
Comp. Part. Mech. (2014) 1:307–319
DOI 10.1007/s40571-014-0026-3

A framework for grand scale parallelization of the combined finite
discrete element method in 2d

Z. Lei · E. Rougier · E. E. Knight · A. Munjiza

Received: 24 January 2014 / Revised: 15 May 2014 / Accepted: 21 May 2014 / Published online: 7 June 2014
© OWZ 2014

Abstract Within the context of rock mechanics, the Com-
bined Finite-Discrete Element Method (FDEM) has been
applied to many complex industrial problems such as block
caving, deep mining techniques (tunneling, pillar strength,
etc.), rock blasting, seismic wave propagation, packing prob-
lems, dam stability, rock slope stability, rock mass strength
characterization problems, etc. The reality is that most of
these were accomplished in a 2D and/or single processor
realm. In this work a hardware independent FDEM paral-
lelization framework has been developed using the Virtual
Parallel Machine for FDEM, (V-FDEM). With V-FDEM, a
parallel FDEM software can be adapted to different parallel
architecture systems ranging from just a few to thousands of
cores.

Keywords Parallelization · FDEM · Virtual engine ·
Combined finite discrete element · Fracture

1 The combined finite-discrete element method

The Combined Finite-Discrete Element Method (FDEM)
merges the finite element based analysis of continua with
discrete element based transient dynamics, contact detec-
tion, and contact interaction solutions. In FDEM the solid
domains (called discrete elements) are discretized into finite
elements, where finite rotations and finite displacements are

Z. Lei · E. Rougier (B) · E. E. Knight
Geophysics Group, Los Alamos National Laboratory,
Los Alamos, NM 87545, USA
e-mail: erougier@lanl.gov

A. Munjiza
Department of Engineering, Queen Mary, University of London,
London E1 4NS, UK

assumed a priori and are formulated using a multiplicative
decomposition based finite strain formulation.

Through failure, fracture and fragmentation, single
domains represented by separate finite element meshes are
transformed into a number of interacting domains. The finite
element discretization of solid domains is also conveniently
used to discretize the contact between discrete elements. Uti-
lizing this approach, discretized contact solutions can then be
used for both contact detection and contact interaction, Fig. 1.

MRCK Contact Detection in 2D. To improve FDEM con-
tact detection performance, the MRCK (Munjiza-Rougier-
Carney-Knight) contact detection algorithm was developed
to replace the widely used NBS and MR (Munjiza-Rougier)
contact detection algorithms [1,2] which are utilized in other
FDEM codes such as Y2D and Y3D [3,4]. MRCK is based
on the decomposition of the physical space (as opposed to
the solid domain) into identical square cells.

Within the FDEM framework, for any two given particles
or elements, one called contactor and the other one target,
the contact search problem is reduced to determine whether
the contactor and the target share at least one square cell.
Targets are mapped onto these square cells according to their
current position. Targets are then sorted according to the cell
to which they are mapped onto, Fig. 2. For this operation the
MR-Linear sort algorithm is used, which has a total sort-
ing time proportional to the total number of targets. This
results in much better performance than the Quick-Sort algo-
rithm which is part of the NBS and MR contact detection [5].
Finally, the sorted list is searched for contacts.

In principle, the MRCK contact detection algorithm can
use any type of target but the most often used targets are sim-
ply points. MR-Linear sort takes advantage of the fact that
no contact target can move more than the size of a single cell
in a single time step. The list of contact targets is therefore
parsed only once, starting from the head of the double con-

123



308 Comp. Part. Mech. (2014) 1:307–319

Fig. 1 A typical FDEM
simulation showing creation of
new discrete elements

Discrete element

Fi
ni

te
 e

le
m

en
t m

es
h

Discrete element Discrete element

Fi
ni

te
 e

le
m

en
t m

es
h

Finite element mesh

Newly generated 
boundary

Original boundary

New discrete element

New discrete element

Fig. 2 An example of a system
of target points sorted using the
MR-Linear sort

A[2,1] A[2,2]

A[1,0]

A[2,0]

A[1,1]

A[0,0] A[0,1] A[0,2]

A[1,2]

Central cell

Target point

Fig. 3 The matrix A used to facilitate MR-Linear sort

nected list and targets are moved within the list as required.
This is facilitated by the introduction of a matrix A, which is a
3 by 3 matrix of pointers. Each element of matrix A (pointer)
points to the targets that are located immediately before each
of the current target’s neighboring cells, as shown in Fig. 3.
As the list is parsed, all the pointers are advanced forward
resulting in the theoretical CPU time for the MR-Linear sort
to be proportional to the total number of targets.

