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Abstract We review four fundamental approaches to inclu-
de system boundaries into the coarse graining formalism,
particularly with regard to simulations of granular media,
and formulate criteria for evaluating their usability. A sim-
ple lattice system illustrates their application and respective
advantages. We show that only one of them is able to fully
reproduce the conservation laws of mechanics without fur-
ther restrictions. Nevertheless, some of the other schemes are
found to be better suited when dynamics is not the subject of
interest.

Keywords Granular material · Boundary · Coarse
Graining · Walls

1 Introduction

In order to predict the dynamical behaviour of dense granular
media on the industrial scale, a formulation in terms of con-
tinuum fields is indispensible. Therefore, a particle based
derivation of constitutive relations between the continuum
fields, linking for instance applied deformations to stresses
constitutes one of the main open research tasks. The empha-
sis here is on ’particle based derivation’, because granular
systems often lack a clear scale separation, as phenomena
like shear banding or size segregation show. Recently, much
research effort is being spent on the development of hybrid
particle - continuum simulation methods [8,20,29], which
allow to combine a large scale continuum calculation with
dynamics on the particle level, where needed. Constitutive
laws derived from particle and contact properties are needed
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at the fringe between regions simulated at the particle or con-
tinuum level, respectively.

In this paper the transition from discrete quantities (par-
ticle mass, particle position, particle momentum, contact
force, …) to the corresponding fields (mass density, momen-
tum density, stress, …) is addressed. The discrete quanti-
ties are provided by experiments (e.g. [4,6,7,24]) or dis-
crete element (DEM) simulations (e.g. [5,18]). They are
transformed into continuum fields by coarse graining [1–
3,7,9,12,14,16,21,26].

Though in most “real world” observations, boundaries
play an eminent role, their effects are often suppressed or
considered to be negligible in theories. Walls are the most
prominent and important boundaries, for their applications
in simulations and experiments are by far dominating. By
the term wall we mean any flat surface dividing the system
into an exterior (beyond the wall) and an interior.

With the exception of the hybrid simulations mentioned
above, properties of the exterior are usually left unspeci-
fied. This is justified, when the wall confines the system to
a finite region of interest. However, this can lead to prob-
lems, since coarse graining essentially smears out spatial
information. Since the effect of walls within the framework
of coarse graining is scarcely considered in the literature
(notable exceptions are [28–30]), we dedicate this work to
an overview and comparison of different approaches. To be
more precise, we consider i) position dependent convolution
kernels, ii) virtual image systems in the exterior, and iii) stress
propagating, continous half-spaces as boundaries.

The paper is organized as follows: In Sect. 2 we give a brief
coarse graining background necessary for the understanding
of this paper and point out problems induced by taking walls
into account. Section 3 provides four general schemes how
the problems at the wall could be overcome. Section 4 shows
an application of the schemes to a simple lattice system. In
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Sect. 5 we evaluate the different schemes according to a set of
criteria laid down in Sect. 3. Eventually, concluding remarks
are made in Sect. 6. Additional remarks and calculations can
be found in the Appendix.

2 Coarse graining

The objective of coarse graining is to connect microscopic
quantities of particles with macroscopic continuum fields,
which are defined in the whole system and not only at the
positions of the particles or their contacts. The resolution of
coarse graining defines an additional length scale w. Typi-
cally this coarse graining scale w is taken to be large com-
pared to the microscopic scale (here: particle diameter) and
small compared to the macroscopic scale (size of or distance
between heterogeneities). But unlike in fluid dynamics, there
is a lack of scale separation in granular materials, so the res-
olution must be chosen carefully [10,11].

A recent publication by Goldhirsch [12] provides a com-
prehensive description of the coarse graining formalism. This
paper follows these considerations and ideas. We will only
sketch, what is essential for the understanding of this paper.
For a deeper insight, we refer the reader to Goldhirsch [12].
In the following, Latin indices like i and j are used for differ-
ent particles. Greek indices indicate the spatial coordinates,
and summation convention is implied. The mass, center of
mass position and velocity of the i th particle are given by
mi , ri and vi respectively. The contact between the particles
i and j is characterized by the contact point rc

i j and the vector
connecting the center of mass positions ri j = ri − r j . The
force acting on particle i due to a contact with particle j is
given by fi j .

