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Abstract Advancing front packing algorithms have proven
to be very efficient in 2D for obtaining high density sets of
particles, especially disks. However, the extension of these
algorithms to 3D is not a trivial task. In the present paper, an
advancing front algorithm for obtaining highly dense sphere
packings is presented. It is simpler than other advancing front
packing methods in 3D and can also be used with other types
of particles. Comparison with respect to other packing meth-
ods have been carried out and a significant improvement
in the volume fraction (VF) has been observed. Moreover,
the quality of packings was evaluated with indicators other
than VF. As additional advantage, the number of gener-
ated particles with the algorithm is linear with respect to
time.
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1 Introduction

In general, Discrete Element Method (DEM) simulations
need to start from a realistic initial particle configuration
(called particle packing, or just packing), and the volume of
the containing geometry usually needs to be filled as much
as possible with particles. The ratio of volume of the parti-
cles over the containing geometry volume is called volume
fraction (VF). If this initial particle configuration is not real-
istic, for example not dense enough, it is common to allow it
to relax under the influence of gravity into a denser random
packing, requiring computation time of the simulation, so in
general there is an incentive to have high initial VFs.

Different methods have been proposed to generate parti-
cle packings. In [1] they have been classified into dynamic
and constructive methods. Dynamic methods are based on a
DEM simulation (according to [1]). They are very expensive
in terms of computational cost, because the motion of each
particle has to be simulated. On the other hand, construc-
tive methods are only based on pure geometric calculations
and are therefore a more efficient approach. The constructive
methods can be further classified into advancing front meth-
ods and non-advancing front. In advancing front methods,
particles are sequentially generated in their final positions, in
contact with two (2D case) or three (3D case) other particles.

Regarding dynamic methods, wall compression [2], par-
ticle expansion [2,3] and gravity deposition [2] can be
mentioned. Constructive methods include sequential inhibi-
tion [4], triangulation [5], dropping [6] and advancing front
[1,2,7,8]. The above mentioned particle packing methods
are briefly explained in the next paragraphs. More detailed
reviews on packing methods can be found in [1,2,4,7,9].

The wall compression method consists of a DEM sim-
ulation, at which the domain walls are moved towards the
particles so as to reduce the domain volume. This makes that
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Fig. 1 General steps that are
common to all advancing front
packing algorithms

the particles occupy relatively more space inside the con-
taining domain, thus increasing the VF. The YADE software
[10–12] has this method implemented.

The particle expansion method is somewhat analogous to
the wall compression, but in this case, during the DEM sim-
ulation, the domain walls are fixed and particles sizes are
expanded using a scale factor α > 1, every certain num-
ber of timesteps. Every time particles are expanded, several
DEM iterations are required for the system to reach a state of
equilibrium. The process terminates when the particles are
jammed, usually after having been expanded several times.

In order to obtain a packing with gravity deposition, parti-
cles are initially regularly placed on top of a container. After
that, a gravity field is applied to all the particles until they fill
the container.

The sequential inhibition is one of the less effective pack-
ing methods, because it yields zero coordination number
and a low VF. In each step of this method, a new particle
is generated, and then several successive random positions
inside the domain are calculated until the particle, placed
in one of them, does not overlap with any existing particle,
or until a large number of such random positions has been
generated.

Particle packings can also be obtained from triangulations.
In this case, the domain is first partitioned into a tetrahedral
mesh, and thenparticles (usually spheres) are inscribed inside
the tetrahedra. Themain disadvantage of thismethod is that it

is difficult to impose any prescribed distribution on particles
sizes.

Thedroppingmethod is similar to thepreviously explained
gravity deposition, but does not consist on aDEMsimulation,
having therefore a lower computational cost. The essential
difference of the dropping method with respect to gravity
deposition is that when a particle moves, it is directly placed
in contactwith its closest neighbor in a given direction. That’s
why this method is purely geometrical.

