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Abstract We developed a practical technique for calculat-
ing pressures and pressure gradients for the moving particle
semi-implicit (MPS)method. Specifically, a new free-surface
boundary condition for the pressure Poisson equation was
developed by assuming that there are virtual particles over
the surface. We treat the pressure of the virtual particles as
a known value. A single liquid-phase flow is simulated tak-
ing into account the pressure of these virtual particles. A
technique for detecting surface particles also was developed
and used for accurately imposing the free-surface bound-
ary condition. The pressure gradient model was modified
to mitigate particle clustering and a single-layer wall model
was developed to reduce the number of wall particles. We
applied our technique to several problems, verifying that
virtual surface particles suppress pressure oscillations and
particle clusterings. The technique enables reliable differ-
ences in free-surface pressures to be taken and simulates
instances of lower fluid pressure than that of a free surface.
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Nomenclature

d Number of space dimensions
A Glass width
Ailluminated Illuminated area of virtual screen
Awhole Whole area of virtual screen
B Tank width
Cs Parameter for upper limit of source term of

Poisson equation
Cφ,Cθ Size of small segment of virtual screen
fk One-dimensional array for detecting sur-

face particles
fk,l Two-dimensional array for detecting sur-

face particles
�g Gravitational acceleration
h Water level or height of pull-up glass
h′ Relative height of glass bottom from water

level
l0 Initial spacing between particles
N Number of particles
N�, Nφ, Nθ Number of small segments of virtual screen
n∗ Temporary particle number density after

explicit phase
ni Particle number density of i-th particle
n0 Constant of particle number density
P Pressure
r Distance between particles
�r Position vector of particle
�ri Position vector of i-th particle
�r∗ Temporary position vector of particle after

explicit phase
Rilluminated Ratio of illuminated area
re Radius of interaction zone
re,gradient Radius of interaction zone for gradient

model and particle number density
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re,Laplacian Radius of interaction zone for Laplacian
model

Swall Set of wall particles
Svir tual Set of virtual particles
t Time
T Glass thickness
�u Flow velocity vector
�u∗ Vector of temporary flow velocity after the

explicit phase of the MPS method
u Flow velocity in x-direction
v Flow velocity in y-direction
Ve Volume of interaction zone
w Weight function
α Parameter for detecting free-surface parti-

cles
β Free-surface parameter
θ Direction of neighboring particle
� Angle of illuminated area
φ Arbitrary quantity or direction of neighbor-

ing particle
λ0 Parameter for Laplacian model
μ Viscosity coefficient
ν Kinematic viscosity coefficient
ρ Fluid density

1 Introduction

Lagrangian methods, such as the moving particle semi-
implicit (MPS) method [1], smoothed particle hydrodynam-
ics (SPH) [2,3], and the particle finite element method [4,5]
have been applied to various complex flows. For exam-
ple, Shibata et al. simulated green water on a deck [6,7],
ship motions in rough seas [8], and free-fall lifeboat [9]
using the MPS method. Xiong et al. [10] simulated droplet
impingement for erosion of steam generator tubes using
the MPS-for-all-speed-flow method [11]. Tsukamoto et al.
[12] used the MPS method to investigate the effects of an
elastically-linked body on tank sloshing. Lee et al. [13] used
the MPS method for simulating liquid-entry and slamming
problems in two dimensions.

Various numerical models have also been developed for
the MPS method. For example, Shibata et al. [14] devel-
oped a transparent boundary condition for open boundaries
to simulate nonlinear water waves using the MPS method.
Algorithms for suppressing the pressure oscillations in the
MPS method were developed by Kondo and Koshizuka
[15], Hibi and Yabushita [16], Tanaka and Masunaga [17],
Khayyer and Gotoh [18–20], Lee et al. [21] and Tamai
and Koshizuka [22]. Tanaka et al. [23] proposed a multi-
resolution technique for the MPS method. Suzuki et al. [24]
developed the Hamiltonian moving particle semi-implicit

method, and showed excellent performance in conserving
mechanical energy.

There has also been much progress with SPH and the
particle finite element method. For example, Kajtar and
Monaghan [25,26] simulated the motion of three linked
ellipses through a viscous fluid in two dimensions using
SPH.Khayyer et al. [27] proposed a corrected incompressible
SPH for accurately tracking the water surface in break-
ing waves. They also performed enhanced wave impact
simulations using the improved incompressible SPH [28].
Antuono et al. [29,30] simulated free-surface flows using
SPH schemes with numerical diffusive terms. They showed
that the diffusive terms enabled reducing the high-frequency
numerical acoustic noise and smoothing of the pressure
field. Cleary [31] extended SPH to fluid phenomena in low-
pressure die casting, in which he simulated the solidification
and freezing of an injected metal. Idelsohn et al. [32] sim-
ulated multi-fluid flows using the particle finite element
method. They demonstrated the mixing of fluids with dif-
ferent densities. Lagrangian methods have therefore been
studied actively.

In this study, we develop a practical technique for calcu-
lating pressure and pressure gradient for the MPS method.
In the standard MPS method, Dirichlet boundary condi-
tions are applied directly to free-surface particles. Therefore,
particle interactions for the pressure gradient term do not
work between free-surface particles, and particles cluster
on the free surface. Our proposed technique overcomes
this problem by assuming virtual particles over the free
surface (Fig. 1). The boundary condition of the virtual par-
ticle is different from that of the ghost particle model by
Schechter et al. [33] because the virtual particles are con-
sidered in the pressure Poisson equations without actually
placing virtual particles in the simulation domain. We treat
the pressures of the virtual particles as known values. A sin-
gle liquid-phase flow is simulated considering the pressure of
virtual particles. A new technique for detecting surface par-
ticles also was developed and used for accurately imposing
the free-surface boundary condition. Moreover, the devel-
oped boundary condition for the pressure Poisson equation
enables differences in free-surface pressures to be taken and
instances of lower fluid pressures than that of a free surface
to be simulated. Such low pressure needs to be considered
in many fluid problems in industrial fields. For example,
hydrofoil wings and blenders generate low pressure. How-
ever, it has been difficult for the MPS method to simulate
pressures below that over a free surface because the sim-
ulations become unstable in some instances. Hence, such
pressures are usually set to zero in MPS simulations. The
boundary condition we developed overcomes this problem.
A single-layer wall model also was developed to reduce the
number of wall particles. We applied the technique to several
problems.
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Fig. 1 Schematic of
free-surface boundary. a
Standard pressure calculation; b
improved pressure calculation

