a regularisation to the delta-function, below are a selec-
tion of archetype cases one could choose from

(i) Heaviside:

ψ(r) = 1

Ω(w)
H(w − |r|), where H represents the

Heaviside function and Ω(w) = (4/3)πw3 is the vol-
ume of a sphere in three-dimensional space, with w as
its radius.

(ii) Gaussian:

ψ(r) = 1

(
√
2πw)3

e(−|r |2/(2w)2) H(3w − |r|), of width
w. A Gaussian results in smooth fields and is infinitely
differentiable. Often a cut-off is utilised in order to com-
pute the fields efficiently.

(iii) Lucy polynomials:
In this manuscript, we utilise a family of polynomials
called Lucy, see [25]. In three-dimensional (3D) space,
the 4th-order Lucy polynomial is defined as

ψ(r) = 105

16πc3

[
−3

(a

c

)4 + 8
(a

c

)3 − 6
(a

c

)2 + 1

]
, if

a := |r|
c

< 1, else 0, (16)

with c the cut-off radius or the range (compact support)
andw = c/2 the coarse-graining scale or predetermined
width (or standard deviation). A Lucy polynomial has at
least two continuous derivatives. Moreover, the use of
a polynomial form allows one to compute exact spatial
averages and gradients of the resulting fields as they are
integrable and differentiable analytically.

Note, in all the cases ‘w’ is defined such that a direct
comparison between the different coarse-graining functions
for a fixed ‘w’ can be made.

In the limitw → 0, both theGaussian andLucypolynomi-
als tend towards the delta-function. However, as long as the

coarse-graining function is not singular or highly anisotropic,
the fields depend only weakly on the choice of the above
functions, but strongly on the chosen or predetermined spa-
tial coarse-graining scale, w.

Thus, with the coarse-graining function known and the
expressions for partial and bulk mass density at hand, the
coarse-graining expressions for partial and bulk momentum
density, velocity and stress fields shall be comprehensively
derived in the following sections.

2.5 Mass balance

By utilising the coarse-graining expression for macroscopic
partial mass density (13), we derive the governing equation
conserving the mass, which is satisfied by each constituent
of the mixture. Note that (using the chain rule):

∂

∂t
ψ(r − ri (t))=−∂riγ

∂t

∂

∂rγ

ψ(r − ri (t))=−viγ
∂

∂rγ

ψi ,

(17)

where ψi = ψ(r − ri (t)) is the smoothing kernel around
particle i . Using the approach of [14], we consider the time
derivative of the coarse-grained partial mass density (13).
Using (17), we have

∂

∂t
ρν(r, t) = ∂

∂t

∑
i∈Fν

mi ψ(r − ri (t))︸ ︷︷ ︸
ψi

= − ∂

∂rγ

∑
i∈Fν

miviγ ψi = −∂pν
γ (r, t)

∂rγ

(18)

with ν denoting the species type and pν(r, t) defined as the
coarse-grained partial momentum density,

pν(r, t) :=
∑

i∈Fν

miviψi . (19)

The above expression (19) corresponds to themicroscopic
partial momentum density field pν,mic = ∑

i∈Fν mivi (t)
δ(r−ri (t)).Moreover, on rearranging the terms in (18), using
the shorthand notation ∂t = ∂/∂t and ∇ = [∂/∂x, ∂/∂y,

∂/∂z], we arrive at the mass balance law, in terms of the
partial fields,

∂tρ
ν + ∇ · (pν) = 0 with ν = 1, 2. (20)

Note that the above result also holds for a single con-
stituent (e.g. single particle) in a mixture, and one does not
need to consider an ensemble of constituents, e.g. a collection
of particles, to define these fields. Additionally, the macro-
scopic partial velocity fields, uν(r, t), are defined as the
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ratios of partial momentum density and mass density fields

uν = pν/ρν, (21)

Thence, the coarse-grained partial mass density and
velocity fields are defined such that they exactly satisfy
the mixture continuity equation (20) which, when summed
over the constituent types, leads us to the mass balance law
(excluding the boundary)

∑
ν

[
∂tρ

ν(r, t) + ∇ · (pν(r, t))
]

= ∂tρ(r, t) + ∇ · (p(r, t)) = 0, (22)

where ρ(r, t) is the macroscopic bulk mass density field (15)
and p(r, t) = ∑

ν p
ν(r, t) is defined as the macroscopic

bulk momentum density field. Furthermore, the bulk velocity
field, u, is defined as uα = pα(r, t)/ρ(r, t), which satisfies
the bulk law of mass balance (22).

2.6 Momentum balance

Besides satisfying mass balance laws, as postulated in mix-
ture theory (Sect. 2.1), each constituent (e.g. single particle)
of the system also satisfies the fundamental balance law of
momentum, which, when stated in terms of partial fields is

∂tpν + ∇ · (ρνuνuν) = −∇ · σ ν + βν + bν. (23)

In order to obtain an expression for the partial macro-
scopic stress field, σ ν , we rewrite the momentum balance
law (23) in component form,

∂pν
α

∂t
= − ∂

∂rγ

[ρνuν
αuν

γ ] − ∂σ ν
αγ

∂rγ

+ βν
α + bν

α. (24)

To begin with, we compute the temporal derivative of pν
α as,

∂pν
α

∂t
=

∑
i∈Fν

fiαψ(r − ri )

︸ ︷︷ ︸
Aν

α

+
∑

i∈Fν

miviα
∂

∂t
ψ(r − ri )

︸ ︷︷ ︸
Bν

α

, (25)

where fiα = mi
dviα

dt
is the total force on particle i ∈ Fν .

Substituting (9), the first term of (25) can be expanded as

Aν
α =

∑
i∈Fν

∑
j∈Fν

j �=i

fi jαψi +
∑

i∈Fν

∑
j∈F/Fν

fi jαψi +
∑

i∈Fν

biαψi .

