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Abstract This study presents an accurate and robust
boundary model, the explicitly represented polygon (ERP)
wall boundary model, to treat arbitrarily shaped wall bound-
aries in the explicit moving particle simulation (E-MPS)
method, which is a mesh-free particle method for strong
form partial differential equations. The ERPmodel expresses
wall boundaries as polygons,which are explicitly represented
without using the distance function. These are derived so
that for viscous fluids, and with less computational cost,
they satisfy the Neumann boundary condition for the pres-
sure and the slip/no-slip condition on the wall surface. The
proposed model is verified and validated by comparing com-
puted results with the theoretical solution, results obtained by
othermodels, and experimental results. Two simulationswith
complex boundary movements are conducted to demonstrate
the applicability of the E-MPS method to the ERP model.

Keywords Mesh-free particle method · MPS method ·
Polygon wall boundary model · ERP model · Free-surface
flow

1 Introduction

The smoothed particle hydrodynamics (SPH) method [11,
25] and the moving particle semi-implicit/simulation (MPS)
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[23] method have been widely used for the analysis of free-
surface flows.

One of the characteristics of these methods is that they
discretize strong form partial differential equations in the
Lagrangian description, without node connectivity informa-
tion. This characteristic allows them to deal with turbulent-
free surfaces and moving boundaries without the difficulties
faced by mesh-based methods, such as the finite element
method (FEM). In those situations, it is often necessary for
mesh-based methods to remesh or renode, which reduces
both the accuracy and the parallel efficiency. They also
require special treatment for free surfaces andmoving bound-
aries; these treatments include the volume of fluid (VOF)
method [13] and the level set method [9,38].

Another important characteristic is that mass conserva-
tion is automatically satisfied, assuming each node (particle)
has its own mass. In addition to this assumption, Koshizuka
and Oka [23] applied a density validation term to the right-
hand side of the pressure Poisson equation in the derivation
of the MPS algorithm, instead of the velocity divergence
term generally used in the finite difference method (FDM)
with the projection method [4]. Since this term has the
effect of recovering the fluid volume and contributes robust-
ness to the computations, it has been widely employed with
both MPS and SPH computations [16,20,22] as a stabi-
lization term. Therefore, mesh-free particle methods have
the significant advantages of convenience and robustness in
long-term analyses of free-surface flowswithmoving bound-
aries.

However, they have problemswith accuracy. Because par-
ticles are moving in a Lagrangian fashion, it is difficult
to let the spatial resolution vary with position, such as by
using smaller particles near wall boundaries in order to treat
boundary layer flows. In addition, since a nonhomogeneous
distribution of particles harms the accuracy of the compu-
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tation, stabilization techniques, such as artificial viscosities
[26,30,33] or collision forces, are often required.

Examples of simulations that can take advantage of mesh-
free particle methods include disasters involving water, such
as tsunamis [6,35] and sloshing problems [7]. These kinds
of problems generally have large analytical areas, so fully
explicit algorithms, such as the Weakly compressible SPH
(WCSPH) method [31,42] and the explicit MPS (E-MPS)
method [37,43,47] have often been adopted. Since the
explicitmethods have high scalability for parallel computing,
distributed-memory parallel algorithms have been investi-
gated and developed [10,21].

Research has made great progress with the SPH meth-
ods for treating wall boundaries. The repulsive-force model
[29,31,32] was developed in order to prevent fluid particles
from penetrating wall boundaries. Although this model is
relatively easy to implement, the fluid particles near wall
boundaries are unstable because the boundary conditions are
not satisfied. On the other hand, the mirror (ghost) particle
approach [34] is widely used to satisfy the boundary condi-
tions on walls. In this approach, a virtual particle is generated
across the wall at the location of the mirror image of each
fluid particle. These mirror particles are given pressure and
velocity values such that the pressure Neumann boundary
condition and slip/no-slip condition are satisfied. However,
this approach has several problems, including a high com-
putational cost caused by the need to generate the virtual
particles, and the leakage of particles at the angled edges of
surfaces; thus, some improvements have been presented [49].
A method similar to the mirror particle approach is taken by
the virtual marker (fixed ghost particle) approach [3,26]. In
this approach, wall particles are fixed and given the value
of their mirror point; this is accomplished by using moving
least squares instead of by generating mirror particles. This
approach is widely used, but it requires a special technique to
determine the position of the virtual markers near the curved
and complex-shaped surfaces.

Recently, the research community using the MPS method
developed the polygon wall boundary model, which treats
wall boundaries as a set of arbitrary planes. Compared to con-
ventional models that represent wall boundaries as particles,
with the polygon wall boundary model, it is easier to pre-
pare the initial configuration data during the design process,
since polygon or surface patch data generated by computer-
aided design (CAD) software or a commercial finite element
method solver can be used for the wall boundaries. The poly-
gon model can also reduce memory usage in the case of
large-scale and flat geometry, such as tsunami simulations,
which requiremany particles for the wall boundaries. Harada
et al. [12] used the impulse–momentum relationship at the
wall to derive the force exerted on a fluid particle by a wall.
This can be classified as a repulsive-force model, and thus
Harada’s model will have the same problems of instability

and strangely behaving fluid particles near the wall. Yamada
et al. [47] focused on the E-MPS method, and they proposed
another formulation for the polygon model. Although it is
an expansion of the differential operator models, it results in
excessive pressure oscillations.

In this study, we developed a new polygon wall bound-
ary model for fully explicit algorithms, called the explicitly
represented polygon (ERP) wall boundary model. It is based
on the mirror particle approach and can satisfy the bound-
ary conditions on walls, and it is versatile enough to treat
arbitrarily shaped boundaries and arbitrary movements. The
ERP model has the following characteristics.