2.1 Sketch of the formalism

The microscopic particle quantities like mass mi and momen-
tum mivi are assigned to the center of mass of particle i by
defining the mass density as

ρmic(r, t) ≡
∑

i

miδ(r − r i (t)), (1)

the momentum density as

pmic(r, t) ≡
∑

i

mivi (t)δ(r − r i (t)) (2)

and the microscopic contact stress tensor as

σ
c,mic
αβ (r, t) ≡ −1

2

∑

i j

fi jαri jβ

1∫

0

δ(r − r i (t) + sr i j )ds.

(3)

In the following, we will refer to the terms in the sum (3)
as stress strings because the integral is non-zero only along

a straight line between r i and r j . This curve is the simplest
choice and, moreover, respects the symmetry in the case of
spherical or point particles [25]. For non-spherical particles,
a path of two line segments passing through the point of
contact can be advantageous (cf. Appendix 1), but these will
not be considered in this section.

Not all quantities related to contacts are “string like” as
the stress. E.g. the fabric tensor [17,22] would be evaluated
for each particle, hence gives rise to a density similar to (1)
and (2). All such quantities will in the following be denoted
as “point quantitities”

Each microscopic field Amic(r) like (1)–(3) is transformed
into its coarse grained counterpart A(r) by a convolution with
the coarse graining function φ,

A(r, t) =
∫

φ(r − r ′) Amic(r ′, t) dr, (4)

where φ(r) is positive semi definite, normalized, differen-
tiable and concentrated around r = 0 with a width w (the
coarse graining scale). As a result, the δ-function in (1)–(3) is
replaced by φ. It can be shown [12] that the continuum equa-
tions of motion are automatically fullfilled, e.g. the equation
of continuity

∂ρ(r, t)

∂t
= −∂pβ(r, t)

∂rβ

(5)

and the equation of momentum conservation

∂pα(r, t)

∂t
= − ∂

∂rβ

(
pα(r, t)pβ(r, t)

ρ(r, t)
−σ kin

αβ (r, t)−σ c
αβ(r, t)

)
+ εα

(6)

where the kinetic part of the stress tensor σ kin
αβ contains the

velocity fluctuations

σ kin
αβ (r, t) = −

∑

i

(
viα(t) − pα(r, t)

ρ(r, t)

)

×
(

viβ(t) − pβ(r, t)

ρ(r, t)

)
miφ(r − ri ) (7)

and ε is the density of a body force like gravity. In granular
materials composed of frictional or non-spherical particles,
torques can be transmitted directly. This is usually accounted
for by an additional tensor field, the couple stress [23]. In the
quasi static limit (where also σ kin

αβ (r, t) is neglected) without
rolling friction it takes on the form [12]

Cαβ(r, t) ≡ −1

2

∑

i j

((
rc

i j − r
)

× fi j

)

α
ri jβ

×
1∫

0

φ(r − r i (t) + sr i j )ds. (8)
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Cαβ(r, t) appears in the equilibrium condition for frictional
materials (in the absence of body torques), which is given by

εαβγ σβγ = ∂βCαβ, (9)

and is the generalization of the classical condition of a sym-
metric stress tensor (εαβγ is the Levi-Civita symbol). Note:
the couple stress is an exception to the rule that coarse grained
fields are obtained by convoluting the corresponding micro-
scopic fields with φ. The reason is the explicit appearance of
r in the cross product.

The equations are valid irrespectively of a specific choice
for φ, as long as the conditions mentioned after (4) are full-
filled. In this paper we use Gaussian coarse graining with

φGauss(r) = 1

wdπd/2 exp(−r2/w2). (10)

Numerically, this function will be cut off, when φGauss <

10−16, which in two dimensions is the case for |r| > 6w.
In general, every coarse graining function will have such a
length scale ∼ w, beyond which its value essentially van-
ishes (exactly only for functions with compact support). The
integral essential for the computation of the coarse grained
stress σαβ(r) takes on the form

1∫

0

φGauss(r − r i + sr i j )ds =

1

2|r i j |(w√
π)d−1

exp
[−(|r − r i |2 − |(r − r i ) · ni j |2)/w2]

× {
erf

[
(|r i j | + (r − r i ) · ni j )/w

] − erf
[
((r − r i ) · ni j )/w

]}
,

(11)

where ni j = r i j/|r i j |. Graphically, this just expresses a ridge
instead of a string from r i to r j .