Detection of contact can be done for any contactor shape.
The simplest shape in 2D is either a 2D edge or a 2D triangle.
For a given contactor, a process called “contactor rendering”

is used to detect all the cells that the contactor currently occu-
pies, Fig. 4. The rendering is done in conjunction with the
sorted list of targets in such a manner that only the cells that
have targets mapped to them are rendered. This speeds up the
rendering process significantly, to the point that a contactor
with no contacts is not rendered at all, while others may only
have a couple of cells rendered.

Triangle to Point Contact Interaction in 2D. The dis-
cretized distributed contact force approach has been used in
conjunction with FDEM since its inception. This approach
enables many different implementations in terms of contact
kinematics. Additionally, almost any type of contact physics
can be superimposed on the basic contact kinematics. In the
earliest versions of FDEM, a “triangle to triangle” contact
interaction was used in 2D [3]. This “triangle to triangle”
approach exactly considered the geometry of both the contac-
tor and the target triangles and the integration of the contact
forces distributed along the edges of the discrete elements (or
finite elements) was done analytically. Since this approach
integrated contact forces exactly, it was therefore quite time
consuming.

Follow-on versions of FDEM employed a “triangle to
edge” approach, which was much faster and worked very

123



Comp. Part. Mech. (2014) 1:307–319 309

Fig. 4 Rendering of a
contactor triangle into cells

dbuffer

dbuffer

dbuffer

Original 
geometry

Expanded 
geometry

Non-contacting 
point

Expanded 
geometry

Potential 
contacting point

Target triangle

Target point

Contactor triangle C

B

A

Fig. 5 Contactor triangle and contact force integration points (target
points)

well with the MRCK contact detection. This approach also
integrated contact forces exactly [4].

In the latest version of FDEM, the contact interaction in
2D has been further simplified by using “triangle to point”
contact interaction kinematics. In this case, the contactor tri-
angles also interact with target triangles. However, in order
to integrate the distributed contact forces, target triangles
are discretized into a series of points distributed on the free
boundary lines of the discrete elements, as shown in Fig. 5.

Each target point is considered as a Gauss integration
point through which the distributed interaction forces are
integrated. The number of target points per triangle is selected
according to the desired integration accuracy. It is worth not-
ing that the original distributed potential contact force is still
employed, but only in an approximate form.

The MRCK contact search algorithm detects contacting
couples which consists of a contactor triangle and target
point. The actual contact interaction is processed only if the
target point is located inside the contactor triangle. Addi-
tional contact physics, such as rock joints, can be superim-
posed onto the core contact interaction.

Fracture and Fragmentation. In early versions of FDEM,
a localization based strain softening approach was used to
process fracture and fragmentation [6,7]. The problem with
this approach is that it is non-objective in terms of both energy
and size of the damage zone (localization band representing
a discrete crack).

For more recent versions of FDEM, it is generally accepted
that the combined single and smeared discrete crack approach
[8] is a better solution in that it is objective in terms of both
energy and size of the damage zone (crack). The combined
single and smeared crack model is based on actual repre-
sentations of experimental stress-strain curves. It divides the
stress-strain curves into two parts: the strain-hardening part
and the strain-softening part, Fig. 6. In the strain-hardening
part, no failure occurs in the material and a standard contin-
uum constitutive law is employed together with the incorpo-
ration of non-softening material nonlinearity, e.g., plasticity.
The strain-softening part of the constitutive law is represented
through stress being expressed as a function of displacement
(not strain).

With this approach, the “strain localization” part of the
constitutive law is introduced as material parameters into the
simulation that will describe the width of the damage zone
associated with the strain localization band and/or discrete
cracks.