– Wall boundaries are represented explicitly.
– Generation of virtual particles and the need to make spe-
cial adaptations for angled edges are not required.

– The pressure Neumann boundary condition and the
slip/no-slip condition on the walls are satisfied.

Although in this studywe apply the ERPmodel to the E-MPS
method, the ERPmodel could also be applied to theWCSPH
method, because there are differential operator approxima-
tions in the WCSPH methods that can be formulated in the
same way by the ERP model.

2 Explicit MPS method

2.1 Governing equations

The Navier–Stokes equations and the continuity equation for
a quasi-incompressible Newtonian fluid in a Lagrangian ref-
erence frame are given as follows:

Dv

Dt
= − 1

ρ
∇ p + ν∇2v + g, (1)

1

ρ

Dρ

Dt
+ ∇ · v = 0, (2)

where ρ is the density of the fluid, v is the velocity vec-
tor, p is the pressure, ν is the kinetic viscosity, and g is the
gravitational acceleration vector.

2.2 MPS discretization of differential operators

In the MPS discretization, the differential operators acting
on a particle i are evaluated using the neighboring particles
j located within an effective radius re. Let Pi be the set of
particles that neighbor particle i , as follows:

Pi ≡ {
j | re > |xi j | ∧ j �= i

}
. (3)

In this study, φi j denotes the difference between particles
i and j, φ j −φi , where φ represents a property of the particle.
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The neighboring particles are weighted using a function
of their separation from particle i, r = |xi j |. In the original
MPS, the weight function is given as

w(r) =
{

re
r − 1 (0 ≤ r < re)

0 (re ≤ r).
(4)

A normalization factor, the particle number density, is
defined as

ni ≡
∑

j∈Pi

w
(|xi j |

)
. (5)

This represents the density of the fluid.
The E-MPS method models the differential operators in

the governing equations as follows:

〈∇ p〉i = d

n0
∑

j∈Pi

[
p j + pi
|xi j |

xi j
|xi j |w

(|xi j |
)
]

, (6)

〈∇2v〉i = 2d

λ0n0
∑

j∈Pi

[
vi jw

(|xi j |
)]

. (7)

Here d is the number of dimensions, n0 is the initial value
of the particle number density given by Eq. (5) and calculated
for the initial particle geometry, and the angle brackets 〈〉
indicate discretization by the MPS differential model. λ0 is
a correction parameter that ensures that the increase in the
variance is equal to that of the analytical solution, and like
n0, it is calculated for the initial geometry:

λi ≡
∑

j∈Pi
|xi j |2w

(|xi j |
)

∑
j∈Pi

w
(|xi j |

) . (8)

2.3 Algorithm

In the E-MPSmethod, the fractional step algorithm is applied
for time discretization, hence each time step is divided into
prediction and correction steps. In this study, in order to
reduce the computational cost of calculating the distance
between particles and polygons, theNavier–Stokes equations
are partitioned as follows:
(1) Prediction step

v∗ − vn

Δt
= g, (9)

(2) Correction step

vn+1 − v∗

Δt
= ν

〈∇2v
〉n − 1

ρ0

〈∇ p
〉n+1

, (10)

where v∗ is the intermediate velocity, and ρ0 is the constant
density of the fluid.

To calculate the correction step, Eq. (10), the pressure
values in the next time step pn+1 are required. In the E-MPS
method, which assumes that fluids are weakly compressible,
the pressure values required in the correction step, Eq. (10),
are calculated as

pn+1
i = c2ρ0

(
n∗
i

n0
− 1

)
, (11)

where c is a parameter that is set such that the conditions of
numerical stability are satisfied.

2.4 Free-surface criterion

The condition for free-surface particle recognition is given
as follows:

n∗
i < βn0. (12)

Here β is a threshold coefficient, and in the E-MPSmodel,
we set β = 1.0 to prevent instability caused by negative pres-
sure. For particles on a free surface, we apply the Dirichlet
condition for the pressure, p = 0.

3 Existing polygon wall boundary model

3.1 Wall weight function

There are two existing studies [12,47] on the polygon wall
boundary model for the MPS methods. In these studies,
polygon walls are implicitly represented using the distance
function: the nearest distance between particle i and all poly-
gons, dwall

i , and the outward unit normal vector, nwall
i , are

given by the distance function and its gradient, using back-
ground grids.

To implement a polygon wall without using wall parti-
cles, it is necessary to interpolate between the contributing
parts of the walls that are used in the particle number density
computation. The wall weight function is defined as the sum
of the weights of the virtual wall particles that are created
inside the wall. Using the distance between particle i and the
nearest wall, dwall

i , the wall weight function, z(|dwall
i |), is

defined as

z
(
dwall
i

) ≡
∑

j∈wall

w(|xi j |). (13)

Within the neighboring particles j ∈ Pi of particle i , we
define the fluid particles as j ∈ particle and the virtual wall
particles as j ∈ wall. The particle number density Eq. (5)
can be partitioned into the contribution of the fluid particles
and that of the wall weight function, as follows:
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ni =
∑

j∈particle

w
(|xi j |

) +
∑

j∈wall

w
(|xi j |

)

=
∑

j∈particle

w
(|xi j |

) + z
(
dwall
i

)
. (14)

In the actual computation, the wall weight function is
determined by a linear interpolation of the values at a given
discrete distance; these are calculated prior to this computa-
tion.