It was previously mentioned that, in advancing front
methods, particles are sequentially generated in their final
positions in contact with one particle of the advancing front,
and one (2D case) or two (3D case) additional particles, that
are not necessarily in the advancing front. Such advancing
front comprises the particles that are generally surrounding
the others, and determines all the possible positions where
new particles can be placed. The whole advancing front is
subdivided into frontswhose definition varies fromalgorithm
to algorithm. For example, in [7] the fronts are triplets of pair-
wise tangent spheres, while in the algorithm of Sect. 2 each
front is a single sphere. The flow diagram of Fig. 1 based on
[13] summarizes the basic steps of a generic advancing front
algorithm. Such steps are not always the same and can have
variations in different specific algorithms.

The problem of disk packing has been efficiently solved
using an advancing front approach [1,2]. Thepreviously cited
results allow to obtain high density disk packings in very
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Fig. 2 Example of an
advancing front in Benabbou et
al.’s algorithm. a Front s1s2s3
formed by spheres s1, s2 and s3,
and b when the new sphere snew
is placed in contact with s1, s2
and s3, the front s1s2s3 is
deactivated and the three new
fronts s1s2snew, s1s3snew and
s2s3snew are created

short times. However, the 3D extension of these algorithms
is not trivial. As a matter of fact, the authors of [2], instead
of extending their own 2D advancing front algorithm to the
case of spheres, proposed an efficient multilayer compaction
algorithm [6]. This is because the algorithm itself and the
implementation of such 3D extension is difficult because the
line segment joining two tangent circles is always covered
by these circles in the 2D case, but in 3D the triangle formed
by the centers of three non-overlapping spheres can never be
completely covered by the spheres.

Despite the previously mentioned difficulty for making
the 3D extension of advancing front algorithms, there exists
indeed such an extension [7,8], which is briefly described
in the following paragraphs. The main goal of this paper is
to present another extension to 3D of 2D advancing front
packing algorithms, in such a way that it is possible to obtain
high VF packings in linear times.

In Benabbou et al.’s algorithm [7,8], the whole advancing
front is comprised by fronts that are triangles whose vertices
are centers of already generated spheres (Fig. 2a). Each new
sphere snew is placed tangent to three other s1, s2 and s3
comprising a front s1s2s3.After that, the front s1s2s3 is deac-
tivated and three new fronts s1s2snew, s1s3snew and s2s3snew
are created by connecting snew with s1 and s2, with s1, and
s3, and with s2 and s3, respectively (Fig. 2b).

This way of defining fronts leads to short computing times
and potentially high VFs. It is, however, very restrictive,
because a new sphere cannot be in touch with spheres from
different fronts. Higher VFs could be obtained if this restric-
tion is removed.

Once a packing has been obtained, it is necessary to evalu-
ate its quality. Most of the existing packing quality indicators
can be found in the book [4]. From those indicators, some of
the most commonly used are the already mentioned VF, the
coordination number, the homogeneity, the angular distribu-
tion of contacts and the fabric tensor.

The homogeneity of a packing can be quantified in several
ways. Some authors [14] prefer to quantify it in terms of the
variance of the void ratio (defined as the ratio of the volume of
voids to the sum of particles’ volumes) calculated in several
subdomains, while others prefer to quantify it by checking
the spatial distribution of the particles’ centers. For example,
He et al. [15] subdivide the domain in identical cubic cells,
count the number of particle centers in each cell, and finally
check if those numbers come from the uniform distribution.
This approach has the disadvantage that different cell sizes
may yield different results, so it is necessary to determine
what cell size is most convenient.

For any given particle in a packing, its coordination num-
ber is defined as the number of contacts that such particle
has with other particles in the packing. Moreover, the coor-
dination number of the whole packing can be defined as the
arithmetic mean of the coordination numbers of particles
comprising it. Such number is an indicator of the connec-
tivity of the system.