Failure of brittle materials, such as rocks, is well described
by the above approach as confirmed by the numerous vali-
dation cases executed by different research teams [9–15].
However, failure of “ductile” materials, such as metals or
plastics, are also well described using this approach. Metals
are characterized by flow, Fig. 7. Once the metal’s flow abil-
ity is exhausted, final failure occurs thereby resulting in a

Fig. 6 a Stress-strain curve
divided into the hardening and
the softening part; b strain
softening constitutive law
defined in terms of
displacements

Strain hardening

Strain softening

δt δ

ft

σ

δt δ

ft

σ
(a)

Strain softening

(b)

123



310 Comp. Part. Mech. (2014) 1:307–319

Fig. 7 Left Brittle damage
(fracture). Right ductile damage
(flow plus fracture)

(a) (b) (c)

Fig. 8 Three engines of the sequential processor: a sequence engine, b branching engine and c loop engine

discrete crack. The two sets of material properties shown in
Fig. 6 describe both processes well except that with ductile
materials most of the physics is dominated by the flow, which
may then be followed by damage, Fig. 7.

Along the damage zone or discrete crack, the local dis-
placements are given by

δ = δnn + δt t (1)

where n and t are the unit vectors describing the normal
and tangential directions of the damage zone (localization
band, discrete crack, etc.), while δn and δt are the respective
displacement component magnitudes.

The stress traction vector p in the strain-softening stage is
also divided into two components in the direction of n and t,
and is calculated from the stress tensor σ,

p = σn + σt (2)

where the stress tensor σ within the damage zone is expressed
in terms of displacements and can, in principle, accommodate
any damage (softening) model.

Material Deformation Formulation. In this work, a large-
displacements large-strains finite element formulation is used
for the material deformation description. The details of this
formulation are outside the scope of this paper, but they can
be found in Munjiza [3].

2 Parallelization challenge

So far, FDEM, in its various implementations, has been
applied to a large number of problems across different indus-

trial scale applications. The best example of a successful
commercial application is the ELFEN FDEM software pack-
age. The best examples of research based software are differ-
ent implementations of the “Y” open source packages (Y2D
[1,4], Y3D [1,4], YFDEM, Y-cgles[16], VGEST [17], Y-Geo
[18], Y-nano [4]).

While most of the issues on sequential computers have
been resolved, parallelization remains a challenge. A number
of parallelization approaches have been proposed by different
research groups [19,20].

In this work, yet another approach is being proposed to
address the problem of hardware dependency on grand scale
parallelization schemes. The tailor-made scheme developed
and tested is called the Virtual Parallel Machine for FDEM
or V-FDEM.

3 V-FDEM: a virtual parallel machine for fdem

Any sequential computer software can be made by combining
a number of these:

1. sequences
2. branchings
3. loops

Thus, one can say that any sequential processor can be rep-
resented by a virtual processor that consists of three engines,
Fig. 8. The sequence engine can be compared to driving
straight down the road. The branching engine can be com-
pared to a cross-roads where one can change the road on
which to travel. The loop engine can be compared to driving
in a circle, thus coming back repeatedly to the same point.

123



Comp. Part. Mech. (2014) 1:307–319 311

Using these three engines every single instruction of a
sequential code can be reached in a similar manner that a car
can reach any point on a road network by using “straight”,
“turn” and “loop” commands.

The sequential CPU can be visualized as a single car being
driven on an empty road network. In contrast, a parallel com-
puter is like driving 30,000 cars on the same road network:
first, there has to be some rules; second, the cars have to talk
to each other; third, they have to synchronize to achieve their
pre-set task. From this simple comparison, it is evident that
the differences between sequential and parallel processors
are huge, which is one of the reasons why there are so many
different parallel architecture schemes.

Different grand challenge computing tasks in general
require different hardware in order to achieve optimum per-
formance. In this sense, FDEM problems are in a class of
their own.

When solving parallelization, researchers usually start
with a given hardware and develop their parallel solu-
tion for the hardware. For example, there were early solu-
tions for the transputer based machine [21], the thinking
machine (Massachusetts Institute of Technology) [22], the
Silicon Graphics International (SGI) parallel machine [23],
clusters, multicore machines, etc. The problem with this
approach is obvious: How many different solutions does
one develop? When developed, how long do they last? How
much does it cost to keep pace with ever changing hardware
configurations?

In this work, the authors have taken a different approach:

Start with the specific problem and find the best way of
solving it in parallel without any consideration to the
hardware employed.