2.2 Problems induced by Walls

Boundaries, especially walls, play often a major role in prac-
tical applications: The walls of silos are not only essential

in the static case of holding the grains inside the silo but
also influence the discharge flow. The most common way of
transporting granular material is to pour it down an inclined
plane/wall.

But typically, the whole coarse graining scheme is formu-
lated for the bulk without taking any boundaries into account.
Several problems arise if coarse graining is carried out ignor-
ing the presence of a macroscopic object whose dimensions
are comparable to the coarse graining width or even bigger,
such as a wall.

They will be explained in the following where we assume
the wall to be at z = 0 and the bulk at z > 0.

2.2.1 Drop of the Quantities

In the bulk far away from the walls (Fig. 1 left) the contri-
butions of the regions beyond the walls are negligibly small,
provided that w is small compared to the system size. The
nearer to the wall the evaluation position r (center of the grey
shaded area) is, the bigger the contributions coming from
beyond the wall (Fig. 1 right), from the “vacuum”. The con-
tributions to all coarse grained quantities are 0, as Amic = 0
beyond the wall. So near the wall most fields will decrease.
The strength and the range of the decline due to the “vac-
uum” depend on the shape and width of the coarse graining
function.

Nevertheless, the identity

∫
A(r)d3r =

∫
Amic(r)d3r (12)

holds true when the integration is carried out over the whole
space.

Note: When taking the ratio of two coarse grained densi-
ties, their drop can cancel out, the most prominent example
being the velocity field, (6) in Goldhirsch [12]. For them, no
correction scheme is necessary.

Fig. 1 Coarse graining in the
bulk (left): The grey shaded area
indicates the region, where the
contribution of particles
(circles) or contacts (arrows) to
the coarse grained field value at
the center is not neglegible.
Coarse graining at the wall
(right): The contributing region
reaches out beyond the wall.
Since there are no particles, the
contibutions to all quantities by
that part are zero (hatched area).
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2.2.2 Wall contact

The stress, being a contact property rather than a particle
property, depends on the vector r i j connecting the centers
of mass of the involved particles. The contact with the wall
represents a special case, as for the wall a center of mass is a
priori not defined. Intuitively one chooses r i j to be perpen-
dicular to the wall plane and to connect the center of mass of
the particle with the nearest point on the wall (rwall). (This
holds true in the case of spherical particles, otherwise cf.
Appendix 1).

2.2.3 Commutation

An important property of the coarse graining procedure
according to (4) is that it commutes with differential opera-
tors. That means, for every derivative of such a coarse grained
field, one gets the coarse grained version of the derivative of
the microscopic field. In the presence of walls this prop-
erty gets modified. The “vacuum” beyond the wall can be
described by performing the coarse graining integration only
up to the wall or by extending the microscopic field to the
whole z-range, being zero for z < 0; both views are equiva-
lent, of course.

By Amic,z we denote the microscopic field, for which the
coarse graining over the x- and y-direction was already car-
ried out. In the remaining partial integration

∂z A(z) = ∂z

∞∫

0

φ(z − z′) Amic,z(z′) dz′

= Amic,z(z=0)φ(z) +
∞∫

0

φ(z − z′) ∂z′ Amic,z(z′) dz′

(13)

a surface term appears, which is of course nothing else but
the coarse grained derivative of the step function. It is absent
only for Amic,z(z=0) = 0, and negligible for large distance
z from the wall.

The property of commutation will become important for
equilibrium considerations (cf. Sect. 2.3). We note already
here that it does not apply to the couple stress (8) due to its
additional r-dependence.

2.3 Possible criteria for correction schemes

In Sect. 3 we will present several schemes to handle the prob-
lems mentioned above. These approaches will transform the
coarse grained field A(r) into a corrected version denoted by
Ã(r). In the following we discuss possible criteria one should
keep in mind when reviewing the different approaches.

2.3.1 Invariant Fields

Without walls, a simple linear microscopic field Amic =
c+mz is invariant with respect to coarse graining. It is desir-
able to preserve this property in the presence of boundaries,
as well. But in general, this will not be possible since no
correction scheme can divine that the linear function should
continue beyond the wall. Hence, it would be too strict to
demand this behaviour from the considered schemes. Instead,
a relative deviation in the proximity of the wall of the order
|m/c|w has to be accepted.