In a packing of unequal spheres, the angular distribution
of contacts can be evaluated by examining the distributions
of the relative projections on the Cartesian coordinate axes
of the center-to-center lines between touching spheres [15].
Let s1 and s2 be any two touching spheres, of radii r1 and r2,
respectively. Let x12, y12 and z12 be the projection on the x,
y and z axis, respectively, of the line joining the centers of s1
and s2. Then the relative projections of the center-to-center
line between s1 and s2 on the x, y and z axis are defined by
the expressions x ′

12 = x12
r1+r2

, y′
12 = y12

r1+r2
and z′12 = z12

r1+r2
,

respectively. According to [15], a packing of spheres can be
considered isotropic if the relative projections obtained for
all pairs of contacting spheres follow a uniform distribution
in the interval [0, 1].

Another indicator of the isotropy of a packing is the fabric
tensor. Like the relative projections of center-to-center lines
explained in the previous paragraph, it also describes the
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distribution of contact orientations [1]. The fabric tensor is
defined by the expression

ϕi j = 1

N

N∑

p=1

∑Mp
pc=1 n

pc
i n pc

j

Mp
, (1)

for i, j ∈ {1, 2, 3},whereN is the number of particles in the
packing, index p runs through all particles, Mp is the number
of contacts of particle p, index pc runs through all contacts of
particle p, and n pc = (n pc

1 , n pc
2 , n pc

3 ) ∈ R
3 is the unit vector

obtained by normalizing the vector with origin at the center
of particle p and end at contact pc of particle p. The sum of
the eigenvalues of ϕi j always equals 1. The more different
they are, the more anisotropic the packing is. In a perfectly
isotropic packing, these eigenvalues are all equal to 1/3.

2 New improved advancing front packing
algorithm

In this section we present a new advancing front algorithm
for packing spheres with any radii distribution D into any
arbitrarily complex geometry. The only restriction for dis-
tribution D is that its values must be contained within an
interval [a, b] ⊂ R, where a and b are known positive real
numbers.

The algorithm proposed here is based on the idea of keep-
ing a setF that contains the spheres comprising the advancing
front (in the whole paper, the symbol Fwill be used to denote
the advancing front, and must not be confused with the sym-
bol f defined further in this section). Such spheres are usually
the ones surrounding the packing (see Fig. 4). The set F is
completely defined by the two following rules:

(1) Each new generated sphere is automatically added to F.
(2) Each time it is not possible to place a sphere tangent to an

element s0 ∈ F and two of its neighbors (not necessarily
members of F), s0 is removed from F.

Let s(c, r) denote a sphere (or disk, for the analogous
2D case) of center c and radius r. In each iteration, a new
sphere of radius r is added to the packing (r can be different
in each iteration), in contact with a sphere s0 = s(c0, r0) ∈
F randomly chosen, and two other neighboring spheres of
s0, not necessarily belonging to F. In this case, a sphere
si = s(ci , ri ) is considered to be a neighbor of s0 if and
only if their separation is smaller than 2r, i.e., if and only if
d(c0, ci ) ≤ r0 + ri + 2r, where the notation d(p, q) means
the Euclidean distance between p and q, for p, q ∈ R

3. We
call V the set of such neighbors of s0. It can be proven that set
V can also be defined as the set of all spheres in the packing
that overlap with sV = s(c0, r0 + 2r). Two examples of set

V can be seen in Fig. 4b, c, respectively, for the analogous
case of disks in 2D.

Let s̃1, s̃2 and s̃3 be any three spheres, G ⊆ R
3 any

subset of R
3, V a set of spheres and r ∈ R: r > 0.

We define f (s̃1, s̃2, s̃2, G, V, r) as a set of spheres (or
the empty set) such that they have radius r, are in outer
contact with s̃1, s̃2 and s̃3 simultaneously, are completely
contained in G and do not overlap with any element of V.
The set f (s̃1, s̃2, s̃3, G, V, r) has at most two elements,
because there exist at most two spheres with radius r in outer
contact with s̃1, s̃2 and s̃3 simultaneously. The expression
f (s̃1, s̃2, G, V, r) can be defined for the analogous 2D case,
where s̃1 and s̃2 are disks, G ⊆ R

2 and V a set of disks. An
example in 2D where f (s0, si , G, V, r) = {snew} can be
observed in Fig. 4c.