3.2 Viscosity term

The viscosity term discretized by the Laplacian model (7) is
partitioned into the contributions from the fluid particles and
those from the polygon walls:

〈∇2v
〉
i = 〈∇2v

〉particle
i + 〈∇2v

〉wall
i . (15)

Assuming that the velocity of the wall is a constant value
vwall within the effective radius of the particle i , the con-
tributing region of the polygon wall can be rewritten as
follows:

〈∇2v
〉wall
i = 2d

λ0n0
(
vwall − vi

) ∑

j∈wall

w
(|xi j |

)
(16)

= 2d

λ0n0
(
vwall − vi

)
z
(|xib|

)
. (17)

3.3 Pressure gradient term

As is the case with the viscosity term, the pressure gradi-
ent term is partitioned into the contributions from the fluid
particles and those from the polygon walls, as follows:

〈∇ p
〉
i = 〈∇ p

〉particle
i + 〈∇ p

〉wall
i . (18)

3.3.1 Harada’s model

Harada et al. [12] derived the contribution from the wall
〈∇ p〉wall

i from the impulse–momentum change equation

Dx
Dt

= − 1

ρ0

∫ t+Δt

t
∇ pdt (19)

as the force exerted on the particles in contact with the poly-
gons

〈∇ p
〉wall
i = − ρ0

Δt2

(
l0 − dwall

i

)
nwall
i . (20)

Since this force is repulsive on the walls, this model can
be classified as a repulsive-force model [31,32].

Fig. 1 Problem solved using Harada’s pressure gradient model

Harada et al. claimed that, in the semi-implicit MPS (SI-
MPS) [23] computation, the pressure Poisson equation can
be computed using only the degrees of freedom of the fluid
particles. However, the derivation of Eq. (20) implies that
pn+1 � pn , hence the pressures near the wall are confined
to explicit accuracy, although these pressures are obtained
implicitly by solving systems of linear equations. In the
E-MPS computation, Harada’s model causes strange behav-
ior in the particles that are in contact with polygons. The
result of a dam-break problem computed by the E-MPS
method with Harada’s pressure gradient model is shown
in Fig. 1. As can be seen in the figure, particles near the
wall boundaries stick to the wall and have unnatural pressure
values.

3.3.2 Yamada’s model

Yamada et al. [47] derived the wall part of the pressure gra-
dient term based on the E-MPS gradient model given by Eq.
(6). Assuming that the pressures of the neighboring particles
j that are within the walls are equal to the pressure of particle
i , that is, p j = pi , the wall part can be rewritten as follows:

〈∇ p
〉wall
i = d

n0
∑

j∈wall

[
xi j
|xi j |

p j + pi
|xi j | w

(|xi j |
)
]

(21)

= d

n0
(2pi )

∑

j∈wall

[
xi j · nwall

i

|xi j |2 w
(|xi j |

)
]

nwall
i .

(22)

Using the wall weight function for the gradient model,

zgrad(dwall
i ) ≡

∑

j∈wall

[
xi j · nwall

i

|xi j |2 w
(|xi j |

)
]

, (23)

Eq. (22) can be rewritten as

〈∇ p
〉wall
i = d

n0

{
2pi z

grad(dwall
i

)}
nwall
i . (24)
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Fig. 2 Problem in Yamada’s pressure gradient model

Yamada’s model is a polygonwall boundarymodel for the
E-MPS computations, and it is naturally derived from the
MPS gradient model. This model, however, has a problem
in that at the wall, there are non-physical oscillations in the
vertical direction as shown inFig. 2; these disturb the pressure
field and decrease the accuracy. This problem is seen in the
calculations for verifying the hydrostatic pressure, in Sect.
5.1; it is attributed to the assumption that p j = pi .

4 Explicitly represented polygon wall boundary
model

4.1 Explicit polygon representation

In the ERP model, the polygon walls are represented explic-
itly, without constructing the distance function. Let us denote
the nearest point on the polygon k from the particle i as xneari,k .
As illustrated in Fig. 3, the ERPmodel assumes that the force
exerted on the wall by the particle i acts on only the nearest
point, xwall

i , for all the points xneari,k , and that it can be written
as

xwall
i ≡ argmin

xneari,k

∣
∣xi − xneari,k

∣
∣ (k = 1, 2, . . . , n pol). (25)

In this study, xwall
i is called the force-acting point of parti-

cle i . In this operation, calculation of the distance between the
particle and wall is conducted by using a fast algorithm ([8],
pp 136–142) to compute in which of the triangle polygon’s
Voronoi feature regions the particle lies.

The outward unit normal vector of the force acting on the
point xwall

i is defined as follows:

nwall
i ≡ xi − xwall

i∣
∣xi − xwall

i

∣
∣ . (26)

Fig. 3 Point of application of force from particle i , and its unit normal
vector

Fig. 4 Mirror particles

4.2 Mirror particle

In SPH computations, the mirror particle (ghost particle)
method [34] is widely used to satisfy the homogeneous pres-
sure Neumann boundary condition

∇ p · n = 0. (27)

For particles close to the wall, mirror particles are placed
on the other side of the wall, as shown in Fig. 4. These meth-
ods, however, have high computational costs, because the
mirror particles are regenerated at each time step, and the
fluid particles leak out at angled edges. Instead of generating
mirror particles, fixed wall particles can be given the value
of their mirrored point (virtual marker) [3,26], but special
techniques are required to deal with curved surfaces.