2.3.2 Continuum Equations of Motion and Equilibrium

The coarse grained formalism fulfills the local conservation
laws (e.g. (5) and (6)) in the bulk. When dealing with a system
in equilibrium without body forces, the coarse grained stress
and couple stress fields must obey the conditions [23]

∂βσαβ = 0 (14)

∂βCαβ − εαγβσγβ = 0, (15)

which represent a special case of the local conservation laws.
These are true for the microscopic (couple) stress (3) up to,
but not including the wall. Instead, the wall acts as an external
source or sink of (angular) momentum flux. Coarse graining
that, we would get a “source/sink zone” of width w which
compensates the non-zero divergence of the coarse grained
stress, cf. also Sect. 3.3.2.

The aim of the approaches described below (with the
exception of renormalization, 3.1, and excess, 3.4) is to avoid
dealing with these sources and sinks, though. Instead, the
“vacuum” is replaced by (virtual) matter to which a (couple)
stress tensor can be assigned. Thus, we will have to check
whether an approach is in accordance with the conservation
laws (equilibrium conditions).

2.3.3 Figure of Loss

As can be seen from the discussion in Sect. 2.2.1 and from
(12), a part of the microscopic fields is transferred to the
exterior of the system and thus can be considered as “miss-
ing”. This expresses the non-validity of (12) in the case of
integrating only over the system.

A wall correction might be wanted to revert this loss. A
quantity which measures to which extent this is accomplished
is

L =
∫ ∞
−∞ A(z)dz − ∫ ∞

0 Ã(z) dz
∫ 0
−∞ A(z)dz

, (16)

which normalizes this correction (numerator) to the loss with-
out any correction (denominator). No correction ( Ã(z) =
A(z)) at all yields L = 1. L = 0 marks perfect compensa-
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tion, while a positive value indicates a net loss and a negative
one an overcompensation.

2.3.4 Complex Wall Geometry

For the most part we will consider only the most trivial
wall scenario, namely a single infinite planar wall. In most
practical situations, though, the system will be confined by
more than one wall (i.e. a polygon/polyhedron) or curved
walls (like cylinders). The question that arises is, how far the
approaches are extensible to more complex geometries.

2.3.5 Computational Effort

To measure the applicability of the approaches, it is crucial
to estimate the extra effort which goes with their implemen-
tation.

3 Wall treatment

In the following we discuss a few simple and general strate-
gies, how to handle the problems described in 2.2.

3.1 The renormalisation approach

The main concept of this approach is to disregard the physics
outside the system boundaries completely and, instead, to
modify the coarse graining function according to its distance
to the wall.

The coarse graining function φ should be normalized to
unity by integration over the whole space. If this happens not
to be the case, it can immediately be cured:

Ã(r) =
∫

φ(r − r ′)Amic(r ′) d3r ′
∫

φ(r − r ′) d3r ′ (17)

Adopting this to a finite integration volume Ω , the denomi-
nator becomes position dependent. For example, at a planar
boundary the function

n(r) =
⎡

⎣
∫




φ(r − r ′) d3r ′
⎤

⎦
−1

(18)

takes on twice its bulk value.

3.2 The virtual system approach

3.2.1 The mirrored system

The main idea of this approach is to conserve the properties of
the compound near the wall by replacing the vacuum beyond
the wall with something similiar to the bulk. An intuitive
approach to such a virtual system is the mirrored system. The

Fig. 2 The particles and contacts with their mirrored counterparts on
the other side of the wall

construction of the mirrored system can be performed by mir-
roring the positions r i of the particles and contacts at the wall,
flipping vectorial properties vi (e.g. velocity) and pseudovec-
torial properties ωi (e.g. angular velocity) with respect to the
wall and assigning those and the scalar properties si (e.g.
mass) to the appropriate positions (Fig. 2):

r i ′ = 2 · rwall − r i (19)

vi ′ = vi − 2 · nwall(nwall · vi ) (20)

ωi ′ = −[ωi − 2 · nwall(nwall · ωi )]
si ′ = si .

nwall is the normal vector of the wall, i ′ denotes the index
of the virtual particle corresponding to particle i . The virtual
compound can now be utilized for the purposes of coarse
graining. This includes also the contacts and the correspond-
ing forces of the virtual particles with the wall. The virtual
particles and virtual contacts will be taken into account as if
they were part of the system. As mirroring and coarse grain-
ing commute, the modified values can also be rewritten as
(see Appendix 2):

Ã(r) = A(r) + Amirr(r) = A(r) ± A(r − 2 · nwall(nwall · r)).