In this context, the FDEM problem in 2D is well defined:
There are millions or billions of finite element meshes rep-
resenting discontinuous solids that fracture, fragment and
interact with each other or with fluid. The domain of compu-
tation is therefore an “empty” physical 2D space. As such the
most intuitive way to move forward is to divide this physical
space into (physical) subspaces. These subspaces are called
“computational subspaces”. All the solids, fluids, etc. that
are at a given instance—within a given subspace - are said to
belong to this subspace.

Consider the subspace as a town with plenty of activ-
ity in it. Across the town’s boundaries, there are inter-
actions with inhabitants of neighboring towns. In addi-
tion, the inhabitants move all the time from one town
to another town. The town is the subspace. The inhabi-
tants are solids, fluids, finite elements, discrete elements,
nodes, etc. At every instance (of say time), every one
of these inhabitants has a well-defined location in space,
which identifies them as belonging to a single particular
subspace.

Any parallel computational framework aimed at the above
problem has to be able to:

(a) Solve interaction (contact), deformation, fracture, fluid
interaction etc., between all entities (solids, fluids, etc.)
within a given single computational subspace. This must
be done with an existing sequential FDEM software with-
out any modifications to it.

(b) Solve interaction between solids across computational
subspace boundaries, including the migration of entities
from one computational subspace to another.

(c) Evaluate cumulative quantities, such as the total mass, of
all solids in all computational domains. The most naive
approach would be for each subspace to “phone” its total
mass to a master subspace. The master subspace would
then add (accumulate) these masses and would obtain the
total mass of the system.

(d) Send entities (objects) from a defined external space to all
other subspaces. This is like the master “phoning” each of
the subspaces in turn. For one million computational sub-
spaces, this would mean a sequence of one million phone
calls. One can easily visualize a long queue of subspaces
waiting for the master to phone them and therefore, in
the process, staying idle.

The above computational framework is called the “Virtual
FDEM Parallel Machine”, or V-FDEM. As stated earlier,
a general sequential software code can execute sequence,
branching, and looping processes. In a similar manner, the
V-FDEM can execute:

(a) Standard sequential FDEM code within a given computa-
tional subspace. In follow-on discussions this is referred
to as the Virtual Space Engine (VSE).

(b) Communication (phoning) between any two objects from
neighboring computational subspaces: hereby referred to
as the Virtual Boundary Engine (VBOE).

(c) Simultaneous, gathering of data from any number of
computational subspaces: hereby referred to as the Vir-
tual Gathering Engine (VGE).

(d) Simultaneous, broadcasting of data to any number of
computational subspaces: hereby referred to as the Vir-
tual Broadcasting Engine (VBRE).

By combining VSE, VBOE, VGE and VBRE, it is possible
to solve any FDEM problem using any number of computa-
tional subspaces.

4 V-FDEM Engines

Virtual Space Engine VSE. The Virtual Space Engine is the
simplest engine of V-FDEM. By definition, it is an existing

123



312 Comp. Part. Mech. (2014) 1:307–319

S4 S7S1

S2 S5 S8

S3 S6 S9 S6

S4 S7S1

S2 S5 S8

S3 S9

(a) (b) (c)

Fig. 9 An example of “talking” couples of computational subspaces. a The simulation model, b the physic space is divided into computational
subspaces, and c the “talking” couples

S1

S2 S4 S5

S1

Filter
Subspace
Number

Time
Slot 1

Time
Slot 2

Time
Slot 3

Fig. 10 Virtual Boundary Engine principle: time slots for talking cou-
ples of subspace S1; shaded areas indicate data filtering

sequential FDEM code. Details of how a sequential FDEM
code is designed and implemented are outside the scope
of this paper, but can be found in Munjiza [3] or Munjiza
et al. [4].

Virtual Boundary Engine VBOE. Because of “communi-
cation overheads,” in order to make a parallel FDEM sim-
ulation viable, computational subspaces have to be of rel-
atively large size. As a consequence, it is convenient to
assume that only neighboring domains can talk to each other,
Fig. 9c.

The VBOE schedules communications for each subspace
by allocating communication time slots for each talking cou-
ple of computational subspaces, as shown in Fig. 10 [4].