The mirror particle corresponding to particle i is denoted
by i ′. The position of particle i ′, xi ′ , is

xi ′ = xi + 2
(
xwall
i − xi

)
. (28)

The transformation matrix for reflection across the plane
whose unit normal vector is n, Rre f (n), and the inverse trans-
formation matrix, Rinv , are defined as:
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Fig. 5 ERP model calculations
without using virtual particles

(a) (b) (c)

Rre f (n) ≡ I − 2n ⊗ n (29)

Rinv ≡ −I . (30)

The reflection transformation matrix for the particle i and
the unit normal vector nwall

i , Rre f (nwall
i ), will be abbrevi-

ated below as Rre f
i .

4.3 Pressure boundary condition

The set of mirror particles corresponding to the particles
neighboring particle i is expressed as j ′ ∈ vir tual. To sat-
isfy the pressure Neumann boundary condition, the wall part
of the pressure gradient is

〈∇ p
〉wall
i = d

n0
∑

j ′∈vir tual

[
xi j ′

|xi j ′ |
pi + p j ′

|xi j ′ | w
(|xi j ′ |

)
]

. (31)

In terms of the two particles i and j and their mirror parti-
cles i ′ and j ′, which are reflected across the same plane, we
have the following relations:

xi j ′ = Rre f
i xi ′ j , (32)

|xi j ′ | = |xi ′ j |. (33)

The isotropic weight functions used in the general MPS
computations, including Eq. (4), satisfy the equation:

w
(|xi j ′ |

) = w
(|xi ′ j |

)
. (34)

If we set the pressure exerted by the mirror particle j ′ to
be the same as that of the particle j , that is, p j ′ = p j , and
use Eqs. (32)–(34), Eq. (31) can be rewritten as follows:

〈∇ p
〉wall
i = d

n0
∑

j∈Pi ′

[
Rre f
i xi ′ j
|xi ′ j |

pi + p j

|xi ′ j | w
(|xi ′ j |

)
]

(35)

= d

n0
Rre f
i

∑

j∈Pi ′

[
xi ′ j
|xi ′ j |

pi + p j

|xi ′ j | w
(|xi ′ j |

)
]

(36)

= Rre f
i

〈∇ p
〉particle
i ′ (37)

Thewall part of the pressure gradient, 〈∇ p〉wall
i , is equal to

the reflection transformed pressure gradient from the position
of the mirror particle i ′, as implied by Eq. (37) and illustrated
in Fig. 5.

It is worth noting thatwhen there are no particles above the
wall, the particles neighboring the mirror particle i ′ contain
the original particle and its neighbors

Pi ′ ⊂ Pi + {i}. (38)

Because of this, it is not necessary to search for the par-
ticles neighboring the mirror particle i ′, and this greatly
reduces the computational cost.

Since the ERP model is based on the mirror particle
method, there is the same problem of particle leakage at the
angled edges of the polygons. To deal with this problem, a
repulsive force is added to the particles for which the distance
to the nearest polygon is less than 1

2 l
0:

f repi =

⎧
⎪⎨

⎪⎩

−αrep

(
1
2 l

0

r
− 1

)

nwall
i

(
0 < r < 1

2 l
0
)

0
( 1
2 l

0 ≤ r
)

.

(39)

whereαrep is a repulsive coefficient added to ensure the com-
putation is stable. It is clear, however, that this approach
cannot satisfy the boundary conditions near angled edges,
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but it is quite reasonable in terms of having versatile and
robust computations when the boundaries undergo arbitrary
motions. The pressure gradient in the ERP model, when
including the pressure Neumann boundary condition, is

〈∇ p
〉
i = 〈∇ p

〉particle
i + Rre f

i 〈∇ p〉particlei ′ + f repi (40)

= d

n0
∑

j∈Pi

[
xi j
|xi j |

pi + p j

|xi j | w
(|xi j |

)
]

+ d

n0
Rre f
i

∑

j∈Pi ′

[
xi ′ j
|xi ′ j |

pi + p j

|xi ′ j | w
(|xi ′ j |

)
]
+ f repi

(41)
〈∇ p

〉wall
i = Rre f

i

〈∇ p
〉particle
i ′ + f repi . (42)

4.4 Velocity boundary condition

The slip and no-slip boundary conditions result in different
velocities being given to the mirror particles. Similar to what
we did for the pressure gradient, we will derive the Laplacian
for the velocity model that satisfies the slip/no-slip boundary
condition, using only fluid particles.

4.4.1 Slip boundary condition

To impose the slip boundary condition, the velocity of the
mirror particle j ′ is given to the reflection transformed veloc-
ity of the original particle j as

v j ′ = Rre f
j v j . (43)

In this case, the wall part of the Laplacian of the velocity
in the viscosity term is

〈∇2v
〉wall
i = 2d

λ0n0
∑

j ′∈vir tual

[(
v j ′ − vi

)
w
(|xi j ′ |

)]
(44)

= 2d

λ0n0
∑

j ′∈vir tual

[(
Rre f

j v j − vi
)
w
(|xi j ′ |

)]
. (45)

Assuming that the nearest polygon wall of the particle
i and its neighboring particle j have the same unit normal
vector,

nwall
j � nwall

i , Rre f
j � Rre f

i , (46)

Equation (45) can be rewritten as follows:

〈∇2v
〉wall
i

= 2d

λ0n0
Rre f
i · Rre f

i

∑

j ′∈vir tual

[(
Rre f
i v j − vi

)
w
(|xi j ′ |

)]
(47)

= 2d

λ0n0
Rre f
i

∑

j ′∈vir tual

[(
v j − Rre f

i vi
)
w
(|xi j ′ |

)]
(48)

= 2d

λ0n0
Rre f
i

∑

j∈Pi ′

[(
v j − vi ′

)
w
(|xi ′ j |

)]
(49)