(21)

The minus sign comes into play for the components of
(pseudo-)vectorial quantities that are reflected, e.g. the prin-
cipal axes of the stress tensor beyond the wall are flipped.
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3.2.2 The Continuation of the System

As we will see later in Section 4, the minus-sign of Eq. (21)
can lead to undesired sign changes of the field. This can
be avoided by using the plus-sign for all quantities. In this
approach, which we call ’continuation’, we simply define

Ã(r) = A(r) + Acont(r) = A(r) + A(r − 2 · nwall(nwall · r))

without referring to the underlying micro structure of the
virtual compound.

With respect to their interpretation, mirroring and contin-
uation are very different: In the first approach it is still a wall
which excerts forces on both systems and they react identi-
cally (just reflected with respect to the wall). The latter, on the
other hand, removes the wall from the picture and replaces
its effect as being caused by the virtual system.

3.3 Wall as a Big Particle

In this approach a wall is represented by the surface of a
very big particle (much bigger than the other particles and
the coarse graining width w), for which all extensive point
quantities like mass or momentum are replaced by the corre-
sponding microscopic densities, Amic

wall, being constant over
the whole extent of the body. In the case of a semi infinite
body, the coarse grained wall contribution to the point fields
reads

Awall(r) :=
∫

φ(r − r ′) Amic
wall �((r ′ − rwall) · nwall) dr

= Amic
wall

2

(
1 + erf

(
(r − rwall) · nwall

w

))
. (22)

As a side remark we mention that it is not imperative to
describe the small particles differently than wall particles.
The coarse graining method could as well be applied, if one
attributes microscopic mass and momentum densities to the
volumes of the small particles, instead of mass and momen-
tum to their centers. The difference becomes negligible, if w

is large compared to the particle size (cf. [27,28]).
Wall contributions to stress and couple stress are more

subtle than the point quantities discussed so far. While e.g.
the microscopic mass density of the wall particle may be
assumed to be homogenous, because it is independent of the
neighborhood, the heterogeneity scale of the stress is deter-
mined by the adjacent small particles. A homogenous stress
field within the wall particle would only result from an addi-
tional averaging over its volume. To avoid this complication
one must consider the microscopic wall stress contribution
of each wall contact individually. Two possibilities to model
this are given in the following.

3.3.1 Linearly elastic walls

Considering a wall as an incompressible, isotropic elastic
medium, filling the half-space z ≤ 0, the force f applied at
the origin provides the following contributions to the stress
field within the wall [15,19]:

σ
w,mic
αβ (r, f ) = −2 f · r

π

rαrβ

r4 in 2D (23)

σ
w,mic
αβ (r, f ) = −3 f · r

2π

rαrβ

r5
in 3D (24)

Coarse graining them into σw
αβ(r, f ) removes the singu-

larity at the contact point, but of course does not influence
their long range behaviour. Taking the contributions from all
wall contacts into account, when coarse graining, gives the
corrected stress tensor

σ̃αβ(r) = σαβ(r) +
∑

i

σw
αβ(r − rc

iw, f iw), (25)

where the index i runs over all particles in contact with the
wall, rc

iw are the locations of the wall contacts, and f iw is
the force exerted by particle i on the wall.