2 MPS method[1]

2.1 Governing equations

The governing equations of the MPS method are

Dρ

Dt
+ ρ∇ · ⇀

u = 0 (1)

and

ρ
D

⇀
u

Dt
= −∇P + μ∇2⇀

u + ρ �g. (2)

Equations (1) and (2) are the conservation equations repre-
senting the mass and momentum for incompressible flows.
Numerical diffusion arising from the discretization of the
convection term does not occur because we use a fully
Lagrangian description.

2.2 Particle approximations

In the MPS method, the governing equations are discretized
by replacing the differential operators with the gradient and
Laplacian models

〈∇φ〉i = d

n0
∑

j �=i

[
φ j − φi∣∣�r j − �ri

∣∣2
(�r j − �ri

)
w

(∣∣�r j − �ri
∣∣)

]
(3)

and

〈
∇2φ

〉

i
= 2d

n0λ0
∑

j �=i

(
φ j − φi

)
w

(∣∣�r j − �ri
∣∣), (4)

where w is a weight function given by

w(r) =
{( re

r

) − 1 (r < re)
0 (r ≥ re)

. (5)

The particle number density is calculated with the above
weight function as

ni =
∑

j �=i

w
(∣∣�r j − �ri

∣∣). (6)

The particle number density has two interpretations: one is
the value proportional to the fluid density and the other is the
normalization factor of the weighted average. The particle
number density of internal fluid region should be constant
to satisfy the mass conservation equation, Eq. (1). The para-
meter n0 denotes the constant particle number density. The
restraint condition for the particle number density is implic-
itly included in the pressure Poisson equation, to be discussed
in the next section.

The parameter λ0 in Eq. (4) is a constant given by

λ0 =

∑

j �=î

∣∣∣�r0j − �r0
î

∣∣∣
2
w

(∣∣∣�r0j − �r0
î

∣∣∣
)

∑
j �=i

w

(∣∣∣�r0j − �r0
î

∣∣∣
) , (7)

where the index of î is the identification number of a particle
located at internal region in fluid at the initial time step. This
λ0 is used as a common value among particles. This parame-
ter corrects the variance increase of the Laplacian model so
that the variance agrees with that of the analytical solution.
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2.3 Algorithm for incompressible flow

The MPS method uses a semi-implicit algorithm. With the
exception of the pressure gradient terms, themomentum con-
servation equations are explicitly (at time step k) solved in the
first phase. The Poisson equation for pressure is then implic-
itly (at time step k + 1) solved in the second phase. The
following Poisson equation for pressure is deduced from the
implicit mass conservation equation and the implicit pressure
gradient term:

〈
∇2P

〉k+1

i
= − ρ

�t2
n∗
i − n0

n0
, (8)

where n∗
i is the temporary particle number density after the

explicit phase. The Laplacian operator on the left-hand side
of Eq. (8) is discretized with the Laplacian model, Eq. (4).
The right-hand side of Eq. (8) represents the source term,
which is expressed as the deviation of the temporary particle
number density from the constant particle number density,
n0; this is calculated in the initial particle arrangement using

n0 =
∑

j �=î

w
(∣∣∣�r0j − �r0

î

∣∣∣
)
, (9)

and is used as a common value among particles until the end
of the simulation. Consequently, we obtain simultaneous lin-
ear equations fromEq. (8) and solve themusing the conjugate
gradient method.

This semi-implicit algorithm is similar to that of the finite
volume method for incompressible flow. However, the right-
hand side of the Poisson equation for pressure is different.
We use the deviation of the particle number density in Eq. (8),
whereas the velocity divergence is used in the finite volume
method. For further details of the MPS method, see Khayyer
and Gotoh [20], Koshizuka [34], Kondo and Koshizuka [15],
Koshizuka and Oka [1], Lee et al. [13], and Tanaka and
Masunaga [17].

2.4 Standard pressure calculation of the MPS method
for free-surface flows

In the standard MPS simulation [1], there are no particles
over the fluid surface. Therefore, the particle number density
around a free surface is lower than the standard particle num-
ber density, n0. Using this feature, particles whose particle
number density is below αn0 are regarded as surface parti-
cles in the original free-surface boundary condition, where α

is a constant scalar parameter (0 < α ≤ 1) and 0.97 is often
used forα. Dirichlet boundary conditions are directly applied
to the surface particles to solve the pressure Poisson equa-
tion. Therefore, particle interactions for the pressure gradient
termdonotwork between free-surface particles, and particles

cluster on the free surface. Moreover, internal particles are
sometimes mistakenly regarded as surface particles because
of the method for detecting surface particles. As a result, the
pressure distribution oscillates.

Pressures below that of a free surface are reset to zero to
avoid unnatural low pressure around free surfaces. Because
of this, it is impossible to simulate such low pressures using
the original boundary condition.

3 Improved pressure calculation

Wenow improve the pressure calculation of theMPSmethod
to mitigate pressure oscillation and particle clustering on a
free surface, express differences between free-surface pres-
sures, and simulate these low pressures below those of a free
surface. Specifically, we modify the pressure Poisson equa-
tion and the pressure gradient term by assuming that there
are virtual particles over the free surface (Fig 1). Although
virtual particles are drawn in Fig. 1 to explain the concept,
we do not need to actually locate, generate or move virtual
particles because the effects of these particles are considered
only mathematically by introducing some assumptions. This
is an advantage of the virtual particles.Moreover, we develop
a new method for accurately detecting A-type liquid surface
particles on the free surface (see Fig. 1), which enables us to
impose the free-surface boundary condition accurately. The
A-type particle surface has a thickness of just one particle.