= Rre f
i

〈∇2v
〉particle
i ′ . (50)

Note that the reflection transformation matrix has the
property

Rre f
i · Rre f

i = I . (51)

Finally, the Laplacian of the velocity when the slip bound-
ary condition is imposed can be written as follows:

〈∇2v
〉
i = 〈∇2v

〉particle
i + Rre f

i

〈∇2v
〉particle
i ′ (52)

= 2d

λ0n0
∑

j∈Pi

[
vi jw

(|xi j |
)]

+ 2d

λ0n0
Rre f
i

∑

j∈Pi ′

[
vi ′ jw

(|xi ′ j |
)]

(53)

vi ′ = Rre f
i vi . (54)

4.4.2 No-slip boundary condition

When the no-slip boundary condition is imposed on a wall
whose velocity is vwall and whose unit normal vector is n,
we have

(v − vwall) − n · (v − vwall)n = 0, (55)

and the velocity of the mirror particle j ′ is given as

v j ′ = Rinvv j + 2ṽwall
j , (56)

ṽwall
j = vwall

j − (
nwall
j · vwall

j

)
nwall
j , (57)

where vwall
j is the velocity of the wall at the point at which

it is acted on by the force of particle j, xwall
j .

Using the definition of the inverse transformation matrix,

Rinv · Rinv = I, (58)

the wall part of the Laplacian of the velocity can be rewritten
as follows:

〈∇2v
〉wall
i = 2d

λ0n0
∑

j ′∈vir tual

[(
v j ′ − vi

)
w
(|xi j ′ |

)]
(59)

= 2d

λ0n0
∑

j ′∈vir tual

[{(
Rinvv j + 2ṽwall

j

)

−vi } w
(|xi j ′ |

)]
(60)
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= 2d

λ0n0
Rinv

∑

j ′∈vir tual

[{
v j − Rinv

(
vi − 2ṽwall

j

)}
w
(|xi j ′ |

)]
. (61)

In addition to the assumption of Eq. (46), assuming that
the velocity on xwall

j is equal to the one on xwall
i ,

vwall
j � vwall

i , (62)

Equation (61) can be rewritten as follows:

〈∇2v
〉wall
i = 2d

λ0n0
Rinv

∑

j∈Pi ′

[(
v j − vi ′

)
w
(|xi ′ j |

)]
(63)

= Rinv
〈∇2v

〉particle
i ′ . (64)

Finally, the Laplacian of the velocity when the no-slip
boundary condition is imposed can be written as follows:

〈∇2v
〉
i = 〈∇2v

〉particle
i + Rinv

〈∇2v
〉particle
i ′ (65)

= 2d

λ0n0
∑

j∈Pi

[
vi jw

(|xi j |
)]

+ 2d

λ0n0
Rinv

∑

j∈Pi
′

[
vi ′ jw

(|xi ′ j |
)]

(66)

vi ′ = Rinv
[
vi − 2

{
vwall
i − (

nwall
i · vwall

i

)
nwall
i

}]
.

(67)

4.5 Force exerted on the polygon wall

The force on the polygonwall exerted by particle i, f particlei ,
is determined by the reaction to the wall parts of the pressure
gradient and viscosity terms:

f particlei = −mi

(
− 1

ρ0

〈∇ p
〉wall
i + ν

〈∇2v
〉wall
i

)
, (68)

where mi is the mass of particle i , defined as mi = ρ0(l0)d

in the MPS method, and the force is regarded as the point
load at the acting point, xwall

i , in the ERP model. In this
study, the load distributions on the polygons were calculated
by applying the shape functions used in the FEM.

In conventional MPS computations using wall particles,
the surface forces calculated by the pressures of the wall
particles are not consistent with the forces exerted on the
fluid particles by the walls. Although the imbalance between
these forces on the boundaries is not exposed during flow
analysis, in the case of fluid–rigid or fluid–structure inter-
action analyses, Mitsume et al. [27] pointed out that the
force imbalance causes instability near the interfaces in their
study on the development of a coupling method using the

E-MPS method and FEM applied a conventional polygon
wall boundary model. In addition, because the wall particles
are set in uniform grids to ensure correct calculations, the
surfaces represented by the wall particles are not consistent
with the real surfaces. Therefore, it is difficult to determine
the surface area of each wall particle. In contrast with the
wall particle approach, the ERP model does not encounter
such problems.

4.6 Algorithm of the E-MPS method with the ERP
model

The procedure of the E-MPS method with the ERP model at
the nth step is summarized below.

1. Intermediate velocities v∗ are determined by the predic-
tion calculation given by Eq. (9).

2. Using only fluid particles, the fluid part of the particle
number density, the pressure gradient 〈∇ p〉particlei , and

the velocity Laplacian 〈∇2v〉particlei of each particle i are
calculated.

3. The acting points of each particle i, xwall
i , are calculated.

4. Intermediate particle number densities n∗ are determined
using the wall weight function z given by Eq. (13).

5. Pressures pn+1 are determined by Eq. (11).
6. Free-surface particles are determined by Eq. (12).
7. Viscosity forces are determined by theERP calculation of

the wall part of the velocity Laplacian, 〈∇2v〉wall
i , given

by Eqs. (52) or (66).
8. Pressure gradient forces are determined by the ERP

calculation of the wall part of the pressure gradient,
〈∇ p〉wall

i , given by Eq. (41).
9. Forces on polygon walls are calculated by summing Eq.

(68) over i .
10. The updated velocities vn+1 and particle positions xn+1

are determined by the collection step calculation given
by Eq. (10).