The proposed method currently still has the disadvan-
tage of remaining gaps between the spheres and the domain
boundary Ḡ. A new version at which the spheres, when-
ever possible, are tangent to Ḡ is being developed. For the
moment, we are making a relaxed use of the definition of
function f, and considering that a particle is completely con-
tained in G if its center is contained in G.

Pseudocode 1 contains the steps of our sphere packing
algorithm, which is also represented by a flowchart (Fig. 3).
In order to use the algorithm with other types of particles,
the main required change is in the procedure to place one
particle in contact with other three. Although for shapes other
than spheres such procedure can be non trivial, the algorithm
remains essentially the same.

Step 2 of the algorithm is illustrated in Fig. 4, using the
simplified case of disks in 2D. In Fig. 4a, a new radius r is
generated, and no other radius will be generated until a disk
of radius r is added to the packing. This allows to respect
the predefined distribution for radii. In Fig. 4b, a disk s0 ∈ F
is selected at random. It is removed from F, since it is not
possible to place a disk snew of radius r tangent to s0 and one
of its neighbors (such neighbors do not have to be necessarily
in F), in such a way that snew is completely contained in
the domain and does not overlap with any existing disks. In
Fig. 4c, a new disk s0 ∈ F is selected at random. In this case,
it is possible to place a disk snew of radius r in contact with
s0 and one of its neighbors si , and s0 is not removed from F
at this time. Although in this example of Fig. 4d we have that
si ∈ F, the case when the neighbor of s0 is not an element
of F is also possible.

In each attempt to place a new disk snew in contact with a
disk s0 ∈ F and one of its neighbors, elements of the set V
(defined inPseudocode 1) of neighbors of s0 are checked until
finding one which is suitable in case it exists. The algorithm
terminates when F = ∅. It is important to note that the only
essential difference between the 2D and 3D cases of our algo-
rithm lies in the fact that for the 2D case, each new particle
is placed in contact with an element s0 ∈ F and a neighbor
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of s0, while in the 3D case each new particle is placed in
contact with an element s0 ∈ F and two neighbors of s0.

The algorithm is guaranteed to terminate in a finite number
of steps. This is because only a finite number of spheres of
bounded radii can be contained into a finite volume geometry
without overlapping.

3 Comparison to constructive methods and
packing quality analysis

Our packing algorithm was compared with the construc-
tive algorithms [6] (one of the constructive algorithms with
highest VF) and [7] (the only 3D advancing front packing
method found in the literature) with respect to VF (Table1).
In order to do so, two cubic domains with side equal to 90
and 266 units were filled with spheres that have the same
radii distributions of [6,7], respectively. For the case of [6],
the distribution is the continuous uniform distribution in the
interval [0.01, 0.02] (U [0.01, 0.02]). The radii distribution
DB used in [7] is obtained from a histogram contained in
the interval [2, 8] with a mean value approximately equal to
3.53. The VF was calculated using a reference sphere whose
radius length is equal to half the size of the cube containing
the spheres (see details in Sect. 5). In both cases, our algo-
rithm shows a better performance in VF, which is more than
6% points higher than [6] and more than 10% points higher
than [7].

Packings of Table1 generated with our code can be seen in
Fig. 5. They were generated at the average speeds of 148 (see
packing 2 of Table1) and 296 (see packing 4 of Table1) parti-
cles per second, respectively, using an i3-3110M2.4GHzPC.
Packing 1 (packing 3) of Table1 was generated at an average
speed of 148 particles per second (33,404 particles per sec-
ond) with a 1.4-GHz PC (with an Intel Core 2 2.8GHz PC).
The previous values of generation speed are purely indicative
and should not be used for any fair comparison. The compar-
ison of our algorithm to other constructive methods was only
with respect to VF, given that the time performance compar-
ison of the different methods was not trivial, since the other
codes could not be benchmarked on the same PC. An imple-
mentation of other methods in order to make a comparison
in the same computational platform, is out of the scope of
this work.