We apply our modified pressure Poisson equation to the
surface liquid particles (A-type andB-type) shown in Fig. 1b,
where B-type particles are particles whose n∗ is smaller than
n0, and the distance from the nearest A-type particles is
shorter than 2.1l0. The details are mentioned in the following
sections.

3.1 Pressure Poisson equation

In the standard MPS method [1], the Poisson equation for
pressure is given by Eq. (8). Using the Laplacian model of
the MPS method given by Eq. (4), Eq. (8) is discretized as

2d

λ0n0
∑

j �=i

(
Pk+1
j − Pk+1

i

)
w

(∣∣∣�r∗
j − �r∗

i

∣∣∣
)

= −γ
ρ0

(�t)2

(
n∗
i − n0

)

n0
, (10)

where γ is a scalar parameter for stabilizing the simulation.
The parameter ρ0 is the initial fluid density, which is a com-
mon value of particles. When the i-th particle is an A- or
B-type surface particle, we can assume that virtual particles
are located over the free surface (Fig 1b). Therefore, in this
case, we divide the left-hand side of Eq. (10) into two terms
for the actual particles and virtual particles as follows:
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2d

λ0n0
∑

j �=i

(
Pk+1
j − Pk+1

i

)
w

(∣∣∣�r∗
j − �r∗

i

∣∣∣
)

+ 2d

λ0n0

(
Pvir tual − Pk+1

i

)
ni,vir tual

= −γ
ρ0

(�t)2

(
n∗
i − ñki

)

n0
. (11)

The first term on the left-hand side of Eq. (11) is the summa-
tion for actual neighboring particles around the i-th particle,
while the second is the term due to the virtual neighboring
particles. We assume that the pressure of the virtual particles
is a constant, Pvir tual . The parameter, ni,vir tual , is the particle
number density for the virtual particles defined as

ni,vir tual ≡ max
{
n0 − n∗

i , 0
}

. (12)

By using the assumption of Eq. (12), we do not need to
actually locate or move virtual particles. To simply express
equations, the term for compressibility of fluid that is used in
the usual MPS simulations [1,17] is not written in Eqs. (10)
and (11), although the term was added in the actual simula-
tion of this study.

For the pressure Poisson equation, we apply Dirichlet
boundary conditions only to the virtual particles. Therefore,
the pressure of actual free-surface particles is not fixed to
the gas-phase pressure. As a result, particle clustering is
suppressed because of the particle interaction based on the
pressure difference between free-surface particles. More-
over, compared with the standard pressure calculation, the
second term on the left-hand side of Eq. (11) increases
the free-surface particle pressure by about ρg

√
λ0/2. This

pressure increment has the effect of sustaining free-surface
particles at a certain water level using the modified pressure
gradientmodel to be described below.Whenwe need to com-
pare pressures obtained from simulations with those of the
analytical solution or experimental data, we need to subtract
the simulated pressure by ρg

√
λ0/2.We use Eq. (11) for both

A- andB-type surface liquid particles. For the other particles,
we use Eq. (11)without the second term on the left-hand side.

Compared with Eq. (10), the right-hand side of Eq. (11)
was modified by the following approximation based on Eq.
(1):

∇ ·u∗
i = − 1

ρ0

Dρi

Dt
∼= − 1

n0
Ve

(
n∗
i

Ve
− ñki

Ve

)

�t
= − 1

�t

(
n∗
i − ñki

)

n0
,

(13)

where ñki is the standard number density of the i-th particle at
the time step k. To produce stable simulations, we use instead
of n0 particle number density ñki ,

ñki =
{
n0 i f nki ≥ n0

nki otherwise
. (14)

Hence, if nki is greater than n0, n0 is used for ñki to prevent
the fluid-volume compression, otherwise, nki is used. When
we need to treat pressures below that for the free-surface
particles, we use the following ñki :

ñki =
⎧
⎨

⎩

n0 i f nki ≥ n0

Csn0 i f nki ≤ nk−1
i and nki ≤ αn0

nki otherwise
, (15)

where Cs is a scalar parameter (0 < Cs ≤ 1); in this study,
1.0 was used forCs . The density,Csn0, provides a lower limit
in the particle number density and prevents occurrence of
unnatural cavities in the fluid. Equation (15) is applied to
internal particles, whereas Eq. (14) is applied to A- and B-
type surface particles.

In the standardMPSmethod, 0.2 is often used for γ in Eq.
(10). In this study, 0.05 and 0.10 were used for γ of fluid and
wall particles, respectively, to suppress pressure oscillations.
The values of γ were empirically determined. Although it is
not necessary to frequently change γ depending on circum-
stances, the following ineq uality gives a guideline for setting
γ :

1 ≥ γ ≥
∣∣∣∣
n∗∗ − n0

n0

∣∣∣∣
−1

(�t)2 d√
λ0

∣∣∣∣
1

ρ0∇P

∣∣∣∣
max

> 0, (16)

where n∗∗ is the permissible upper limit of temporal parti-
cle number density (n∗∗ > n0) after the explicit phase of

the MPS method, and
∣∣∣ 1
ρ0 ∇P

∣∣∣
max

is the expected maximum

acceleration due to pressure gradient term on wall bound-
aries.