(26)

The first term of Aν
α , representing interactions between

constituents of the same type, satisfies

∑
i∈Fν

∑
j∈Fν

j �=i

fi jαψi =
∑
j∈Fν

∑
i∈Fν

j �=i

f j iαψ j =−
∑

i∈Fν

∑
j∈Fν

j �=i

fi jαψ j ,

(27)

by first interchanging the indices i and j and then applying
Newtons’ third law, fi jα = − f j iα . On adding the first and
the third term from (27), it follows that

∑
i∈Fν

∑
j∈Fν

j �=i

fi jαψi = 1

2

∑
i∈Fν

∑
j∈Fν

j �=i

fi jα(ψi − ψ j ). (28)

Using (27) with ψi j = ψ(r − ci j ) at the contact point,
defined in Fig. 2, and ψi j = ψ j i , (28) can be restated as

∑
i∈Fν

∑
j∈Fν

j �=i

fi jαψi = 1

2

∑
i∈Fν

∑
j∈Fν

j �=i

fi jα(ψi −ψi j +ψi j − ψ j )

= 1

2

∑
i∈Fν

∑
j∈Fν

j �=i

fi jα(ψi − ψi j )

+1

2

∑
i∈Fν

∑
j∈Fν

j �=i

fi jαψi j︸ ︷︷ ︸
=− f j iαψi j

−1

2

∑
i∈Fν

∑
j∈Fν

j �=i

fi jαψ j︸ ︷︷ ︸
=− f j iαψi

=
∑

i∈Fν

∑
j∈Fν

j �=i

fi jα(ψi − ψi j ). (29)

The second term ofAν
α , representing interspecies interac-

tions, can be rewritten as

∑
i∈Fν

∑
j∈F/Fν

fi jαψi =
∑

i∈Fν

∑
j∈F/Fν

fi jα(ψi − ψi j )

+
∑

i∈Fν

∑
j∈F/Fν

fi jαψi j . (30)

Substituting (29) and (30) into (26), yields

Aν
α =

∑
i∈Fν

∑
j∈Fν

j �=i

fi jα(ψi − ψi j )

+
∑

i∈Fν

∑
j∈F/Fν

fi jα(ψi − ψi j )

+
∑

i∈Fν

∑
j∈F/Fν

fi jαψi j +
∑

i∈Fν

biαψi , (31)
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which when simplified results in

Aν
α =

∑
i∈Fν

∑
j∈F
j �=i

fi jα(ψi − ψi j )

+
∑

i∈Fν

∑
j∈F/Fν

fi jαψi j +
∑

i∈Fν

biαψi . (32)

From the above expression,wedefine the interspecies drag
force density (drag) in (24)

βη→ν
α :=

∑
i∈Fν

∑
j∈Fη

ν �=η

fi jαψi j ,
(33)

localised at the contact point ci j . The body force density is
defined as

bν
α := ∑

i∈Fν biαψi . (34)

To obtain the macroscopic partial stress field σν
αβ , we use

the identity [45]

ψi j − ψi =
∫ 1

0

∂

∂s
ψ(r − ri + sbi j )ds

= ∂

∂rα

bi jα

∫ 1

0
ψ(r − ri + sbi j )ds︸ ︷︷ ︸

χi j

, (35)

which is rewritten using the chain rule of differentiation and
the Leibnitz’ rule of integration. In (35), bi j = ri − ci j

is the branch vector as illustrated in Fig. 2. Substituting the
expressions (35) inAν

α , allows one to compute the force den-
sities along the branch vector between the particles. Using
the identity (35) and substituting (34), Aν

α is rewritten as

Aν
α = − ∂

∂rγ

⎡
⎢⎢⎣ ∑

i∈Fν

∑
j∈F
j �=i

fi jαbi jγ χi j

⎤
⎥⎥⎦ +

∑
η �=v

βη→v
α + bv

α

(36)

where σ
c,ν
αβ is the macroscopic partial contact stress field;

σ c,ν
αγ :=

∑
i∈Fν

∑
j∈F
j �=i

fi jαbi jγ χi j , (37)

due to all the contacts among all the constituents. The inte-
gral χi j ensures that the contribution of the force between
two constituents i and j to the partial stresses to be propor-
tional to the length of the branch vectors, i.e. the stresses are
distributed proportionally based on the fraction of the branch

vectors contained within the constituent. Thus, for contacts
between a small and a large constituent, the larger sized con-
stituent receives a bigger share of the stress.

Following [14], the second term of (25), is expressed as

Bν
α =

∑
i∈Fν

miviα
∂

∂t
ψi

= − ∂

∂rγ

[
ρνuν

αuν
γ +

∑
i∈Fν

miv
′
iαv′

iγ ψi

]
, (38)

where v′
iα is the fluctuation velocity of particle i , defined as

v′
iα(r, t) = uα(r, t) − viα(t). Substituting (36) and (38) in
(24) yields

∂σ ν
αγ

∂rγ

= ∂

∂rγ

[
σ c,ν

αγ +
∑

i∈Fν

miv
′
iαv′

iγ ψi

︸ ︷︷ ︸
σ

k,ν
αγ

]
,

(39)

where σ k,ν
αγ is the macroscopic partial kinetic stress field;

σ k,ν
αγ :=

∑
i∈Fν

miv
′
iαv′

iγ ψi . (40)

Thereby, from (39), the total partial stress field, σν
αβ , is

defined as the sum of both partial contact and kinetic stress
fields, σ ν = σ c,ν + σ k,ν . Similarly, from (10), the total bulk
stress field is defined as

σ :=
∑
ν

σ c,ν + σ k,ν . (41)

In the case of bidisperse mixture, ν = 1, 2, the bulk stress
is defined as

σ := σ c,1 + σ k,1︸ ︷︷ ︸
σ 1

+ σ c,2 + σ k,2︸ ︷︷ ︸
σ 2

. (42)

In order to illustrate a simple application of the above
coarse-graining expressions to compute the partial stresses
and interspecies drag forces, a simple setup of static bidis-
perse (large and small) two-dimensional particles (discs) is
considered, see Fig. 3. Using the coarse-graining expressions
forpartial drag (34) and stresses (39), Fig. 3 exhibits themag-
nitude of partial stresses and drag arising from the contacts
between the discs.