5 Verification and validation

For verification and validation of the ERP model, we con-
ducted two-dimensional computations of a hydrostatic pres-
sure problem, aCouette flow,Poiseuille flow, and adambreak
problem.

5.1 Hydrostatic pressure

In order to verify quantitatively the accuracy of using the
pressure gradient model in the ERP model, as given by Eq.
(41), and applied to the E-MPSmethod,we analyzed a hydro-
static pressure problem in a rectangular vessel. The numerical
results were compared with the theoretical solution
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Fig. 6 Hydrostatic pressure: initial configuration

Table 1 Hydrostatic pressure: analysis conditions

Time step width 5.0 × 10−5 (s)

Number of particles 4000

Particle spacing 1.0 × 10−3 (m)

Effective radius 2.9l 0 (m)

Fluid density 1.0 × 103 (kg/m3)

Kinetic viscosity 1.0 × 10−4 (m2/s)

Gravitational acceleration 9.8 (m/s2)

Sound speed coefficient 9.44 (m/s)

Repulsive coefficient 1.0 × 107 (N/m3)

p = ρ0|g|h, (69)

where h is the depth of the static water surface.
The initial configuration of the hydrostatic pressure prob-

lem, in which the depth of the rectangular vessel is 0.1(m)

and the width is 0.04(m), is shown in Fig. 6. In the E-MPS
computation,weak compressibility causes vertical vibrations
of the fluid surface. To reach the static state as quickly as
possible, we chose a relatively high value for the kinematic
viscosity (but not so high that it would destabilize the com-
putations). The conditions used in the analysis are listed in
Table 1.

The pressures of fluid particles computed by the ERP
model, the ERP model using only the repulsive force in Eq.
(41), Harada’s model, Yamada’s model, and the conventional
wall particle model are shown in Figs. 8, 9, 10, 11 and 12,
respectively. These are the results at the 200,000th step, at
which the pressure field can be regarded to be in a steady
state. In Fig. 7, snapshots obtained by each models at the
200,000th step are shown; the pressure on the fluid particles
is indicated by color [(unit (N/m2), min: 0, max: 1000].

As indicated in Figs. 9 and 10, the results from using
only the repulsive force show the same tendency as those
from Harada’s pressure gradient model, which is one of the
repulsive force models that we mentioned in Sect. 3.3.1.

Fig. 7 Hydrostatic pressure: visualization of results
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Fig. 8 Pressure on particles (ERP model)
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Fig. 9 Pressure on particles (repulsive model)

Both of the results exhibit two strange lines that indicate
pressures that are higher than the theoretical values. These
results indicate that the pressures on the particles in contact
with polygons have not been evaluated correctly, as shown
in Fig. 7. Therefore, the model using only the repulsive force
encounters the same problems as are found with Harada’s
model, as shown in Fig. 1. On the other hand, Fig. 11 shows
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Fig. 10 Pressure on particles (Harada’s model)
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Fig. 11 Pressure on particles (Yamada’s model)
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Fig. 12 Pressure on particles (wall particle model)

that Yamada’s pressure gradient model results in a disturbed
pressure field that has a wide dispersion compared to that
found with the other methods, as mentioned in Sect. 3.3.2.

Unlike the existing polygon wall boundary models, the
ERP model doesn’t have the problems that occur with
Harada’s and Yamada’s models, and it obtains a better pres-
sure distribution that is in agreement with the theoretical
solution. The results of the ERP model are also in better
agreement with the theoretical solution than are the results
obtained by the wall particle model, shown in Fig. 12. This
is because the pressure gradient in the ERP model satisfies
the pressureNeumann boundary condition, whereas the pres-
sure gradient obtained using the wall particles in the original
E-MPS method do not satisfy it rigorously.

The results of the polygon wall boundary model involv-
ing the ERPmodel, however, have highly dispersed pressures
near the bottom of the vessel, because the accuracy deterio-
rates at the angled edges of polygons. Although this may be
avoided by applying a procedure similar to that of the virtual
marker method [3,26], the ERP model does not adopt such
a procedure because the versatility and robustness are given
priority over accuracy at angled edges. The influence of the
edges can be reduced by enhancing the spatial resolution by
using smaller particles.

Next, we verify the pressures on the polygon wall that
are calculated by the ERP model. We begin by defining
for the polygons the first-order shape functions of the one-
dimensional natural coordinate ξ :

N1(ξ) = 1 − ξ,

N2(ξ) = ξ. (70)

Using these shape functions, the point loads given by Eq.
(68), f particlei , are distributed on the nodes of a polygon as
follows:

f node1 =
∑

i

N1
(
ξi
)
f particlei ,

f node2 =
∑

i

N2
(
ξi
)
f particlei , (71)

where ξi is the point in the one-dimensional natural coordi-
nate, ξ , corresponding to the force acting on point xwall

i . In
what follows, the pressures on a polygon k, pwall

k , are eval-
uated at the center of the polygon, as follows:

pwall
k =

∫ 1

0
f node · (−n)dξ (72)

=
∫ 1

0

{
N1(ξ) f node1 + N2(ξ) f node2

}
· (−n)dξ. (73)

As illustrated in Fig. 6, we performed computations with
the left-hand wall divided into various numbers of polygons.