3.2 Modified pressure gradient calculation

Based on Eq. (3), the pressure gradient term in the Navier-
Stokes equation is discretized as follows:

〈∇P〉i = d

n0
∑

j �=i

Pj − Pi∣∣�r j − �ri
∣∣2

(�r j − �ri
)
w

(∣∣�r j − �ri
∣∣). (17)

To avoid instabilities in simulations arising from the attrac-
tive forces described in Eq. (17), the following pressure
gradient is often used in the standard MPS method:

〈∇P〉i = d

n0
∑

j �=i

Pj − P̂i∣∣�r j − �ri
∣∣2

(�r j − �ri
)
w

(∣∣�r j − �ri
∣∣), (18)
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where P̂i , the minimum pressure around the i-th particle, is
defined as:

P̂i = min
{
Pi , Pj

∣∣ ∣∣�r j − �ri
∣∣ ≤ re

}
. (19)

Equation (18) is derived from Eq. (17) assuming Eq. (21):

〈∇P〉i ∼= d

n0
∑

j �=i

Pj − Pi∣∣�r j − �ri
∣∣2

(�r j − �ri
)
w

(∣∣�r j − �ri
∣∣)

+ (Pi −φi )
d

n0
∑

j �=i

1
∣∣�r j −�ri

∣∣2
(�r j −�ri

)
w

(∣∣�r j −�ri
∣∣)

= d

n0
∑

j�=i

{
Pj +(Pi −φi )

}−Pi
∣∣�r j −�ri

∣∣2
(�r j − �ri

)
w

(∣∣�r j − �ri
∣∣)

= d

n0
∑

j �=i

Pj − φi∣∣�r j − �ri
∣∣2

(�r j − �ri
)
w

(∣∣�r j − �ri
∣∣), (20)

1

n0
∑

j �=i

1
∣∣�r j − �ri

∣∣2
(�r j − �ri

)
w

(∣∣�r j − �ri
∣∣) ∼= �0, (21)

where φi is an arbitrary scalar parameter of i-th particle and
P̂i is used for φi in the standard MPS method. In Eq. (21), it
is assumed that neighboring particles of the i-th particle are
arranged isotropically.

In this study, the following modified gradient model,
which was derived by applying the P̃i for φi in Eq. (20),
was used for all the particles.

〈∇P〉i = d

n0
∑

j �=i

Pj − P̃i∣∣�r j − �ri
∣∣2

(�r j − �ri
)
w

(∣∣�r j − �ri
∣∣), (22)

P̃i = min
{
Pi , Pj , Pvir tual

∣∣ ∣∣�r j − �ri
∣∣ ≤ re

}
. (23)

Compared with Eq. (17) and Eq. (18), Eq. (22) maintains
particle distance to the initial value because the repulsive
force from the neighboring j-th particle is virtually increased
by increasing its pressure by Pi − P̃i as shown in the second
line of Eq. (20). If Pvir tual = 0 Pa and Pj , Pi ≥ 0, Eq. (22)
agrees with the following gradient model:

〈∇P〉i = d

n0
∑

j �=i

Pj∣∣�r j − �ri
∣∣2

(�r j − �ri
)
w

(∣∣�r j − �ri
∣∣). (24)

On free surfaces, presuming approximation Eq. (21), which
was used for the derivation of Eq. (24), holds true, is not
viable because there is no particle above the free surface.
However, by using the concept of virtual particles, we can
obtain the same equation as Eq. (24) for free-surface par-
ticles. This is discussed below. By assuming that there are
virtual particles over the free surface and they are arranged
isotropically, we assume the following approximation to
express the pressure gradient of i-th particle [Eq. (17)], which
is located around the free surface.

〈∇P〉i = d

n0
∑

j �=i
j /∈Svir tual

(
Pj − Pi

)
∣∣�r j − �ri

∣∣2
(�r j − �ri

)
w

(∣∣�r j − �ri
∣∣)

+ d

n0
∑

j�=i
j∈Svir tual

(Pvir tual − Pi )∣∣�r j −�ri
∣∣2

(�r j −�ri
)
w

(∣∣�r j −�ri
∣∣).

(25)

We now suppose that neighboring particles including virtual
and actual particles are arranged isotropically around the i-th
particle. Then, we can assume the same approximation as for
Eq. (21). Indeed, the left-hand side of Eq. (21) can be divided
into two terms for actual particles and virtual particles as
follows:

1

n0
∑

j �=i
j /∈Svir tual

(�r j − �ri
)

∣∣�r j − �ri
∣∣2

w
(∣∣�r j − �ri

∣∣)

+ 1

n0
∑

j �=i
j∈Svir tual

(�r j − �ri
)

∣∣�r j − �ri
∣∣2

w
(∣∣�r j − �ri

∣∣) ∼= �0. (26)

Therefore, the summation for the virtual particles is expressed
by that for actual particles as follows:

1

n0
∑

j �=i
j∈Svir tual

(�r j − �ri
)

∣∣�r j − �ri
∣∣2

w
(∣∣�r j − �ri

∣∣) ∼=

− 1

n0
∑

j �=i
j /∈Svir tual

(�r j − �ri
)

∣∣�r j − �ri
∣∣2

w
(∣∣�r j − �ri

∣∣). (27)

Substituting Eq. (27) into the second term on the right-hand
side of Eq. (25), we obtain the following equation:

〈∇P〉i = d

n0
∑

j �=i
j /∈Svir tual

(
Pj − Pi

)
∣∣�r j − �ri

∣∣2
(�r j − �ri

)
w

(∣∣�r j − �ri
∣∣)

− d

n0
∑

j �=i
j /∈Svir tual

(Pvir tual − Pi )∣∣�r j −�ri
∣∣2

(�r j −�ri
)
w

(∣∣�r j −�ri
∣∣).

(28)

By combining the summations, we obtain the followingmod-
ified gradient model for pressure:

〈∇P〉i = d

n0
∑

j �=i
j /∈Svir tual

(
Pj − Pvir tual

)
∣∣�r j −�ri

∣∣2
(�r j −�ri

)
w

(∣∣�r j −�ri
∣∣).

(29)
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For Pvir tual = 0 Pa, we obtain the following model, which
agrees with Eq. (24),

〈∇P〉i = d

n0
∑

j �=i
j /∈Svir tual

Pj∣∣�r j − �ri
∣∣2

(�r j − �ri
)
w

(∣∣�r j − �ri
∣∣).