So far, we have comprehensively derived and given the
coarse-graining expressions for both partial and bulk mass
and momentum density, velocity and stress fields including
the expressions for the boundary force density, a interspecies
drag force density, and the body force density. In the follow-
ing section, using a convenient medium, we present a simple
example to utilise these expressions for a bidisperse mixture
where ν = 1, 2.
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Fig. 3 Magnitudes of partial
stresses, σ s (small discs type-1)
and σ l (large discs type-2), and
partial drag experienced by
large discs, βl , due to small
discs in a static assembly of
bidisperse (small and large)
two-dimensional discs

3 Application

Besides the simple example in Fig. 3, involving static bidis-
perse two-dimensional discs, we apply the coarse-graining
expressions to a larger bidisperse system in three dimensions
(3D). As an example, we consider bidisperse mixtures flow-
ing over inclined channels, as depicted in Fig. 1 and described
below. This problem was considered previously in [40] and
more details of the setup can be found in that article.

3.1 Discrete particle simulation (DPM) setup

A fully three-dimensional simulation of an initially homoge-
neously mixed bidisperse mixture of particles, see Fig. 1, is
considered. The two different particle types are referred to
as type-1 and type-2. If d1 and d2, are defined as the particle
diameter of particle type-1 and type-2, then the mean particle
diameter is defined as

d̄ = φd1 + (1 − φ)d2, (43)

with φ = Λ1/(Λ1 + Λ2) being the volume fraction of parti-
cles of type-1.

In our chosen coordinate system, as illustrated in Fig. 1,
we consider a cuboidal box, set to be periodic in the x- and
y-directions and with dimensions (x, y, z) ∈ [ 0, 20d̄ ] ×
[ 0, 10d̄ ] × [ 0, 10d̄ ]. The box is inclined at θ = 26◦ and
consists of an irregularly arranged fixed particle base, for
further details see [40,44]. The parameters in our DPM sim-
ulations are non-dimensionalised such that the mean particle
diameter̂̄d = 1, its mass ̂̄m = 1 and themagnitude of gravity
ĝ = 1 implying the non-dimensional time scale t :=

√
d̄/g.

The ‘̂ ’ denotes non-dimensional quantities.
The box is filled with a bidisperse mixture in which the

number of particles of each type is

N1 = φV̂box

(d̂1)3
and N2 = (1 − φ)V̂box

(d̂2)3
, (44)

where the V̂box = 20×10×10 is the volume of the box. The
formulae (44) ensure that the ratio of total volume of parti-
cles of type-1 to the total volume of all the particles is φ and
the dimensionless height of the flow, Ĥ is the same for all
simulations used in this paper. Using (44), for homogeneous
initial conditions (randomly mixed), with initial particle vol-
ume fraction φ = 0.5, DPM simulations for two different
particle size ratios, ŝ = d̂2/d̂1 = 2 and 3.5, were carried
out.

For the performed simulations, we use a linear spring
dashpot model [7,26] with a contact duration of tc =
0.005

√
d̄/g, coefficient of restitution rc = 0.88, contact fric-

tion coefficient μc = 0.5 and time step tc/50. More details
about the contact model can be found in [44] and [26].

3.2 Spatial coarse-graining

In order to obtain the continuum macroscopic fields, for any
stationary or transient particulate system, it is essential to
choose a proper spatial coarse-graining scale, w, irrespec-
tive of the chosen coarse-graining function, ψ(r). So the
question that arises is how do we choose w? This question
is equivalent to asking what do we mean by a continuum
description? A continuum description has an implicit length
scale associated with it for which the assumptions made in
the continuum model are valid and it is this length scale over
which we must coarse-grain. When one chooses a length
scale, w, smaller than the continuum length scale, the result-
ing coarse-grained data will still show individual particles;
these are not continuum fields. On the other hand, if one
chooses a large w, it will smear out the macroscopic gradi-
ents and the resultswill be strongly dependent onw. Between
these two extremes, their exists a plateau in which the con-
tinuum fields obtained are independent of the w chosen and
it is this length scale that must be utilised for an efficient
micro–macro transition. Thus, leading to another interesting
question: Do such plateaus exist for the example we consid-
ered?
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3.2.1 Quest for the plateaus, i.e. what is an optimal spatial
coarse-graining scale?

To determine a suitable scale, bidisperse mixtures of two
different particle size ratios ŝ ∈ {2, 3.5}, are considered and
simulated until they reach their steady states. Simulation data
is saved after every 10000 (200t̂c) simulation time steps. The
flows are understood to have reached steady state when the
vertical centres of mass of the particles of type-ν reach a
constant value, see [40].

Figure 4a, b illustrates the steady state configurations of
two different mixtures with ŝ = 2.0 (Fig. 5a) and ŝ = 3.5
(Fig. 5b), respectively. Given these steady flow configura-
tions, we use the above derived coarse-graining expressions
to construct the bulk density, λ(z), as a function of the
flow depth, for two different coarse-graining scales, Fig. 5c
(̂s = 2.0) and Fig. 5e (̂s = 3.5). By following the steps
described in Appendix, these profiles are constructed by
spatially averaging in both x- and y-direction and tempo-
rally over a time interval [600, 800] (i.e. 200 snapshots).
As seen in these plots, the resulting depth profiles strongly
depend upon the chosen coarse-graining scale, ŵ. For ŝ = 2,
when averaged on a sub-particle length scale: layering in the
flow can be observed near the base of the flow (boundary).
However, when averaged on the particle length scale, the lay-
ering effect, observed near the base, is smoothened out. The
particle-scale density is nearly constant in the bulk, whereas
it decays slightly near the base where density oscillations are
strong (dilatancy), and near the surface, where the pressure
approaches the atmospheric pressure. Thereby, illustrating
the larger gradients alone, which are present near the base
and the free-surface. The momentum density, velocity and
the contact stress show the same qualitative behaviour. Sim-
ilarly for ŝ = 3.5, for a sub-particle length scale, layering is
not just observednear the base, but alsowithin thebulk,which
is smoothed out when averaged using a particle length scale
(denoted by filled circle in Fig. 4f). However, understanding
and illustrating the underlying dynamics of mixtures with
larger particle size ratios is beyond the scope of this paper
and will be addressed in a future publication. Nevertheless,
an ideal scenario would be to see whether these macroscopic
fields are independent of the chosen coarse-graining scale.
But, does such a scenario exist? Numerical simulations, see
[13]which involve systems of 2D polydisperse discs and [42]
for monodisperse 3D mixtures flowing over inclined chan-
nels, show that for a considerable range of coarse-graining
scales, ŵ, the computed fields are independent of the aver-
aging scale.