The average and standard variation of the pressures from
the 200,001th to the 201,000th step, with the left-hand wall
comprising 30, 50, and 100 polygons, are shown in Figs. 13,
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Fig. 13 Pressure on the left wall (30 polygons)
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Fig. 14 Pressure on the left wall (50 polygons)
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Fig. 15 Pressure on the left wall (100 polygons)

14 and 15, respectively. In these results, the average pressures
are in good agreementwith the theoretical values, and no seri-
ous pressure oscillations are observed except for at several
polygons near the bottom. A large pressure oscillation is also

Table 2 Couette flow and Poiseuille flow: analysis conditions

Time step width 1.0 × 10−3 (s)

Particle spacing 5.0 × 10−2 (m)

Effective radius 3.3l 0 (m)

Fluid density 1.0 × 103 (kg/m3)

Kinetic viscosity 1.0 × 10−2 (m2/s)

seen at the angled edges. Within the effective radius, re, from
the edge nodes, the pressure Neumann boundary condition
is not satisfied, and the fluid particles are dominated by the
repulsive force. Also, because the ERP model assumes that
each particle receives a force from only a single polygon,
since the nearest polygon changes at the edges, the direc-
tion of the force changes momentarily. This problem can be
reduced by using more particles and smaller polygons.

5.2 Couette flow and Poiseuille flow

In order to verify the no-slip formulation of the ERP model
given by Eq. (66), we analyzed the Couette and Poiseuille
flows. In both situations, two parallel plates are separated
by a distance L = 1.0 (m), under the no-slip condition and
the other conditions shown in Table 2. Twenty fluid particles
were placed vertically between two plates.

In the Couette flow analysis, the upper plate moved in
the x-direction at a velocity v0 = 1.0 (m/s). The numerical
results were compared with the theoretical solution of the
Couette flow, which is

vx (y, t) = y

L
v0 −

∞∑

n=1

2v0

nπ
(−1)n+1

exp

{
−(nπ)2

νt

L2

}
sin

(
nπ

y

L

)
. (74)

In the Poiseuille flow analysis, fluid particles were given
the pressure gradient force, F = 0.08 (N), and the results
were compared with the theoretical solution of the Poiseuille
flow:

ux (y, t) = F

2ν
y(L − y) −

∞∑

n=0

4FL2

ν(2n + 1)3π3

exp

{
−(2n + 1)2π2 νt

L2

}
sin

{
(2n + 1)π

L
y

}

(75)

F = − 1

ρ0

∂p

∂x
. (76)

In Figs. 16 and 17, the results of the Couette flow and
the Poiseuille flow, respectively, are compared with the the-
oretical solution at times t = 0.5, 3.0, 10.0, and 50.0 (s) .
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Fig. 16 Couette flow: velocity in x-direction in transient state
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Fig. 17 Poiseuille flow: velocity in x-direction in transient state

The theoretical values were obtained by truncating the infi-
nite series in Eqs. (74) and (75) at n = 1,000,000. Both the
results are in quite good agreement with the theoretical val-
ues, including the velocities in the transient states. Therefore,
the no-slip formulation in the ERPmodel is adequately accu-
rate.

5.3 Pressure in comparison with experiment of dam
break

For validation of the E-MPS computation with the ERP
model, we analyzed a dam break problem, and the numerical
results were comparedwith the experimental results obtained
by Hu and Kashiwagi [14]. The initial configuration is illus-
trated in Fig. 18. In the experiment, a pressure sensor was
installed on the right-hand vertical wall at point A, as shown
in Fig. 18. The experiment was repeated eight times, and the
mean value was calculated for comparison with the numer-
ical results. The conditions used in the E-MPS computation

Fig. 18 Dam break: initial configuration

Table 3 Dam break: analysis conditions

Time step width 5.0 × 10−6 (s)

Effective radius 3.3l 0 (m)

Fluid density 1.0 × 103 (kg/m3)

Kinetic viscosity 1.0 × 10−6 (m2/s)

Gravitational acceleration 9.8 (m/s2)

Sound speed coefficient 10.8 (m/s)

Repulsive coefficient 1.0 × 106 (N/m3)
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Fig. 19 Dam break: pressure time history

are reported in Table 3, and the pressures were calculated at
the point A by using Eq. (73).

The computed pressures at each time step were computed
using 5440×980 = 5,331,200fluid particleswith the no-slip
condition on the walls; the results are shown in Fig. 19. The
average and standard variation of the pressure at each 2,000th
step are shown in Fig. 20. Although pressure oscillations,
such as occur with mesh-free particle methods in general,
were observed, overall, the results were in good agreement
with those measured in the experiment. These pressure oscil-
lations, which are a common problem in mesh-free particle
methods, can be reduced by using smoothing schemes [5,40]
or other approaches [26], but we did not do this because it
could mask issues caused by the ERP model.

Hu and Kashiwagi [14] analyzed the dam break prob-
lem using the constrained interpolation profile (CIP) method
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Fig. 20 Dam break: pressure time history averaged over 2000 steps
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Fig. 21 Dam break: results with slip and no-slip conditions compared
with results computed by the CIP method

[45,46], and they argued that the no-slip condition is crucial
for obtaining agreement with the experimental results. They
showed that under the no-slip condition, a vortex near the
lower-right corner reduces the pressure at point A after the
pressure peaks, but this is not seen under the slip condition.
The results obtained by using the slip and no-slip condi-
tions are compared with the results obtained by using the
CIP method in Fig. 21. By 0.7 (s), both the slip and no-slip
conditions give results that are in good agreement with the
CIP results. This indicates that the ERP model can simulate
fluid flow behavior in the boundary layer when the particles
being used are small enough. The results from using various
particle sizes under the no-slip condition are shown in Fig.
22, and we can see that, after the pressure peaks, the pres-
sures obtained using a larger particle size are closer to the
results obtained using the slip condition. This means that the
velocity field near the walls better simulated when using a
higher spatial resolution.
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Fig. 22 Dam break: results with slip and no-slip conditions obtained
using different particle sizes

Fig. 23 Rotating gear: initial configuration

6 Application

6.1 Rotating gear

To demonstrate the applicability of the ERP model, we sim-
ulated the situation of water inflow with a rotating gear. The
gear had 12 teeth and rotates in a vessel in a counterclockwise
direction with an angular velocity 8.0π (rad/s), as illustrated
in Fig. 23. In this simulation, the number of fluid particles
was 120,000 placed in the rectangular space, and the time
step width was 2.0× 10−6 (s). The water was assumed to be
at 25 ◦C, and the slip boundary condition was used.