(30)

If particles are not arranged isotropically or located on the
free surface, the gradient model of Eq. (24) for these particles
does not have first-order accuracy because of the assumptions
on particle arrangement that have been introduced. How-
ever, the benefits of this model are that it is simple, easy to
implement in program code, and maintains particle spacing
between particles.

3.3 Single-layer wall model

There are various ways to express wall boundaries for par-
ticle methods [21,35–39]. In usual MPS simulations, a wall
boundary consists of a double layer of wall particles, with its
associated pressure parameter, and a double layer of dummy
wall particles, which have no pressure parameter and are
used only for calculating particle number densities of wall
particles. This increases the number of particles, the compu-
tational time and the needed size of memory. To solve this
problem, we developed a technique which allows us to repre-
sent a wall boundary by a single layer of wall particles. The
details are given in the following.

First, to find the contribution to the particle number density
from outer dummy wall particles without actually locating
the dummywall particles, we add the following particle num-
ber density, ni,correction , to those of all the wall particles:

ni,correction ≡
(
n0 − n0i,wall

)
Cshape, (31)

where n0i,wall is the particle number density of i-th wall par-
ticle calculated at the initial time step considering only wall
particles as follows:

n0i,wall =
∑

j �=i
j∈Swall

w

(∣∣∣�r0j − �r0i
∣∣∣
)

. (32)

The scalar parameter Cshape characterizes the wall shape. In
this study, we assumed that the wall can be locally approxi-
mated as a plane, using a value of 0.5 for Cshape to simplify
the problem.

Moreover, to prevent penetration of fluid particles through
the walls, the following vector �bi was added to the pres-
sure gradient term (Eq. (22)) of the i-th fluid particle located
within 1.0l0 from a wall:

�bi = d

n0
∑

j �=i
j∈Swall

Pj∣∣�r j,vir tual − �ri
∣∣2

(�r j,vir tual − �ri
)
w

(∣∣�r j,vir tual − �ri
∣∣) . (33)

The vector, �r j,vir tual , in the above equation is the position
of a virtual wall particle which is located behind j-th wall
particle and was simply calculated from:

�r j,vir tual = �r j − l0�n⊥ j . (34)

where �n⊥ j is the normal vector of the actual j-thwall particle.
To simplify the problem in calculating Eq. (33), we assume
that the virtual wall particle has the same pressure as that
of the j-th wall particle,Pj . Therefore, it is not necessary to
calculate or interpolate the pressure for the virtual wall par-
ticles. Moreover, it is not necessary to record the positions
of these particles because they are calculated by Eq. (34).
These make the difference from techniques of early studies
[21,35–39] based on ghost particles or mirror particles. The
virtual particle of the j-th wall particle is considered also in
the calculation of the particle number density of fluid parti-
cles around the wall boundary.

However, some splashed fluid particles can penetrate a
wall in three-dimensional simulations. To prevent this, we
used as an exceptional procedure a penalty force, which is
often used in the discrete element method [40], for penetrat-
ing particles located within 0.30l0 from a wall.

3.4 Detection of surface particles

Surface particles need to be detected to impose Dirichlet
boundary conditions on the pressure Poisson equation, and
is important in accurately imposing boundary effects. There
are various ways to detect boundary particles for particle
methods [1,5,17,21,41–43]. In the standard MPS method
[1], particles whose particle number density is below αn0

are regarded as surface particles. However, in some cases,
internal particles are mistakenly identified as surface par-
ticles using this method. Hence, we developed a new and
accurate surface detectionmethod using a virtual light source
and virtual screen. We explain its details in the following.

3.4.1 Two-dimensional simulation

Figure 2 shows a schematic of the surface detection method
we have developed for two-dimensional simulations. To
judge whether the i-th particle is on the surface, we use a
virtual light source and a virtual screen. The shape of this
screen in two dimensions is a circlewhose radius is 2.1l0. The
radius is empirically determined. The centers of the screen
and source are located on the center of the i-th particle. If
the i-th particle is on the surface, most of the area of the
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Fig. 2 Our surface detection method in two dimensions. The colored
area denotes a region under the free surface. (Color figure online)

screen is illuminated by the source, although some area is
in the shadow of neighboring particles. The fraction of the
area illuminated on the screen is denoted by Rilluminated . If
Rilluminated is over a threshold, the particle is regarded as a
surface particle. If not, the particle is regarded as an internal
particle. We have empirically determined the threshold to be
1/6. To exclude narrow gaps between particles, small illumi-
nated areas whose subtended angle is smaller than 15◦ are
regarded as shaded areas and are exempt in the calculation of
Rilluminated . The shaded area of the j-th neighboring particle
is calculated as

θi, j =
(
180

π

)
tan−1

(
y j − yi
x j − xi

)
(35)

and

�θi, j =
(
180

π

)
2 tan−1

⎛

⎝ 0.5l0√∣∣�r j − �ri
∣∣2 − (0.5l0)2

⎞

⎠ , (36)

where θi, j is the relative angle between the i-th and j-th par-
ticles, and �θi, j is the subtend angle of the shaded area of
the j-th neighboring particle (Fig. 3). The coefficient,

( 180
π

)
,

converts radians to degrees. When implementing the pro-
gram, we divide the virtual screen into small segments of
360◦/N�,where N� is the number of small segments, and
use a one-dimensional array, fk (k = 1, 2, 3, . . . , N�), to
calculate the illuminated area. In this study, N� was 360.
Therefore, each array index k means the relative direction in
degrees, and each array component fk has information on
whether the segment of the virtual screen is illuminated in
that direction. First, all the array values are initially set to 1,
where 1 means the segment of the screen is illuminated by
the virtual light source. If the k-th segment is in the shadow
of the neighboring particles, fk is set to zero. Finally, the
illuminated fraction of the area is calculated from:

Fig. 3 Two-dimensional surface detection algorithm using a virtual
light source

Fig. 4 Three-dimensional surface detection algorithm using a virtual
light source

Rilluminated = Ailluminated

Awhole
= � re

2πre
= �

2π
∼=

N�∑
k=1

fk

N�

, (37)

where Awhole, and Ailluminated are thewhole and illuminated
areas of the virtual screen.