As a step towards our quest for determining this so-called
range (plateaus), we average these steady state mixture con-
figurations, Fig. 4a, b, for a range of coarse-graining widths
(scales), ŵ = w/d̄ , i.e. averaged depth profiles of the bulk
density are constructed for different coarse-graining scales.

For selected flow depths, denoted by a hollow or solid cir-
cle in Fig. 4c and Fig. 4e, Fig. 4(d) (̂s = 2.0) and Fig. 4(f)
(̂s = 3.5), illustrates the effects of the chosen coarse-graining
scale on the bulk density. This is done by plotting the bulk
density at the selected flow depths as a function of coarse-
graining width, ŵ. In Fig. 4d we observe plateaus. The first
plateau (labelled as 1) exists for all chosen flow depths and
approximately spans from ŵ = 0.01 to ŵ = 0.2. For scales
ŵ < 0.01, strong statistical fluctuations exist. Thereby, in
order to compute meaningful fields for ŵ < 0.01, longer
temporal averaging or a larger number of particle ensembles
would be needed. In other words implying more particle data
needs to be stored, i.e. probably at every 100 (2tc) time steps.
Nevertheless, the existence of this first plateau confirms the
presence of a sub-particle length scale, much smaller than the
mean particle diameter, for which consistent invariant fields
can be defined. We denote this sub-particle scale as micro-
scopic scale. Similarly, for mixtures with particle size ratio
ŝ = 3.5, Fig. 4f, the first plateau spans from ŵ = 0.03− 0.2,
which is slightly smaller when compared to the one observed
in Fig. 4d.

Besides the first plateau, there also exists a second plateau
(labelled as 2) in the range of 0.75 ≤ ŵ ≤ 1.5 in Fig. 4d and
2.3 ≤ ŵ ≤ 3.5 in Fig. 4f. Both plateaus (on particle-scale)
appear to be narrower than their corresponding first plateaus
(effect of using a log-scale for the x-axis). Nevertheless, the
presence of the second plateaus confirms the existence of a
mean particle length scale for which, again, invariant fields
can be constructed.We denote the scales in this range as con-
tinuum scale. Moreover, the coarse-graining scales chosen in
Fig. 4c (̂s = 2) and Fig. 4e lie in the labelled plateaus 1 and
2.

Therefore, the plots in Fig. 4c–f show (i) the effects of the
chosen spatial coarse-graining scale, ŵ, on the averaging of
the fields and (ii) the existence of a range of scales for which
invariant fields can be constructed on both sub-particle and
particle scale.

3.3 Temporal averaging

The choice of a coarse-graining scale for spatial averag-
ing, depends on the scale of the problem, i.e. microscopic
or continuum. Now that, for mixtures in steady state, we
have determined the ranges/plateaus, from which one could
choose a spatial scale, ŵ = w/d̄, we shift our focus
towards investigating the issues concerning temporal aver-
aging of spatially coarse-grained fields. Thus, leading us to
the question: Is spatial averaging complemented by temporal
averaging?Note: In the previous section, the fields computed
were both spatially and temporally averaged. However, we
primarily focussed on the effects of ŵ, the spatial coarse-
graining scale, for a fixed temporal averaging width.
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Fig. 4 a, b Steady state snapshots of bidisperse mixtures flowing in
a periodic box inclined at 26◦ to the horizontal, for particle size ratio
(left) ŝ = 2 and (right) ŝ = 3.5. For ŝ = 2, c illustrates density pro-
files as a function of flow depth for ŵ = 0.05 (red, hollow circle) and
ŵ = 1.0 (blue, solid circle). Similarly for ŝ = 3.5, e illustrates density
profiles as a function of flow depth for ŵ = 0.05 (red, hollow circle)
and ŵ = 2.35 (blue, solid circle). The tiny solid and hollow circles,
in (c) and (e), denote selected depths, ẑ, at which values of density, λ,
are to be tracked for different coarse-graining scales (ŵ). On tracking,

plots d and f illustrate the effects of choosing different coarse-graining
scales, ŵ, on the density values at selected depths (empty circle and
filled circle); note the log scale of the x-axis. The filled circle in (d)
and (f) correspond to ŵ = 0.05 in (c) and (e), while the filled circle
in (d) and (f) correspond to ŵ = 1.0 in (c) and ŵ = 2.35 in (e). The
two coloured blocks labelled as ‘1’ and ‘2’ in (d) and (f) denote sub-
particle or microscopic scale (1) and particle or continuum scale (2).
(Color figure online)
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Fig. 5 For particle size ratio
ŝ = 2.0: a Evolution of the
vertical centres of mass, ẑcom ,
for both large (solid line) and
small (dotted line) particles. The
bracket ‘ [ ’ denotes the point,
t̂min , from which the flow is
considered to be steady. Given
spatially averaged fields for
ŵ = 0.1, plots (b)–(e) show the
density profiles computed by
temporal averaging over an
increasing number of snapshots,
Na ∈ {2, 4, 12, 240}. As a
consequence, plot (f) quantifies
the effects of Na on temporal
averaging by plotting the
L2-error, Êλ, as a function of
the number of snapshots,
resulting in Êλ ∝ 1/