Snapshots at several time steps are shown in Fig. 24; the
fluid particles are colored according to themagnitude of their
velocity [unit (m/s)]. Fluids are pushed out by rotation of the
gear, and this creates a very complex free surface. The results
indicate that the E-MPS method applied to the ERP model
can, in a relatively simple way, simulate such a complex phe-
nomenon involving free surfaces and moving boundaries.
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Fig. 24 Rotating gear: visualization of results

Fig. 25 Water vessel withmoving bottom surface: initial configuration

6.2 Water vessel with a moving bottom surface

In the rotating gear problem introduced in the previous sec-
tion, thewall boundaries are rigidlymoved, hence, an implicit
surface representation utilizing the distance function can be
effective. Here, we consider a situation in which there is
arbitrarymovement of the boundaries; this requires a recalcu-
lation of the distance function. We conducted this simulation
in order to demonstrate the versatility and robustness of the
proposed model. As illustrated in Fig. 25, we consider a
fluid-filled vessel in which the bottom surface moves with
the following harmonic oscillation:

y = 1

3
sin(2πx) sin(π t). (77)

In this simulation, the number of fluid particles is 250,000,
and the time step width is 2.0× 10−5[s]. The temperature of
the water was assumed to be 25 ◦C, and the no-slip bound-
ary condition was used. The bottom surface was divided into
100 polygons. Because of the no-slip condition on the mov-
ing walls, the velocity of wall at the acting point of particle
i, vwall

i , is determined from the velocities on the polygon
nodes, vnode1 and vnode2 , and the shape functions given by
Eq.(71):

vwall
i = N1

(
ξi
)
vnode1 + N2

(
ξi
)
vnode2 . (78)

Snapshots at several time steps are shown in Fig. 26; the
fluid particles are colored according to themagnitude of their
respective velocities [unit (m/s)]. The results indicate that
the ERP model is able to conduct stable simulations and
to impose the boundary conditions dynamically even if the
movement of the boundaries is arbitrary. The simulation was
conducted by 1,000,000 steps in 10 oscillation cycles, and
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Fig. 26 Water vessel with a moving bottom surface: visualization of
results

the volume of the fluid was conserved and no instability was
observed in the behavior of the particles. We also note that
since the grid size for the distance function should be smaller
than the particle spacing in order to accurately evaluate the
distance in the implicit surface representation, the explicit
polygon representation can be potentially more efficient and
effective when solving problems that require recalculation of
the distance function (e.g., fluid–structure interaction analy-
ses).

7 Conclusions

In this study, we developed and verified the explicitly repre-
sented polygon (ERP) wall boundary model for the E-MPS

method. It can deal with arbitrarily shaped boundaries and
movements, and it can accurately impose boundary condi-
tions for free-surface flow analysis.

The ERP model is formulated such that it satisfies the
pressure Neumann boundary condition and the slip/no-slip
boundary condition, without requiring the generation of vir-
tual particles or treating angled edges as exceptional cases.
Moreover, the ERP model eliminates the problem of force
imbalance on the boundaries, which occurs in conventional
models. Because of this, the E-MPS method applied to the
ERP model can conduct stable and accurate computations,
especially in coupled analyses with rigid or elastic bod-
ies.

For verification and validation of the proposed model, we
performed simulations for a hydrostatic pressure problem, a
Couette flow, a Poiseuille flow, and a dam break problem.
The results were compared with the theoretical values, the
results obtained by other models and methods, and experi-
mental results.We confirmed that the boundary conditions of
the ERP model were appropriately modeled, and the E-MPS
method with the ERP model can achieve adequate accuracy.

Finally, we demonstrated the applicability and versatility
when the method was applied to the proposed model by con-
ducting simulations involving boundaries that had moving
and complex shapes.

In the ERPmodel, each particle receives a force from only
a single polygon, and this results in robustness and eliminates
the need to handle angled edges as exceptions. However, if
the force is appropriately distributed to multiple polygons
without loss of robustness, accuracy at angled edges could
be improved. This is a challenge for future work.

As briefly stated in Sect. 4.5, the ERP model can achieve
a consistent force on the wall boundaries. This character-
istic is beneficial, especially when the ERP model applies
to a coupled problem, such as fluid–rigid body or fluid–
structure interactions with free surfaces, for which hybrid
coupling approaches that use mesh-free particle methods for
free-surface flows and the FEM for structures have been
developed [15,24,27,28,48]. Much work has been done for
this kind of coupled problem, such as by using the FEMwith
the arbitrary Lagrangian–Eulerian method [1] or an inter-
face tracking method, such as the level set method [44], the
mesh-free particle methods [2,17,39], or the Particle-FEM
[18,19,36,41]. As an area of future work, we plan to apply
the ERPmodel to a hybrid coupling approach and investigate
its stability, accuracy, and applicability. This approach could
inherit the FEM’s advantages of high reliability and accuracy
for structural analysis, and the robustness and flexibility of
mesh-free particle methods in free-surface flow analysis.
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