3.4.2 Three-dimensional simulation

We extend the above surface detection method to three-
dimensional simulations. The procedure is almost the same
as the two-dimensional one. Figure 4 shows the surface detec-
tion algorithm in three dimensions. A virtual spherical screen
whose radius is 2.1l0 is located on the i-th particle. The screen
is divided into small segments in the longitudinal and latitudi-
nal directions whose subtended angles are Cφ

(= 360◦/Nφ

)

and Cθ (= 180◦/Nθ ), respectively. In this study, Nφ was
36, and Nθ was 18. We have determined the segment size
empirically by considering the computational cost. In imple-
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menting the program, we use a two-dimensional array,
fk,l

(
k = 1, 2, 3, . . . , Nφ; l = 1, 2, 3, . . . , Nθ

)
, to calculate

the shaded area, where k and l are the longitude and latitude
divided by Cφ and Cθ , respectively. In the same manner as
in the two-dimensional simulation, fk,l is initialized and a
flag is set so that it expresses whether each segment is illu-
minated; first, all the array values of fk,l are initially set to 1,
where 1 indicates the segment of the screen is illuminated by
the virtual light source. If the k, l-th segment is in the shade
of neighboring particles, fk,l is set to zero. The shaded area
of the j-th neighboring particle is calculated from

θi, j =
(
180

π

)
tan−1

⎛

⎝ y j − yi√(
x j − xi

)2 + (
z j − zi

)2

⎞

⎠ , (38)

φi, j =
(
180

π

)
tan−1

(
x j − xi
z j − zi

)
, (39)

�θi, j =
(
180

π

)
2 tan−1

⎛

⎝ 0.5l0√∣∣�r j − �ri
∣∣2 − (0.5l0)2

⎞

⎠ , (40)

and

�φi, j =
(
180

π

)
2 tan−1

⎛

⎝ 0.5l0√∣∣�r j − �ri
∣∣2 − (0.5l0)2

⎞

⎠ , (41)

where φi, j and θi, j are the longitudinal and latitudinal
directions of the shaded area of the j-th neighbor particle,
respectively. The parameters�φi, j and�θi, j are the longitu-
dinal and latitudinal angles of the shaded area of the neighbor
particles as shown in Fig. 4. In the above calculation, each
shaded area of a neighboring particle is approximated as
a quadrilateral to simplify the problem, although its actual
shadow is circular.

Finally, the illuminated fraction of the area,Rilluminated ,
is calculated using

Rilluminated = Silluminated
Swhole

∼=

Nθ∑
l=1

Nφ∑
k=1

[{
re

(
π
180Cθ

)} {
re cos

(
π
180Cθ l

)} (
π
180Cφ

)
fk,l

]

Nθ∑
l=1

Nφ∑
k=1

[{
re

(
π
180Cθ

)} {
re cos

(
π
180Cθ l

)} (
π
180Cφ

)]
. (42)

If Rilluminated is over a preset threshold, the i-th particle is
regarded as a surface particle; if not, the particle is regarded
as an internal particle. We have empirically determined the
threshold to be 1/5.

3.5 Low-pressure simulation

In the usual MPS simulations using the standard pressure
calculation, pressures lower than that of the free-surface par-
ticles are reset to zero to avoid unnaturally low pressure
around free surfaces and to produce stable simulations. The
main reason for the unnaturally low pressure is that there are
no particles over free surfaces, and the particle number den-
sity around a free surface becomes lower than the standard
value, n0. Therefore, it is not possible to simulate pressures
below that for the free surfaces using the standard pressure
calculation of the MPS method. The improved boundary
condition developed in this study allows us to easily sim-
ulate such pressures because the right-hand side of pressure
Poisson equation, Eq. (11), is improved using ñki , and the
unnaturally low pressures around the free surfaces are sup-
pressed. As amatter of course, we do not reset such pressures
to zero in low-pressure simulations using our improved pres-
sure calculation.

However, we expect the kinematic energy of the fluid to
increase in some low-pressure simulations because of parti-
cle oscillations caused by low pressure. This energy increase
leads to unstable simulations. To solve this problem, we
added an artificial viscosity based on particle collisions [21].
Moreover, if we do not need to simulate pressures below that
of the virtual particles, we reset such pressure values to zero
to suppress pressure oscillations.

4 Verification analysis

4.1 Hydrostatic pressure problem

4.1.1 Simulation condition

We verified the improved pressure calculation in a hydrosta-
tic pressure problem. Figure 5 shows the simulation domain.
The particle distribution and pressure distribution of the
improved pressure calculation were compared with those of
the standard pressure calculation. The simulated pressure at

the bottom center p1 also was compared with the analytical
solution.

We set the kinematic viscosity coefficient to 1.00 ×
10−6m2/s, the fluid mass density to 1000 kg/m3, and the
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Fig. 5 Simulation domain for verifying air pressure effect on particle
distribution on free surface

acceleration of gravity to 10.0m/s2. The compressibility of
fluid was 0.45×10−9 1/Pa. The simulations were performed
in two spatial resolutions, l0 = 0.012m and 0.006m in
two dimensions and three dimensions. Table 1 shows the
number of particles. Compared with the standard pressure
calculation, the number of particles for the improved pres-

sure calculation was small because each wall boundary was
expressed by a single layer of wall particles.

The gas-phase pressure, which means the pressure of vir-
tual particles over free surface, was 0 Pa. The radius of the
interaction zone for the gradient model, the Laplacian model
and the particle number density was 2.0l0. The collision
distance in the MPS method was 0.5l0. The coefficient of
restitution was 0.2. The surface tension was neglected. We
did not take pressures lower than the gas-phase pressure into
account in this case because such pressures should not occur
in this hydrostatic pressure problem; pressures below gas
phase pressure were set to the gas phase pressure.