√
Na

(dashed line); note the log scale
used for the x-axis

In order to carry out in-depth analysis concerning temporal
averaging, the same discrete particle simulation as described
in Sect. 3.1 is utilised. However, rather than saving data at
every 10000 (200t̂c) simulation time steps, as done in the
previous Sect. 3.2, we consider saving particle data at every
100 (2t̂c) simulation time steps, i.e. with the simulation time

step d̂t = 0.0001 (t̂c/50) we have 100 snapshots for each
simulation time unit. For temporal averaging, we consider
a fixed averaging time interval, i.e. Δt̂a = [̂

tmin, t̂max
] =

[652, 1852]. If Na is defined as the number of snapshots to
average over, for the chosen Δt̂a , we have a total of 120000
snapshots. We define these 120, 000 snapshots as Na,total .
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Given the time interval is defined, we temporally average
over Na number of snapshots,which are cleverly chosen from
the defined time interval Δt̂a ; note that Δt̂a = [652, 1852] is
fixed. We initially begin with Na = 2 and gradually increase
the number of snapshots, Na → Na,total . As a result, for
the spatial coarse-graining scale ŵ = 0.1, the effects of
Na on temporal averaging of spatially averaged (in x- and
y-direction alone) depth profiles of the bulk density are illus-
trated in Fig. 5b–e. As the value of Na increases, implying
an increase in the number of snapshots to average over, the
statistical fluctuations gradually disappear, see Fig. 5e. The
decrease in these statistical fluctuations due to increasing
value of Na can be quantified by computing the L2-error,
defined as

Êλ(Na) =
∫
R

√
[λa (̂z) − λb (̂z)]2dẑ with a

= Na,total and b = Na . (45)

Note that λa and λb are spatially and temporally averaged
fields. On plotting Êλ against the number of averaging snap-
shots (Na), see Fig. 5f, we observe that the error is inversely
proportional to the square root of Na , i.e. Êλ ∝ 1/

√
Na ,

see the dashed line. Finally, from Fig. 5, one can infer that,
for steady flows, spatial averaging can definitely be compli-
mented by temporal averaging, i.e. there exists an optimal
number of snapshots to construct meaningful fields, which
in turn is dependent on the chosen spatial coarse-graining
scale, ŵ. However, for ŵ > 2.0, effects of the smoothing
function take over, leading to overly smooth fields neglect-
ing the boundary effects and their gradients.

3.4 Averaging unsteady mixture states

So far, in the previous sections, following the procedure out-
lined inAppendix, we have applied our coarse-graining (CG)
expressions on particle data corresponding to steady flows3.
It is, however, the unsteady particle dynamics that is vital
for completely understanding the underlying phenomena and
developing accurate continuum models. Thereby an essen-
tial step would be to examine, in detail, the application of
CG expressions to unsteady mixture states.

As an example application, we consider the same system,
i.e. of bidisperse granular mixtures (varying in size alone)
flowing over inclined channels as described in Sec. 3.1. For
particle size ratio, ŝ = 2, the whole process of segregation
happens within the first 500 time units. See Fig. 5a, where
the vertical centre of mass, of both large and small particles,
is tracked. However, to investigate the application of coarse-
graining to transient, unsteady flows, we focus on the part

3 The CG expressions are equally applicable to static systems.

before particle segregation is attained, i.e.when t̂ ∈ [50, 450]
see Fig. 6a.Moreover, we consider the dynamics of large par-
ticles (partial fields) alone rather than focussing on the bulk.
Considering the same dataset that was used for our investi-
gation in Sect. 3.3 (data stored at every 100 (2tc) simulation
time steps) and following the approach taken in Sect. 3.2, we
begin with spatial coarse-graining of particle data available
in the time interval Δt̂a = [50, 450]. As a result, given a spa-
tial coarse-graining scale (ŵ) is chosen, the spatial averaging
is carried out in x- and y-direction alone. Thence resulting in
a spatially averaged profile, denoted by ζ̄ (̂t, ẑ). The resulting
field ζ̄ (̂t, ẑ) is a function of both time t̂ and flow depth ẑ =
z/d̄, where t̂ ∈ [50, 450]. However, in order to average in the
temporal dimension, i.e. averaging out the time dependency,
we temporally average over a time interval,

[̂
t − ŵt , t̂ + ŵt

]
where ŵt is defined as the temporal averaging scale. Note:
in the previous section, Sect. 3.3, we considered a fixed time
interval Δt̂a .

In general, given a spatial (ŵ) and temporal (ŵt ) averaging
scale, temporal averaging of any spatially averaged (x- and
y-direction alone) field, ζ̄ (̂t, ẑ), can be defined as

¯̄ζ (̂z) = 1

2ŵt

t̂+ŵt∫
t̂−ŵt

ζ̄ (t̃, ẑ)dt̃, for a given ŵ and ŵt , (46)

where t̂ denotes a point about which we would like to tempo-
rally average. Note that: ŵt determines a time interval over
which we temporally average,

[̂
t − ŵt , t̂ + ŵt

]
, see Fig. 6a.

Given that we focus only on the large sized particles, for
t̂ = 250, Fig. 6b and Fig. 6c illustrate the large particle den-
sity profiles, λL (̂z). For a fixed spatial coarse-graining scale
ŵ = 0.4, Fig. 6b shows the effects of choosing three dif-
ferent temporal averaging scales ŵt ∈ {2 (Na = 400), 40
(Na = 8000), 120 (Na = 24, 000)}. On the contrary, for
a fixed temporal averaging scale ŵt = 60 (Na = 12000),
Fig. 6c illustrates the effects of choosing three different spa-
tial coarse-graining scales, ŵ={0.01, 0.4, 1.5}. Although the
two plots do illustrate the corresponding spatial and temporal
averaging effects, this again leads us to the same old ques-
tion: does there exists a range of spatial (ŵ) and temporal
(ŵt ) averaging scales for which one can construct invariant
fields?

For this purpose, we do something similar to what we did
in Sect. 3.2. Instead of picking and tracking 5–6 points in the
bulk of the flow, as we did in Fig. 4c or e, we pick and track
the value at just one suitable point, denoted by ‘empty circle’
in Fig. 6b, c, corresponding to ẑ = 7. By tracking this one
point, the coloured block in Fig. 6d shows that for a given
spatial coarse-graining scale ŵ = 0.4, there exists a range of
temporal averaging scales, 30 ≤ ŵt ≤ 85, for which invari-
ant fields can be constructed. For ŵt ≥ 90 (Na = 18, 000),
macroscopic averaging (time-smoothening) effects take over
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Fig. 6 a Evolution of the
vertical centre of mass for both
large (solid line) and small
(dotted line) particles from
unsteady to steady state. Here, t̂
denotes a point in time about
which we would like to
temporally average and ŵt is the
temporal averaging scale, which
defines the time window to
average over, see Eq. (46). For
t̂ = 250, plots (b) and (c)
illustrate the density profiles,
with λL (̂z), for large particles
alone (partial macroscopic
fields). For fixed ŵ = 0.4, plots
(b) and (d) show the effects of
choosing a different temporal
averaging scale ŵt . On the
contrary, for ŵt = 60, plots (c)
and (e) show the effects of
choosing a different spatial
coarse-graining scale, ŵ. The
circle in plot (b) and (c) denotes
the point ẑ = 7. Thereby, for
ẑ = 7 and ŵ = 0.4, plot (d)
shows the effects of ŵt on the
value of λL at a particular flow
depth ẑ = 7. Similarly for
ŵt = 60, plot (e) shows the
effects of ŵ on the value of λL