Virtual Gathering Engine VGE. In real life there can
exist thousands to hundreds of thousands of computational
subspaces. Quantities such as the total mass of the sys-
tem are calculated by adding relevant quantities (masses)
of all subspaces. The total mass of all entities within a
given computational subspace is calculated by the VSE. The
accumulation of the masses of all the computational sub-
spaces is done by employing the VGE, where a tree of sub-
spaces is built in such a manner that, at each communi-

cation time slot, each subspace talks only to another sub-
space. This is shown in Fig. 11 where all communications
for the VGE are split into four communication time slots.
In this way, most of the computational subspaces are busy
most of the time resulting in relatively fast data gathering
process.

Virtual Broadcasting Engine VBRE. Very often one
needs to transfer information from an external source to
each computational subspace. The information being trans-
ferred is generally different for each different subspace,
i.e., not the same information is being sent to all sub-
spaces. To accomplish this task, the virtual broadcasting
engine (VBRE) is used. The idea behind this engine is
relatively simply: send all the information to everybody
and let the receiving computational subspaces select only
what belongs to them. This is done by plugging a “fil-
ter” on the receiving end (Fig. 12). This engine is used
for reading and distributing input data and other similar
operations.

Implementing V-FDEM engines. A FDEM parallel soft-
ware package implemented using the above engines is:

(a) Free of any parallelization-specific components within
VSE;

(b) Optimized to achieve maximum efficiency;
(c) Hardware independent;
(d) Linearly scalable to any number of computational sub-

domains;

Porting the software to a specific architecture is as simple
as writing the architecture specific VBOE, VGE and VBRE
engines (with VSE being hardware independent), which is

123



Comp. Part. Mech. (2014) 1:307–319 313

Fig. 11 Virtual Gathering
Engine: each pair of arrows
indicates talking couples within
a given time slot, while dashed
lines indicate time slots; shaded
areas indicate data filtering

S1

S1 S5

S13S11S9S7S5S3S1

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

S1 S9

S15

S15 S16

S9 S13

Time slot 1

Time slot 2

Time slot 3

Time slot 4

S1

S2

S3

S4

Sn

Fig. 12 Virtual Broadcasting Engine principle; shaded areas indicate
data filtering

therefore a much smaller task than “parallelizing” the whole
FDEM code.

As seen in the above illustrations, “filters” are added to all
engines. The role of these filters is essential in making the
code transparent. The filters are executed by computational
subspaces (not by “masters”, i.e., “in parallel”), thus speed
is achieved and, just as important, these filters may contain
data “compression” algorithms which decrease (improve) the
communication time even further by reducing the size of the
data being passed.

A flowchart of a representative V-FDEM code, with the
definition of the four virtual engines is shown in Fig. 13.

4.1 Numerical examples

Measures of parallel computer performance. For the purpose
of testing the above V-FDEM, we utilize the standard parallel
computing performance parameters: speedup and efficiency.
Here speedup defines how much faster the parallel code is

when compared to the sequential code, i.e.,

Sp = Ts

Tp
(3)

where Ts is the sequential execution time and Tp is the par-
allel execution time for p processors. The efficiency of the
parallel code is defined as

e f = Sp

p
(4)

Note that with processor communication, the difference in
execution time between processors of the parallel algorithm
is very small; we therefore chose the time elapsed in the first
processor as the time for the parallel algorithm, Tp.

Domain Decomposition. In the following simulations,
the domain decomposition approach is used, where the
physic space is divided into M × N identical Eulerian
domains (Fig. 14), each assigned to a single processor. Phys-
ical objects, such as finite elements or discrete elements, are
assigned to these domains according to their instantaneous
position in space. Figure 14b shows the domains for 2, 4, 9
and 16 processors.

A typical continuum mechanics problem. The performance
of the parallel FDEM code was first tested on a pure finite ele-
ment (FEM) problem. A sketch of the computational model
used in this case is shown in Fig. 15a. The physical domain
consists of a 100 m size 2D square that has a 1 m diameter
borehole in its center. The walls of the borehole are subjected
to the pressure pulse shown in Fig. 15b. The performance
metrics for this problem are shown in Fig. 16.

A typical fracture mechanics problem. The second exam-
ple utilizes the same setup as the first one, but in this case the
material is allowed to fracture. The performance metrics for
this problem are shown in Fig. 17. For illustration purposes,

123



314 Comp. Part. Mech. (2014) 1:307–319

VSE

Yes

No

End

Start

Job finished?