3.3.2 Infinitely long stress strings

As a second model, Eq. (3) is generalized by extending the
wall branch vectors r iw = rc

iw − r i infinitely far into the
(infinite) particle representing the wall. Denoting their unit
vectors as niw = r iw/|r iw|, the additional terms for stress
and couple stress are of the form

− fiwα niwβ

∞∫

0

φ(r − r i − r ′niw)dr ′ , respectively (26)

− ((
rc

iw − r
) × f iw

)
α

niwβ

∞∫

0

φ(r − r i − r ′niw)dr ′. (27)

For a Gaussian φ the integral

∞∫

0

φ(r − r i − r ′niw)dr ′ = 1

2(w
√

π)d−1

× exp
[
−(|r − r i |2 − |(r − r i ) · niw|2)/w2

]

×{1 + erf [((r − r i ) · niw)/w]} , (28)

replaces the coarse grained string of finite length (11).
This approach can actually be derived in a less ad-hoc way

(cf. [28]). Let us express the effect of the wall as external force
and torque density fields Fw and Mw, which keep the system
in equilibrium:

∂βσαβ + Fw
α = 0 (29)

∂βCαβ − εαγβσγβ + Mw
α = 0 (30)
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If we want in turn to express these fields by means of stresses,
the latter have to fulfill the divergence equations

Fw
α = ∂βσw

αβ, (31)

Mw
α = ∂βCw

αβ − εαγβσw
γβ, (32)

which hold true for the expressions (26) and (27). We note
that they are not the only solutions, though.

3.4 Excess quantities

In the previous approaches the exact shape of the fields
obtained by coarse graining in general depends on the coarse
graining width w, even after applying the corresponding
correction. This dependence reflects that the sharp system
boundary represented by the wall gets smeared out. As w

is an artificially introduced length scale, the coarse grained
field has in general no well defined meaning in the vicinity
of the wall. Integrated fields, however, do, which leads to the
concept of excess quantities.

It is assumed that the bulk is homogeneous in the sense
that the coarse grained fields A(z) are essentially indepen-
dent of the coarse graining width w, if it is chosen within
an appropriate window between the homogenization scale (a
few particle diameters) and the spatial resolution L needed to
describe the large scale physics [11]. This does not mean that
the fields have to be constant. Because of the invariance prop-
erty of coarse graining for linear microscopic fields it means,
that the fields vary so slowly that second derivatives may be
neglected. The smallest relevant radius of curvature sets the
upper limit of the window, from which w may be chosen.

Near the wall, however, A(z) will in general depend on w.
One may try to extrapolate the homogeneous bulk all the way
to the surface by a function Ã(z), which agrees with A(z) for
z > L:

Ã(z) ≡
⎧
⎨

⎩

0 for z < 0
AX(z) for 0 ≤ z < L
A(z) for z ≥ L

(33)

describes a macroscopic, w-independent field. Since AX(z)
has to match A(z) independently of w, it must not possess
significant variations with a wave length smaller than the
largest w to be used.

In general, integrating the function Ã(z) over the whole
system will not equate the corresponding Amic(z)-integral,
cf. Sect. 2.3. Because we cannot spatially resolve the source
of this discrepancy, we attribute the difference to the wall
itself as the excess quantity X A in the following way:

L∫

−∞
A(z) dz

!=
L∫

−∞

(
Ã(z) + X Aδ(z)

)
dz, (34)

where �(z) is the Heaviside function.

For the special case of Amic being z-independent, A
becomes a product

A(r) = A(x, y)s(z) (35)

with a sigmoid function

s(z) = 1 − s(−z) and s(z 	 w) = 1 , (36)

and thus, with AX = A(x, y), the excess quantity X A = 0.

4 Application

In order to compare the approaches described in Sec.3, we
apply them to a semi-infinite rhombic lattice (with angle α,
see Fig. 3) of identical frictional discs with radius R and mass
m. The lattice is terminated by a wall at z = 0 which excerts
the same force f ext = fx ex + fz ez on each boundary particle
and has an infinitely distant counterpart that keeps the whole
system at rest. For the sake of analytical simplicity we assume
a specific realization of mechanical equilibrium, which is
translationally invariant in x-direction and repeats periodi-
cally every second particle layer in z-direction. Each particle
(apart from those at the wall) has four contacts labeled clock-
wise starting at the upper left by 1�, 1�, 2�, and 2�. The
forces acting on the particle are

f 1� = − ex
2 ( fx − fz cot α) − ez

2 (− fx (tan α + cos−1 α) + fz)

(37)

f 1� = − ex
2 ( fx + fz cot α) − ez

2 ( fx (tan α + cos−1 α) + fz)

(38)

f 2� = ex
2 ( fx − fz cot α) + ez

2 (− fx (tan α − cos−1 α) + fz)