4.1.2 Simulation results

The simulated fluid behavior and pressure distribution
(Figs. 6, 7) indicate that the particle distribution of the
improved pressure calculation (Fig. 7b) was more uniform
than that of the standard pressure calculation (Fig. 6b), and
the pressure distribution of the improved pressure calculation
(Fig. 7c) had a more natural pressure gradient than that of
the standard pressure calculation (Fig. 6c); for the improved
pressure calculation, the pressure increased with water depth
and was constant in the horizontal direction. This is due to
the new surface detection method, the corrections for the vir-

Table 1 Number of particles for
the hydrostatic pressure problem

Number of spatial dimensions 2 2 3 3
Spatial resolution (l0) 0.012 m 0.006 m 0.012 m 0.006 m

Number of particles for the
standard pressure calculation

1768 5872 26,928 127,040

Number of particles for the
improved pressure calculation

1332 5062 11,256 73,268

Fig. 6 Fluid behavior and pressure distribution using the standard pressure calculation. a t = 0.0 s; b t = 10.0 s; c t = 10.0 s (pressure distribution)
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Fig. 7 Fluid behavior and pressure distribution using the improved pressure calculation. a t = 0.0 s; b t = 10.0 s; c t = 10.0 s (pressure
distribution)

Fig. 8 Particle distribution
around surface (l0 = 0.012 m).
a Standard pressure calculation;
b Improved pressure calculation

tual particles, and the improvement to the pressure gradient
model.

An example of the particle distribution around the surface
(Fig. 8) shows that particle clustering does not appear for the
improved pressure calculation, whereas some particles on
the free surface were too close to each other in the standard
pressure calculation.

Table 2 shows the averaged minimum distance between
particles in the hydrostatic pressure problem. In the table,
“internal-internal” signifies the average distance between
internal particles, whereas “surface-all” signifies the dis-
tance between a particle on the free surface and all the other
particles. The averaged minimum distance of the improved
pressure calculation was longer than that of the standard
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Table 2 Averaged minimum distance between particles

Spatial resolution (l0) 0.012 m 0.012 m 0.006 m 0.006 m
Type of distance Surface-all Internal-internal Surface-all Internal-internal

(a) Two-dimensional hydrostatic pressure problem

Standard pressure calculation 0.74 l0 0.88 l0 0.76 l0 0.88 l0
Improved pressure calculation 1.00 l0 1.05 l0 0.96 l0 1.06 l0

(b) Three-dimensional hydrostatic pressure problem

Standard pressure calculation 0.71 l0 0.86 l0 0.72 l0 0.85 l0
Improved pressure calculation 0.97 l0 1.04 l0 0.96 l0 1.07 l0
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Fig. 9 Time history of pressure acting on the center of the tank bottom.
a Standard pressure calculation (l0 = 0.012 m); b Improved pressure
calculation (l0 = 0.012 m)

pressure calculation and it was close to the initial spacing
between particles l0. The table quantitatively confirms that
the improved pressure calculation suppresses particle clus-
tering around free surfaces.

The time history of the simulated pressure (Fig. 9) at the
center of the tank bottom, p1 in Fig. 5, shows that the pressure

fluctuation is suppressed by the improved pressure calcula-
tion. Table 3 shows the error of the time-averaged pressure at
p1. The error is the difference between the simulation results
and the analytical solution

P = ρgh. (43)

These data were obtained by time averaging from 8 s to 10 s.
From the table, we find that the error in the result using the
improved pressure calculation was smaller than that for the
result using the standard pressure calculation.

Table 4 shows the computation time. The computer used
in this study was equipped with the CPU: Intel Core i7-3770
3.4GHz and themainmemory:32GB.A single corewas used
without parallel computing. From the table, it is found that
the computation time of the improved pressure was almost
the same as that of the standard pressure calculation if the
same radius for the interaction zonewas used. This is because
the single layerwallmodel used in the improved pressure cal-
culation reduces the number of wall particles while the new
surface detection method slightly increases the computation
time. In total, there was no large difference in computation
times. Compared with the standard pressure calculation, the
improved pressure calculation appears to enable use of a
small radius for the interaction zone because pressure oscilla-
tions are suppressed. In cases needing use of a large radius for
the interaction zone, computation times using the improved
pressure technique were shorter than those using standard
pressure calculations.

Table 3 Error for
time-averaged pressure at the
tank bottom for the hydrostatic
pressure problem

Number of spatial dimensions 2 2 3 3
Spatial resolution (l0) 0.012 m 0.006 m 0.012 m 0.006 m

Error for the standard
pressure calculation (%)

3.9 4.0 2.9 2.5

Error for the improved
pressure calculation (%)

1.3 1.6 1.9 1.2
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Table 4 Computation times for
the hydrostatic pressure problem

Number of spatial dimensions 2 2 3 3
Spatial resolution (l0) 0.012 m 0.006 m 0.012 m 0.006 m
The number of time steps 10,000 20,000 10,000 20,000

Computation time for the standard
pressure calculation
(re,gradient =
2.1l0 and re,Laplacian = 3.1l0)

221 s 2,305 s 14,033 s 233,868 s

Computation time for the standard
pressure calculation
(re,gradient =
2.0l0 and re,Laplacian = 2.0l0)

133 s 1,389 s 5,311 s 97,767 s

Computation time for the improved
pressure calculation
(re,gradient =
2.0l0 and re,Laplacian = 2.0l0)

134 s 1,547 s 4,861 s 96,676 s

Fig. 10 Initial water profile for the dam breaking problem

4.2 Dam breaking problem

4.2.1 Simulation settings

The stability of the improved pressure calculation was veri-
fied in a three-dimensional dam breaking problem. Figure 10
shows the simulation domain. A water column was set in the
initial state. The depth from front to back was 0.12 m. We
evaluated the simulated pressure at p2. Parameter settings
include the initial spacing between particles of 5.0 × 10−3

m, the total number of particles of 109,676, a kinematic vis-
cosity coefficient of 1.0× 10−6 m2/s and the acceleration of
gravity was 9.8m/s2. The other settings were the same as in
Sect. 4.1.1.