Besides comparing our algorithmwith others with respect
to VF, we also analyzed its quality with other indicators. In
order to check the homogeneity, the Kolmogorov–Smirnov
(K–S) test to check the goodness of fit to the uniform dis-
tribution [16] was applied to the coordinates of centers of
particles of Fig. 5. The values of the K–S statistic for the x,
y and z coordinates of the centers of particles in both pack-
ings of Fig. 5 were 0.785883, 0.881239, 0.691313, 0.848386,
0.95004 and 0.816167, respectively. All these six values lie
below the critical threshold of 1.358, calculated for a confi-
dence level of 95%. This indicates that both packings can be
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Fig. 3 Flowchart
corresponding to Pseudocode 1

Fig. 4 Example iterations of
step 2 of our sphere packing
algorithm, for the analogous
simplified case of disks. Disks
belonging to F are in dark, and
disks belonging to V (in b, c) are
the ones overlapping with disk
sV . a Radius generation of next
disk (in the lower right corner of
the square), b selection of
element s0 ∈ F (pointed by the
arrow), c s0 is removed from F
and a new element s0 ∈ F is
selected (pointed by the arrow),
and d new disk snew is placed in
contact with s0 and one of its
neighbors si
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Table 1 Comparison between
our packer and [6,7] with
respect to VF

Number of packings Methods Particle distribution Number of particles VF (%)

1 [6] U [0.01, 0.02] 26,787 52.89

2 Our method U [0.01, 0.02] 28,520 59.29

3 [7] DB 33,738 49.40

4 Our method DB 33,989 59.75

Fig. 5 Packings obtained with
our code. a Cube of side 90
filled with spheres with radii
distributed U [0.01, 0.02] and b
cube of side 266 filled with
spheres with radii distribution
DB

considered homogeneous with a 95% confidence. For these
packings, the distribution of the coordination number c of
their particles can be seen in Fig. 6. The coordination num-
ber c̄ for both packings, expressed with two decimal digits,
is the same and equal to 6.31.

The relative projections of center-to-center lines of con-
tacting particles in packings of Fig. 5 don’t obey an uniform
distribution. However, for both packings, the eigenvalues of
the fabric tensor (which is another indicator of isotropy and
angular contact distribution), are very close to 1/3. These
eigenvalues are equal to 0.335, 0.334 and 0.331, for the case
of Fig. 5a, and equal to 0.335, 0.333 and 0.332 for the case
of Fig. 5b.

4 Comparison to dynamic methods

Theoretically, the highest possible VF, for any random (non-
constant) radii distribution, cannot be determined. We have
used other packing methods such as gravity deposition and
wall compression in order to have an idea of how good the
VFs achieved with our packer are.

For the case of radii with distribution U [0.01, 0.02], two
gravity deposition simulations were carried out. The results
are shown in Fig. 7, the first with the DEMeter software [17]
and the second with the YADE software [10–12]. In both
simulations, 28,000 spheres were compressed gravitation-

Fig. 6 Frequency distribution of the coordination number c of parti-
cles of packings of Fig. 5a (continuous line) and b (dashed line). The
coordination number c̄ = 6.31 expressed with two decimal digits is the
same for both packings

ally. VFs were 67.7% for DEMeter and 65.1% for YADE,
respectively. A third simulation consisting of wall compres-
sion with YADE was done using the triaxial test provided
by YADE with zero friction, yielding 66.1% of VF (Fig. 7,
right). Therefore, constructive sphere packing algorithms are
still about more than 7 percent points below the density
obtained by dynamic methods.
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Fig. 7 Gravity deposition of 28,000 spheres with DEMeter (left, with 67.7% of VF) and YADE (center, with 65.1% of VF). To the right, final
state of the wall compression simulation with YADE (with 66.1% of VF)

Fig. 8 To the left, packing of
Fig. 5. To the right, same
packing with a reference volume
sphere sre f inside used to
measure VF