Build System

Read input data

Solid Kinetic (SK)

Solid Material (SM)

Solid Boundary Condition Forces (SBF)

Solid Contact Detection (SCD)

Solid Contact Interaction (SCI)

Solid Nodal Force due to deformation (SF)

Solid Nodal Force due to Interaction (SIF)

Solid Update Nodal Velocity (SUV)

Solid Nodal Boundary Condition Velocity (SBV)

Solid Update Interaction Node 
Position & Velocity (SIUPV)

Solid Update Nodal Position (SUP)

Write output data

Solid Nodal Boundary Condition Position (SBP)

VBOE

Collect forces of the original 
interaction nodes on the 

interfaces of computation 
subspaces

Update the position & velocity 
of the proxy interaction nodes

on the interfaces of 
computation subspaces

Collect the forces & mass of
the original nodes on the 
interfaces of computation 

subspaces

Update the position & velocity 
of the proxy nodes on the 
interfaces of computation 

subspaces

Migrate entieies for each
computation subspace if 

necessary

VGE
Gather global variables for the 

whole system, e.g. kinetic
energy

VBREBroadcast global variables to 
each computation subspace, 

e.g. the maximum velocity of 
the system 

Distribute the input data to each 
computation subspace

Fig. 13 Flowchart for a V-FDEM code. VSE Virtual Space Engine, VBOE Virtual Boundary Engine, VGE Virtual Gathering Engine, VBRE Virtual
Broadcasting Engine

Fig. 14 The space is divided
into a M × N regular square
domains, b 2, 4, 9 and 16
domains

M processors

N
pr

oc
es

se
rs

(a) (b)

123



Comp. Part. Mech. (2014) 1:307–319 315

Fig. 15 a Borehole model
setup; b borehole pressure time
history

(a) (b)

(a) (b)

Fig. 16 Pure FEM problem: a Efficiency and b speed up as a function of the number of processors

(a) (b)

Fig. 17 FDEM problem: a Efficiency and b speed up as a function of the number of processors

the fracture patterns at the end of the simulation are shown
in Fig. 18.

A typical particle mechanics problem. The third example
consists of a N × N regular raster of triangular fully elastic
particles interacting among them inside a rigid contained, as
shown in Fig. 19. The input parameters used in the simula-
tions are listed in the Table 1.

Each triangle within the raster is provided with an initial
random velocity, which changes from triangle to triangle,
i.e. all three nodes of a given triangle have the same initial
velocity prescribed to them. For a given triangle, the initial
velocity is given by

Fig. 18 Fracture patterns at the end of the simulation: a general view;
b detail view

123



316 Comp. Part. Mech. (2014) 1:307–319

N Triangles 

N
T

ri
an

gl
es

 

1

1 1

1.00005

0.87

0.1

0.1

Fig. 19 A raster of N×N elastic triangles enclosed within a square box

Table 1 Input parameters

Parameter Values

Young’s modules/GPa 1.0

Poison ratio 0.0

Density/kg/m3 1,000.0

Contact Penalty/GPa 10

Time step/s 1e-4

Number of steps 500

Maximum Velocity/ms−1 100.0

vini =
[

vx

vy

]
= vmax

[
2rn − 1
2rn+1 − 1

]
(5)

where vmax is the maximum velocity and rn and rn+1 are two
random numbers obtained from a uniform random distribu-
tion, such as

0 ≤ rn ≤ 1

0 ≤ rn+1 ≤ 1 (6)

For a given raster of triangle a single series of random
numbers is used [24]. The initialization of the velocities for
each triangle is illustrated in Fig. 20. The random number
generator used for these examples is the one named “rand3”
in Press et al. [24].

The problem has been run using different number of
processors on a high performance computing Linux clus-
ter. The performance metrics for this problem are shown in
Fig. 21.

5 Further discussion of the performance

In order to test the performance of larger scale simulations,
an alternative metric was used to measure the performance
of the code. This metric is in the form of a specific time, Tn ,
which is given by

Tn = T0n

ntri nstep
(7)

where T0 is the CPU time elapsed on one of the processors
(processor 0), n is the number of processors, ntri is the num-
ber of triangles in the system and nstep is the number of time
steps considered during the analysis.