4.2.2 Simulation results

Figure 11 shows the simulated fluid behaviors. For visual-
ization, the front wall boundary is not drawn in the figure.
We see that the breaking water column and water splashes
are well simulated with good numerical stability using the
improved pressure calculation. Overall, the fluid behavior
of the improved pressure calculation agreed with that of the
standard pressure calculation. The detection result of sur-
face particles (Fig. 12) show that the developed technique
can detect free-surface particles appropriately. Moreover, the
time history of the simulated pressure (Fig. 13) acting on p2 in
Fig. 10 confirms that the pressure oscillation are suppressed.

4.3 U-shaped tube

4.3.1 Simulation condition

We simulated fluid behavior in a U-shaped tube for further
verification of the improved pressure calculation. The sim-
ulation domain of the U-shaped tube (Fig. 14) contains.a
viscous fluid of mass density 1000 kg/m3 and kinematic
viscosity coefficient 1.00× 10−4 m2/s. Uniform virtual par-
ticles’ pressures, Ple f t and Pright were imposed on the left
and right fluid surfaces, respectively. Pressure Ple f t was var-
ied from 1000 to 4000 Pa, while Pright remained at zero. The
initial water levels hle f t and hright were 0.600 m. The ini-
tial spacing between particles, l0, was 0.005 m. The total
number of particles was 15,440 and the acceleration of
gravity was 9.81m/s2. Other settings were the same as in
Sect. 4.1.1.

4.3.2 Simulation results

Figure 15 depicts an example of the steady-state fluid behav-
ior where Ple f t and Pright were 4000 and 0 Pa, respectively.
The water level on the right has risen, while that on the left
has fallen because of the difference in gas-phase pressure.
The color scale represents the fluid pressure and indicates
that the left surface of fluid has a higher pressure than the
right.

From the simulations, the relation between the difference
in gas-phase pressure and the difference in water level h (=
hright − hle f t ) at the steady state (Fig. 16) were compared
with the analytical solution (dashed line)

h = Ple f t − Pright
ρg

. (44)

An agreement between the two is evident.
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Fig. 11 Fluid behavior for
three-dimensional dam breaking
(l0 = 5.0 × 10−3m). a Standard
pressure calculation; b improved
pressure calculation
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4.4 Low-pressure simulation

4.4.1 Simulation condition

For a simple low-pressure problem, we then applied the
improved pressure calculation to the two-dimensional glass-
raising problem where there is a lower pressure than that of
the free surface. Figure 17 shows the simulation domain in
the initial state. An upturned glass filled with water was set
in a water tank and raised to some height h above the surface.
The glass dimensions were 0.050 m in width A, 0.0175 m in
thickness T and 0.10 m in height. The water tank dimensions

were 0.50 m in width B and 0.20 m in height. The simulation
time was 3 s.

If the glass is raised, the water in the glass also rises
because of a lower pressure than the free-surface pressure.
The simulated pressure P at the center of the glass bottom,
p3, was compared with the analytical solution

P = −ρgh′ (45)

and

h′ = hB

B − A − 2T
, (46)
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t = 0.30s 

t = 0.60s

Fig. 12 Detection result of surface particles
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Fig. 13 Time history of pressure in a three-dimensional dam breaking
problem

where h′ is the relative height of the glass bottom from the
water level. The simulations were performed for five raising
heights: h = 0.01, 0.02, 0.03, 0.04, and0.05m.Theglasswas
raised from its initial position to height h in 1 s at the veloc-
ity expressed by a time history of sin curve. The parameter
settings include a spatial resolution of 0.0025 m, kinematic
viscosity coefficient of 1.0× 10−6 m2/s, acceleration due to
gravity of 9.8 m/s2, and total number of particles of 16,502.
We took account of pressures below the virtual-particle pres-
sure. The collision distance for the artificial viscosity of the
MPSmethodwas 0.85l0. The other conditions were the same
as in Sect. 4.1.1.

Fig. 14 Simulation domain for verifying air pressure acting on fluid
in a U-shaped tube

Fig. 15 Simulated fluid shape under steady state in a U-tube (t =
10.0 s). The left pressure is 4000 Pa and the right pressure 0 Pa. Color
shows the pressure distribution. (Color figure online)
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Fig. 16 Relation between pressure difference on free surfaces and
water level difference
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Fig. 17 Schematic of simulation domain for verifying low pressure

4.4.2 Simulation results

Figure 18 shows an example of the simulated fluid behav-
ior and pressure distribution for h = 0.05 m. We depict the
time-averaged pressure over the last 0.5 s for the particle
arrangement at 3 s. The figure shows that low glass pressure
was successfully simulated; the minimum pressure occurs at
the glass bottom.

Figure 19 shows the relationship between the raising
height and the time-averaged pressure obtained at the cen-
ter of the glass bottom, p3. The pressure was averaged over
the last 1.5 s, representing a steady state. It is found that
the results of the MPS method using the improved pressure
calculation agreed well with the analytical solution.
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Fig. 19 Relation between raising height and pressure

5 Conclusion

We have improved the pressure calculation of the MPS
method by assuming that there are virtual particles over the
free surfaces. We derived a modified pressure Poisson equa-
tion and a modified approximation model for the pressure
gradient. A technique for detecting free-surface particles was
also developed for which a virtual light source and screen are
used to accurately impose the boundary condition.

We simulated a hydrostatic pressure problem to verify
that the improved pressure calculation suppresses particle
clustering and pressure oscillation. The stability of the devel-

Fig. 18 Fluid behavior of
low-pressure simulation
(h = 0.05 m). a Initial
configuration (t = 0.0 s); b
Pressure distribution (t = 3.0 s)
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oped technique was verified in a dam breaking simulation.
Also the analysis of a U-shaped tube demonstrated that the
improved pressure calculation is capable in evaluating the
difference in free-surface pressures. Moreover, analyses for
low pressure show that the improved pressure calculation is
capable in simulating lower pressures than that for the free
surface.
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