5 Calculation of the VF

If theVF of a packing is calculated according to the definition
of the first paragraph of the Sect. 1, it may not be a realistic
result (lower VFs would be obtained), especially if there is a
gap between the particles and the boundary of the containing
geometry. In that case, it is better to calculate VFwith respect
to a reference volume sphere sre f = s(cref , rre f ) whose
center usually coincides with that of the containing geometry
(see example at Fig. 8), and the VF would be in that case
the sum of volume intersections of spheres of the packing
with sre f , divided by the volume of sre f . It is important to
notice that sre f does not belong to the packing and is only
used to calculate VF. This is the procedure we have used in
the previous two sections to calculate VFs. Given any two
spheres with radii r1 and r2, respectively, whose centers are
separated by a distance d, the volume vint of their intersection
is given by:

vint =

⎧
⎪⎪⎨

⎪⎪⎩

0, if d > r1 + r2,
4π
3 min{r1, r2}3, if d < |r1−r2|,

π(r1+r2−d)2(d2−3(r1−r2)2+2d(r1+r2))
12d , otherwise.

(2)

The VF is never the same for different random pack-
ings, but has a statistical deviation. In order to determine
how random the VF is in the packings of Figs. 5 and 7, we
assigned 31 equispaced values to rre f (see Fig. 8, right) in
the interval [rmax , a], where a is half the side of the con-
taining cube and rmax is the maximum radius of the spheres
in the packing. The results are shown in Figs. 9 and 10 and
commented in the next paragraph. Moreover, the packing
of Fig. 5a, b was replicated 10 times and, with the obtained
VFs calculated with rre f = a, the 95% confidence inter-
val I obtained for the mean density was I = [59.2, 59.3]
(I = [59.8, 59.9]).
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Fig. 9 VF versus rre f /a curves of packings obtained with our code. a Packing of Fig. 5a, b packing of Fig. 5b and c packing of spheres with radii
distributed U [0.01, 0.02] within a cube of side equal to 1.64

Points forming apparently continuous smooth VF versus
rre f /a curves canbeobserved inFig. 9 (for packings obtained
with our code) and Fig. 10 (for packings obtained by DEM
simulations). In Fig. 9a, b the curves are decreasing in the
interval rre f /a < 1. This is due to the fact that our algorithm
starts filling the cubes from their center, and the position
and size of the first three particles (whose radii are equal to
rmax ) have a big influence in the VF, especially when rre f
is small (the VF calculated with respect to sre f only makes
sense when rre f is large with respect to the spheres radii).
As a matter of fact, the curve in Fig. 9c is non-decreasing in
the region rre f /a < 1, because in that case cref was chosen
far from the center of the cube containing the spheres. Also,
for all plots in Figs. 9 and 10, the VF varies in less than
1% in the region delimited by lines A and B. In this region,
rre f is less than a but large with respect to rmax . The VF
corresponding to rre f /a = 1 in the region, which is usually
the lowest in such region, is the one we always use to report
the VF of a cubic packing. For example, the VF values of
packings 2 and 4 of Table1 correspond to rre f /a = 1 in
Fig. 9a, b.

6 Temporal performance

The execution time of the algorithm of Sect. 2 (see Pseudo-
code 1) with respect to the number n of generated spheres
is analyzed in this section. We first prove that each step by
itself takes an O(1) time each time it is executed, and then
we prove that each step takes a total of O(n) in the whole
execution of the algorithm. This implies that the algorithm
takes O(n) time in total, since those steps are not nested.

The algorithm requires an input of a lower and upper
bound rmin and rmax , respectively for the sphere’s radii. The
existence of the interval I = [rmin, rmax ] that contains the
radii of all the spheres implies that there exists an upper bound
n p ∈ N for the number of spheres that can be tangent to any
generated sphere. It also implies that there exists an upper
bound nV ∈ N for the number of elements that set V (see
step 2.1 of Pseudocode 1) can have. Both numbers n p and
nV only depend on I.