at ẑ = 7. Finally, from (d) and
(e) it implies that for a given ŵ

or ŵt , there exists a range of
time windows or
coarse-graining scales for which
we can produce invariant fields.
See the coloured blocks

and hence leading to a decrease in the density value, whereas
for ŵt < 30, strong statistical fluctuations exist. Similarly,
for a given temporal scale, ŵt = 60 (Na = 12, 000), the
coloured block in Fig. 6e illustrates that there exists a range
of spatial coarse-graining scales for which invariant averaged
fields can be constructed, also seeFig. 4c and e (steadyflows).
Similar behaviour is observed for different values of ẑ, t̂ , ŵ
and ŵt (data not shown). Thence, implying that there exists
a range of both spatial coarse-graining scales and temporal
averaging scales for which invariant averaged fields can be
computed.

Additionally, we consider a range of spatial ŵ and tempo-
ral ŵt , CG scales, which results in a ŵt × ŵ phase plot.
Thereby, for each combination of a spatial and temporal
scale, we spatially and temporally average the available par-
ticle data. Once an averaged field is constructed, we track a

point, ẑ = 7.0, in the flow depth to analyse its sensitivity
to different values of the spatial and temporal scale, similar
to what we did earlier. As a result, Fig. 7 displays a con-
tour plot for λL (̂z = 7.0) and illustrates that there exists a
region of (almost) invariance irrespective of the chosen spa-
tial and temporal averaging scale, see the rectangular region.
For ŵt ≥ 90, macroscopic smoothening effects dominate,
while for ŵt < 30, strong statistical fluctuations exist, as seen
in Fig. 6d, and for ŵ > 1.5, effects of large spatial coarse-
graining scales take over. Nevertheless, similar regions of
invariance are found to be existing at different values of flow
depths ẑ and different values of t̂ .

Therefore (i) for a given single dataset, in order to utilise
the coarse-graining expressions, see Sect. 2, for unsteady
flows, one needs to specify both the temporal and spatial
scales of averaging, i.e. both spatial and temporal averaging
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Fig. 7 Contour plot,
corresponding to unsteady
flows, illustrating the effects of
varying temporal, ŵt , and
spatial, ŵ, coarse-graining
scales on the value, λL , at a
single point, ẑ = 7, in the bulk
of the flow. The enclosed
rectangular region, not only
denotes the zone of invariance,
i.e. a region where the computed
fields are almost independent
from the chosen the spatial (ŵ)
and temporal (ŵt ) averaging
scale

has to be done. (ii) Similar to the results corresponding to
steady flows, there exists a range or plateau of temporal and
spatial scales for which consistent, almost invariant macro-
scopic fields can be constructed for unsteady flows.

4 Summary and conclusions

In this work, we comprehensively derived a novel and effi-
cient technique of spatial and temporal mapping, called
coarse-graining, for bidisperse systems. The technique can
be easily extended to multi-component systems without any
loss of generality. As an application example, we carried out
in-depth analysis concerning the coarse-graining by using
an example bidisperse mixture, of two different size ratios
(same density), flowing over a rough inclined channel, for
both steady and unsteady scenarios. Note that this technique
is equally applicable to static, and polydisperse mixtures as
well.

As a result, for steady flows, we have discovered the exis-
tence of a range or plateau of spatial coarse-graining scales,
both, on the sub-particle (microscopic) and particle (contin-
uum) scale, for which invariant coarse-grained fields can be
constructed, see Fig. 4.We also found that the spatial averag-
ing is well complemented by temporal averaging, see Fig. 5.
Additionally, for unsteady flows, we discovered a region of
invariance, see Fig. 7, i.e. a range of spatial and temporal
coarse-graining scales for which (almost) invariant fields can
be constructed.

Here, we did not present any analysis using the coarse-
grained quantities to compute the unknown macroscopic
parameters [43], or validate continuum formulations and con-
stitutive postulates [44]. This shall be the focus of our future

work where we will thrive on developing accurate contin-
uum formulations using the approach of the micro–macro
transition presented above. Furthermore, no quantitative rec-
ommendations are provided as coarse-graining is highly
system dependent.

The above coarse-graining method is available as part of
an open-source code MercuryDPM (mercurydpm.org) and
can be run either as a post-processing tool or in real time, see
Appendix. In real-timemode, it not only reduces the data that
have to be stored, but also allows for the boundary conditions,
etc., to be coupled to the current macroscopic state of the
system, e.g. allowing for the creation of pressure-controlled
walls.
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Appendix: Recipe to coarse-grain (micro–macro
mapping)

In order to obtain continuum fields from the discrete data,
one can simply utilise the coarse-graining expressions, when
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combined with an appropriately chosen coarse-graining
function, ψ(r, t), and smoothing scale, w. As a result, the
above expressions have successfully been implemented in
our in-house open-source package MercuryCG. Below we
briefly describe the MercuryCG package.

Introduction to MercuryCG

MercuryCG is an easy-to-use coarse-grainingpackage,which
is available as part of our in-house open-source, fast and
efficient discrete particle solver, MercuryDPM. For fur-
ther details see http://MercuryDPM.org. The solver can be
comfortably installed on any LINUX or UNIX based oper-
ating system. For simplicity, we assume that the reader
is accustomed with either of these operating systems.
Once installed, all the coarse-graining utilities—described
below—are encompassed in one single executable,
‘./MercuryCG’ which can be found in ones’ build direc-
tory under pathToBuildDirectory/Drivers/
MercuryCG/. The executable ‘./MercuryCG’ is ready
to be executed in the Terminal or Console. To see the list
of utilities, one could just type ‘./MercuryCG -help’.
Utilities are the parameters or flags that one needs to pass in
through the executable. Below are a list of example parame-
ters which have been used to construct the fields.