The performance of the code was measured for systems
with one, five and ten million triangles and using 1, 4, 16, 36,
64, 121, 256, 529, 1,024 and 2,116 processors. The results for
the performance of the overall code are shown in Fig. 22. A
breakdown of the total time, taking into account the four vir-
tual engines for the system comprising one million triangles,
is shown in Fig. 23. A breakdown of the total time taking into
account the four virtual engines for the system comprising
five million triangles is shown in Fig. 24. A breakdown of the
total time taking into account the four virtual engines for the
system containing ten million triangles is shown in Fig. 25.

Triangle 1

⎥
⎦

⎤
⎢
⎣

⎡
−
−

=
12

12

2

1
max

1

r

r
viniv

Triangle 2

⎥
⎦

⎤
⎢
⎣

⎡
−
−

=
12

12

4

3
max

2

r

r
viniv

Triangle 3

⎥
⎦

⎤
⎢
⎣

⎡
−
−

=
12

12

6

5
max

3

r

r
viniv

Triangle n

⎥
⎦

⎤
⎢
⎣

⎡
−
−

= −

12

12

2

12
max

n

nn
ini r

r
vv

Fig. 20 Prescribing the initial velocity for the triangles

123



Comp. Part. Mech. (2014) 1:307–319 317

(a) (b)

Fig. 21 Particle mechanics problem: a Efficiency and b Speed up as a function of the number of processors

Fig. 22 Specific time as a function of number of processors for sys-
tems comprising: one, five and ten million triangles; 1, 5 and 10 M
respectively

Fig. 23 Specific time for each of the four virtual engines as a function
of number of processors for a system comprising one million triangles

The evolution of the specific time Tn for the Virtual Space
Engine and for the whole code with the number of triangles
and the number of processors is shown in Fig. 26a, b respec-
tively.

Fig. 24 Specific time for each virtual engine as a function of number
of processors for a system comprising five million triangles

Fig. 25 Specific time for each virtual engine as a function of number
of processors for a system comprising 10 million triangles

6 Conclusions

In this work it has been demonstrated that it is possi-
ble to build a problem-specific (as opposed to computer
architecture-specific) virtual parallel machine for paralleliza-
tion of existing FDEM software packages. The developed vir-

123



318 Comp. Part. Mech. (2014) 1:307–319

(a) (b)

Fig. 26 A 3D graph of the total specific time as a function of the number of processors and number of triangles for the Virtual Space Engine (a)
and for the whole V-FDEM package (b)

tual parallel machine consists of four virtual engines, one of
which is the unchanged existing sequential FDEM package.

Porting the parallel software to different parallel computer
hardware architectures is thereby reduced to implementing
some optimized aspects of the three remaining virtual engines
and is in general, a relatively inexpensive operation.

The performance, especially efficiency of the parallelized
software, still depends on the particular architecture of the
computer hardware being used. However, the test results
shown in this paper clearly demonstrate that it is possible
to achieve very high efficiency even when a relatively large
number of processors is employed, as clearly demonstrated
by the results seen in Fig. 22, where only a marginal increase
in the specific time occurs despite the number of processors
changing from only few to a couple of thousand. It is worth
mentioning that in the ideal case the specific time should
stay constant—in reality, due to the need to have communi-
cation between processors, the specific time always increases
and the efficiency of parallelisation is achieved by keeping
the specific time as close to constant as possible. For a spe-
cific architecture this is done by optimising the three virtual
FDEM parallelisation engines. Thus, taking into account the
specific hardware characteristics of the particular architec-
ture.

References

1. Rougier E, Munjiza A (2010) MRCK_3D contact detection algo-
rithm. In: Proceedings of fifth international conference on discrete
element methods. London, UK

2. Munjiza A, Andrews KRF (1998) NBS contact detection algorithm
for bodies of similar size. Int J Numer Meth Eng 43:131–149

3. Munjiza A (2004) The combined finite-discrete element method.
Wiley, New York

4. Munjiza A, Knight EE, Rougier E (2012) Computational mechan-
ics of discontinua. Wiley, New York

5. Munjiza A, Rougier E, John NWM (2006) MR linear contact detec-
tion algorithm. Int J Numer Meth Eng 66(1):46–71

6. Rockfield, ELFEN (2001) Rockfield Software, UK, http://www.
rockfield.co.uk/elfen.htm

7. Munjiza A (1990–1992) RG combined finite discrete element code
- C++

8. Munjiza A, Andrews KRF, White JK (1999) Combined single and
smeared crack model in combined finite-discrete element analysis.
Int J Numer Methods Eng 44(1):41–57