Since we use a regular grid to find spheres’s neighbors,
and the cell size of such grid only depends on I, each calcu-
lation of V in step 2.1 takes O(1) time. This fact, together
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Fig. 10 VF versus rre f /a curves of packings obtained with DEM simulations. aWall compression with YADE, b gravity deposition with YADE
and c gravity deposition with DEMeter

with the existence of nV implies that each calculation of
f (s0, si , s j , G, V, r) in step 2.2 takes O(1) time. The exis-
tence of nV also implies that each time the for loop of step
2.2 is executed, its body is executed at most nV (nV + 1)/2
times, because nV (nV + 1)/2 is the highest number of pos-
sible pairs of different elements of V. Since the constant
nV (nV + 1)/2 only depends on I and the calculation of
f (s0, si , s j , G, V, r) takes O(1) time, it can be affirmed
that step 2.2 takes O(1) time each time it is executed. It can
also be seen that steps 1 and 2.3 take O(1) time each time
they are executed. Therefore, each step of the algorithm takes
O(1) time each time such step is executed.

It can be seen that step 1 takes O(1) time in the whole
execution of the algorithm. Step 2.2 is executed exactly n
times, since each sphere is added exactly once to the packing.
It takes therefore O(n) time in total. Step 2.3 is also executed
exactly n times, since each sphere is removed exactly once
fromF. It takesO(n) time in total aswell. Step 2.1 is executed
exactly 2n times, since each time it is executed, either 2.2
or 2.3 are executed, but not both. So, it takes O(n) time
in total as well. Therefore, the whole algorithm takes O(n)

time in total. Figure11 shows results of some experiments
that confirm this.

Fig. 11 Time required to generate a packing as function of the number
of generated spheres. The continuous line is for packings with radii dis-
tributionU [0.01, 0.02].The dashed line is for particle radii distribution
DB

7 Preliminary applications

Pseudocode 1 can be used to generate packings for a wide
range of DEM applications. Figures12 and 13 show two of
these applications. All these packings were obtained with
spheres whose radii are uniformly distributed. Here, the issue

123



Comp. Part. Mech. (2015) 2:161–172 171

Fig. 12 Bioengineering
application. Human skull mesh
(a) filled with 1,101,921 spheres
(b). This model can eventually
be used in Biomechanics to
study the fractures due to shocks
and penetrating objects

Fig. 13 Mechanical
application. Cutting tool mesh
(a) filled with 352,203 spheres
(b). This model can be used in
tool wear studies

of defining the problemboundaries has to be addressedbefore
packing the particles. For such complex shapes, the surface
may be approximated by a mesh of triangles similar to those
adopted in the Finite Element Method.

Figure12 shows the model of a human skull. The surface
was approximated by a mesh comprising 28,684 triangu-
lar elements (Fig. 12a).Then the void space was filled with
a dense packing of spheres with diameters in the interval
[0.3, 0.5]. A total of 1,101,921 spheres were necessary for
such packing. This model can eventually be used in Biome-
chanics to study the fractures due to shocks and penetrating
objects.

Packings like the cutting tool of Fig. 13 can be used in
tool wear studies. The surface comprised 180 triangles and
the packing took 352,203 spheres with diameters in the inter-
val [4, 5]. Applications of this model are described in [18],
where a thermomechanical Discrete Element model is used
to simulate the mechanical and thermal phenomena associ-

ated with the tool wear in the rock cutting process. There
also exists research about soil and tillage–tool interaction
using DEM [19]. Discrete Element simulations of tool wear
phenomena can help improve the tool design process.

8 Conclusion

An advancing front algorithm for obtaining highly dense
sphere packings, filling arbitrarily complex geometries, has
been presented. It is simpler than other advancing front pack-
ing methods and can also be extended to other types of
particles. When compared with other state of the art algo-
rithms (excluding dynamic simulations), it shows a higher
VF. The packings obtained were also successfully evaluated
with other packing quality analysis techniques. Regarding
temporal performance, the number of generated particles is
linear with respect to time. Another finding is that the VF of
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packings generatedwith not only our code, but alsowith other
constructive codes, is still several percent points below the
dynamic initialization methods, for some radii distributions.
One of the drawbacks of the algorithm is that the quality of
the packings near the domain boundary has to be improved.
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