(i) ‘-CGtype’ allows to specify the type of coarse-
graining function, Gaussian, Heaviside or Lucy.

(ii) ‘-z’ defines the domain of interest in the z-direction.
(iii) ‘-w’ is the spatial coarse-graining scale or predeter-

mined width.
(iv) ‘-n’ defines the number of grid points in the coordi-

nate directions for which statistics are evaluated.
(v) ‘-stattype’ allows one to define the type of

averaging. Stattype Z implies averaging in x- and
y-direction. There are several other possibilities, see
./MercuryCG -help.

(vi) ‘-tmin’ defines the lower limit tmin of the time-
averaging window.

(vii) ‘-tmax’ defines the upper limit tmax of the time-
averaging window.

(viii) ‘-o’ sets the name of the output file for the continuum
fields.

Using the aboveparameters or flags, useful averagedquan-
tities can be constructed as a function of both space, (x , y, z),
and time, t . Assumingwe have a fully three-dimensional par-
ticle data field available, below we present the syntax for the
construction of depth profiles – averaged in x- and y-direction
and time – of bulk quantities,

‘./MercuryCG Example -CGtype Lucy -z
-0.5 12 -w 0.1 -n 100 -stattype Z
-tmin 6000 -tmax 6250 -o Example.stat’,

where ‘Example’ is a file name. All the particle data (e.g.
position, velocity, angular velocity) is stored in ‘Example.
data’, whereas the interaction forces are stored in
‘Example.fstat’. On assigning suitable values to each
of the flags described above, one can efficiently construct the
macroscopic fields. For bidisperse systems, partial quanti-
ties are of special interest. These can be constructed by the
following command

‘./MercuryCG Example -CGtype Lucy -
indSpecies 2 -z -0.5 12 -w 0.1 -n 100
-stattype Z -tmin 6000 -tmax 6250 -o
Example.2.stat’,
where ‘-indSpecies’ allows one to choose from either of
the two particle types. In the above case we consider parti-
cle type-2. However, in order to use the above package one
must have the data files written in the format compatible with
MercuryCG.

Note: (i) Although no ensemble-averaging is required to
satisfy (5), both spatial and temporal averaging is used to
improve the quality of the continuum fields, see Sect. 3.3.

Once averaged or coarse-grained, all the averaged or
macroscopic fields are stored in the statistics file, i.e.
Example.stat or Example.2.stat. The files contain
several useful fields such as

(i) Coordinates (grid points) x , y, z and the time-averaging
window [tmin,tmax].

(ii) Volume fraction and density.
(iii) Momentum, displacementmomentum,momentumflux,

displacement momentum flux, and energy flux.
(iv) Normal stress, tangential stress, normal traction, tan-

gential traction.
(v) Fabric tensor, collisional heat flux, dissipation poten-

tial.
(vi) Local angularmomentumand local angularmomentum

flux.
(vii) Contact couple stress.

Using the above recipe, the method of coarse-graining is
applied to both steady and unsteady bidisperse granular mix-
tures (spheres) varying both in size and density, see Sect. 3.

References

1. Arntz MMHD, Beeftink HH, Otter WK, Briels WJ, Boom RM
(2014) Segregation of granular particles by mass, radius, and den-
sity in a horizontal rotating drum. AIChe J 60(1):50–59

2. Artoni R, Richard P (2015) Average balance equations, scale
dependence, and energy cascade for granular materials. Phys Rev
E 91(3):032202

3. Babic M (1997) Average balance equations for granular materials.
Int J Eng Sci 35(5):523–548

4. Behringer RP, Dijksman J, Ren J, Zhang J, Majmudar T,
Chakraborty B, Bi D, Tordesillas A (2013) Jamming and shear for

123

http://MercuryDPM.org


Comp. Part. Mech. (2016) 3:349–365 365

granular materials. In: POWDERS AND GRAINS 2013: proceed-
ings of 7th international conference micromechanics of granular
media, vol. 1542, AIP Publishing, pp 12–19

5. Brock JD, May JG, Renegar G (1986) Segregation: Causes and
Cures. Astec Industries

6. BrownR, EdensM, BarberM (1999)Mixture theory ofmass trans-
fer based upon microstructure. Def Sci J 49(5):393–409

7. Cundall PA, Strack ODL (1979) A discrete numerical model for
granular assemblies. Geotechnique 29(1):47–65

8. Drahun JA, Bridgwater J (1983) The mechanisms of free surface
segregation. Powder Technol 36:39–53

9. Duran J (2000) Sands, powders, and grains. Springer, New York
10. Fan Y, Hill KM (2011) Theory for shear-induced segregation of

dense granular mixtures. New J Phys 13(9):095,009
11. Gajo A, Loret B (2004) Transient analysis of ionic replacements

in elastic-plastic expansive clays. Int J Solids Struct 41(26):7493–
7531

12. Glasser BJ, Goldhirsch I (2001) Scale dependence, correlations,
and fluctuations of stresses in rapid granular flows. Phys Fluids
(1994-present) 13(2):407–420

13. Goldenberg C, Atman APF, Claudin P, Combe G, Goldhirsch I
(2006) Scale dependence, correlations, and fluctuations of stresses
in rapid granular flows. Phys Rev Lett 96(16):168,001

14. Goldhirsch I (2010) Stress, stress asymmetry and couple stress:
from discrete particles to continuous fields. Granul Matter
12(3):239–252

15. Gray JMNT, Edwards AN (2014) A depth-averagedμ(I)-rheology
for shallow granular free-surface flows. J FluidMech 755:503–534

16. Gray JMNT,Morland LW (1994) A two-dimensional model for the
dynamics of sea ice. Philos Trans R Soc Lond A 347(1682):219–
290

17. Gray JMNT, Thornton AR (2005) A theory for particle size seg-
regation in shallow granular free-surface flows. Proc R Soc A
461:1447–1473