9. Mahabadi OK, Grasselli G, Munjiza A (2009) Numerical mod-
elling of a Brazilian Disc test of layered rocks using the com-
bined finite-discrete element method. In: Diederichs M, Grasselli
G (eds) RockEng09: 3rd Canada–US rock mechanics symposium,
Toronto–Canada, 9–15 May 2009, Paper 4148

10. Lisjak A, Grasselli G (2010) Rock impact modeling using
FEM/DEM. In: Munjiza A (ed) Discrete element methods: 5th
international conference on discrete element methods. London–
UK, 25–26 August 2010. pp 269–274

11. Lei Z, Rougier E, Knight EE, Munjiza A (2013) Block Caving
Induced Instability Analysis using FDEM. 47th US rock mechan-
ics/geomechanics symposium.

12. Knight EE, Rougier E, Sussman AJ, Broome ST, Munjiza A
(2013) Split Hopkinson pressure bar experiment simulation using
MUNROU. 47th US rock mechanics/geomechanics symposium

13. Latham JP, Xiang J, Belayneh M, Nick HM, Tsang C-F, Blunt MJ
(2012) Modelling stress-dependent permeability in fractured rock
including effects of propagating and bending fractures. Int J Rock
Mech Min Sci 57:100–112

14. Latham JP, Guo L, Wang X, Xiang J (2011) Modelling the evolution
of fractures using a combined FEMDEM numerical method. In:
Proceedings of the 12th congress of the international society for
rock mechanics

15. Barla M, Piovano G, Grasselli G (2012) Rock slide simulation
with the combined finite discrete element method. Int J Geomech
12(6):711–721

16. Xu D, Kaliviotis E, Munjiza A, Avital E, Ji C, Williams J (2013)
Large scale simulation of red blood cell aggregation in shear flows.
J Biomech 46(11):1810–1817

17. Latham JP, Xiang J, Harrison JP, Munjiza A (2010) Development
of virtual geoscience simulation tools, VGeST using the combined
finite discrete element method, FEMDEM. In: Proceedings of the
5th international conference on discrete element methods, London,
25–26 August 2010.

18. Mahabadi O, Lisjak A, Munjiza A, Grasselli G (2012) Y-Geo: new
combined finite-discrete element numerical code for geomechani-
cal applications. Int J Geomech 12 SPECIAL ISSUE: Advances in
Modeling Rock Engineering Problems, pp 676–688

123

http://www.rockfield.co.uk/elfen.htm
http://www.rockfield.co.uk/elfen.htm


Comp. Part. Mech. (2014) 1:307–319 319

19. Wang L, Li S, Zhang G, Ma Z, Zhang L (2013) A GPU-based par-
allel procedure for nonlinear analysis of complex structures using
a coupled FEM/DEM approach. Math Problems Eng. vol 2013,
Article ID 618980

20. Lukas T, Munjiza A (2010) Parallelization of an Open-Source
FEM/DEM Code Y2D. In: Proceedings of the 5th international
conference on discrete element methods, London 25–26 August
2010

21. Bangay S (1993) Parallel implementation of a virtual reality system
on a transputer architecture, PhD Thesis, Rhodes University

22. Hillis WD, Tucker LW (1993) The CM-5 connection machine: a
scalable supercomputer. In: Communications of the ACM 36(11)

23. Wasniewski J (1996) Applied parallel computing. Industrial com-
putation and optimization: third international workshop, PARA’96,
Lyngby, Denmark, 18–21 August 1996, Proceedings. Springer,
Berlin

24. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2002)
Numerical Recipes in C, the art of scientific computing, 2nd edn.
Cambridge University Press, Cambridge

123


	A framework for grand scale parallelization of the combined finite discrete element method in 2d 
	Abstract 
	1 The combined finite-discrete element method
	2 Parallelization challenge
	3 V-FDEM: a virtual parallel machine for fdem
	4 V-FDEM Engines
	4.1 Numerical examples

	5 Further discussion of the performance
	6 Conclusions
	References