18. Guo Y, Curtis JS (2015) Discrete element method simulations for
complex granular flows. Ann Rev Fluid Mech 47:21–46

19. Irving JH, Kirkwood JG (1950) The statistical mechanical theory
of transport processes. iv. the equations of hydrodynamics. J Chem
Phys 18:817–829

20. Jain N, Ottino JM, Lueptow RM (2005) Regimes of segregation
and mixing in combined size and density granular systems: an
experimental study. Granul Matter 7:69–81

21. Janda A, Zuriguel I, Garcimartín A, Pugnaloni LA, Maza D
(2008) Jamming and critical outlet size in the discharge of a two-
dimensional silo. Europhys Lett 84(4):44,002

22. Jop P, Forterre Y, Pouliquen O (2006) A constitutive law for dense
granular flows. Nature 441(7094):727–730

23. Lindley JA (1991)Mixing processes for agricultural and foodmate-
rials: 3. powders and particulates. J Agric Eng Res 49:1–19

24. Lu G, Third JR, Müller CR (2014) Discrete element models for
non-spherical particle systems: From theoretical developments to
applications. Chem Eng Sci 127:425–465

25. Lucy LB (1977) A numerical approach to the testing of the fission
hypothesis. Astron J 82:1013–1024

26. Luding S (2008) Introduction to discrete element methods: basic of
contact force models and how to perform the micro-macro transi-
tion to continuum theory. Eur J EnvironCivil Eng 12(7–8):785–826

27. LudingS,Alonso-MarroquínF (2011)The critical-state yield stress
(termination locus) of adhesive powders from a single numerical
experiment. Granul Matter 13(2):109–119

28. Marks B, Rognon P, Einav I (2012) Grainsize dynamics of poly-
disperse granular segregation down inclined planes. J Fluid Mech
690:499–511

29. Morland LW (1992) Flow of viscous fluids through a porous
deformable matrix. Surv Geophys 13:209–268

30. Ogarko V, Luding S (2012) Equation of state and jamming density
for equivalent bi-and polydisperse, smooth, hard sphere systems. J
Chem Phys 136(12):124,508

31. Pouliquen O (1999) Scaling laws in granular flows down rough
inclined planes. Physics of Fluids (1994-present) 11(3):542–548

32. Ries A, Brendel L, Wolf DE (2014) Coarse graining strategies at
walls. Comput Part Mech 1:1–14

33. Rivas N, Cordero P, Risso D, Soto R (2011) Segregation in quasi-
two-dimensional granular systems. New J Phys 13(5):055,018

34. Rognon PG, Roux J, Naaïm M, Chevoir F (2007) Dense flows of
bidisperse assemblies of disks down an inclined plane. Physics of
Fluids (1994-present) 19(5):058,101

35. Savage SB, Hutter K (1989) Themotion of a finite mass of granular
material down a rough incline. J Fluid Mech 199:177–215

36. Schlick CP, Fan Y, Umbanhowar PB, Ottino JM, Lueptow RM
(2015)Granular segregation in circular tumblers: theoreticalmodel
and scaling laws. J Fluid Mech 765:632–652

37. Shirsath SS, Padding JT, Deen NG, Clercx HJH, Kuipers JAM
(2013) Experimental study of monodisperse granular flow through
an inclined rotating chute. Powder Technol 246:235–246

38. Thornton AR, Gray JMNT, Hogg AJ (2006) A three-phase mixture
theory for particle size segregation in shallow granular free-surface
flows. J Fluid Mech 550:1–26

39. Todd BD, Evans DJ, Daivis PJ (1995) Pressure tensor for inhomo-
geneous fluids. Phys Rev E 52(2):1627–1638

40. TunuguntlaDR,BokhoveO,ThorntonAR (2014)Amixture theory
for size and density segregation in free-surface shallow granular
flows. J Fluid Mech 749:99–112

41. Wang L, Wang X, Mohammad L, Wang Y (2004) Application of
mixture theory in the evaluation ofmechanical properties of asphalt
concrete. J Mater Civ Eng 16(2):167–174

42. Weinhart T, Hartkamp R, Thornton AR, Luding S (2013) Coarse-
grained local and objective continuum description of three-
dimensional granular flows down an inclined surface. Phys Fluids
25(7):070,605

43. Weinhart T, Luding S, Thornton AR (2013) From discrete particles
to continuum fields in mixtures. In: AIP conference proceedings,
vol. 1542, p 1202

44. Weinhart T, Thornton AR, Luding S, Bokhove O (2012) Clo-
sure relations for shallow granular flows from particle simulations.
Granul Matter 14(4):531–552

45. Weinhart T, Thornton AR, Luding S, Bokhove O (2012) From dis-
crete particles to continuum fields near a boundary. Granul Matter
14(2):289–294

46. Williams JC (1976) The segregation of particulate materials: a
review. Powder Technol 15:245

47. Windows-Yule CRK, Weinhart T, Parker DJ, Thornton AR (2014)
Influence of thermal convection on density segregation in a vibrated
binary granular system. Phys Rev E 89:022,202

48. Zhu HP, Yu AB (2002) Averaging method of granular materials.
Phys Rev E 66(2):021,302

49. Zuriguel I, Janda A, Garcimartín A, Lozano C, Arévalo R, Maza
D (2011) Silo clogging reduction by the presence of an obstacle.
Phys Rev Lett 107(27):278,001

123


	From discrete elements to continuum fields: Extension  to bidisperse systems
	Abstract
	1 Introduction
	Outline

	2 Spatial coarse-graining
	2.1 Mixture theory
	2.2 A mixture theory for coarse-graining
	2.3 Mass density
	2.4 Which functions can be used to coarse-grain?
	2.5 Mass balance
	2.6 Momentum balance

	3 Application
	3.1 Discrete particle simulation (DPM) setup
	3.2 Spatial coarse-graining
	3.2.1 Quest for the plateaus, i.e. what is an optimal spatial coarse-graining scale?

	3.3 Temporal averaging
	3.4 Averaging unsteady mixture states

	4 Summary and conclusions
	Acknowledgments
	Appendix: Recipe to coarse-grain (micro--macro mapping)
	Introduction to MercuryCG

	References