(39)

f 2� = ex
2 ( fx + fz cot α) + ez

2 ( fx (tan α − cos−1 α) + fz)

(40)

The forces on a particle in the next layer are determined by
the action-reaction principle:

f̃ 2� = − f 1�, f̃ 2� = − f 1�,

f̃ 1� = − f 2�, f̃ 1� = − f 2�. (41)

Fig. 3 Semi-infinite lattice of discs, terminated at z = 0
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Note that f 2� + f 2� = f̃ 2� + f̃ 2� = f ext is compatible
with the forces the wall exerts on the particles in the first layer.
One easily verifies the equations of mechanical equilibrium,

0 = f 1� + f 1� + f 2� + f 2�, (42)

0 = r1� × f 1� + r1� × f 1� + r2� × f 2� + r2� × f 2�,

(43)

where

r1� = −r2� = R

(
cos α

sin α

)
,

r1� = −r2� = R

(− cos α

sin α

)
. (44)

After introducing natural units ( fz/(4 cos α) for force,
m/π for mass, and R for length), two parameters remain:
the lattice angle α and the force ratio q ≡ fx/ fz , which must
be smaller than the friction coefficient at the wall. The dis-
crete translational symmetry in x-direction will turn into an
essentially continuous one when coarse graining with large
enough w (the value w = 2.5 turns out to be sufficient)
or averaging laterally (x-direction) over one lattice constant
(4 cos α).

Due to translational invariance in x-direction, stress equi-
librium in the absence of body forces, Eq. (14), implies that
σzz and σxz must be constant throughout the whole system
(bulk, interface, wall). Moreover, rotational equilibrium (15)
requires

σxz = σ ∗
zx = σzx − ∂zCyz (45)

in the whole system. It is necessary that the correction
schemes used are capable of reproducing these constant val-
ues even at the wall.

The asymptotic bulk quantities (in the sense of large w

and large z) can be calculated readily from geometric con-
siderations, yielding (in natural units) ρ∞ ≡ ρ(z → ∞) =
π/(8 cos α sin α), σ∞

xx = 1/ tan2 α, σ∞
xz = σ∞

zx = q, and
σ∞

zz = 1.
Figure 4 shows the numerical results for the coarse grained

mass density ρ and the stress components σαβ using the wall
corrections discussed in Sect. 3. The characteristical drop
mentioned in Sect. 2.2.1 is obvious in the cases a)-e). Almost
all correction schemes compensate the drop, but they differ in
the details, except for σzz . Constant stress components in c)-
f) mean mechanical equilibrium. We will discuss the occur-
ing discrepancies in the next section, but we want to draw
attention to the behaviour of the uncorrected σ ∗

zx in Fig. 4d)
already here: We can observe that for the chosen coarse grain-
ing width σxz and σzx are approximately the same, i.e. the
contribution of the couple stress should be small. The micro-
scopic counterpart of the latter has a linear z-dependency in
the vicinity of the wall stemming from the factor (rc − r), but

due to the non-commutation (cf. Sect. 2.2.3) the z-derivative
of Cyz is not simply a coarse grained step function: It over-
shoots.

Constant stesses σ X
αβ(z) = σ∞

αβ and a constant mass

density ρX (z) = ρ∞ are also the choice when applying
the Excess Approach. The system geometry in the lattice
system yields simple analytical expressions for the excess
X in the limit w → ∞, i.e. when translational symme-
try in x-direction holds true. They read (in natural units)
Xρ = −(1 − sin α)ρ∞, Xσxx = −σ∞

xx , Xσzx = −σ∞
zx , and

Xσzz = Xσxz = 0. In Fig. 5, we compare the values for finite
w to them. For smaller w, we get deviations due to the fact
that the coarse grained fields loose their translational sym-
metry. Since σmic consists of a mesh of stress strings, while
ρmic is a lattice of delta-peaks, the latter is more sensitive to
this effect. This can be seen in Fig. 5, where deviations in Xρ

appear already at larger w.

5 Comparison

Let us first recall the different basic concepts behind
the employed approaches. Whereas the Renormalisation
Approach and the Excess Approach disregard the space
beyond the walls, the four schemes belonging to the Virtual
System Approach and to the Big Particle Approach have in
common that they assign to it a counterpart for each field. But
while the Virtual System Approaches always use information
from within the system to do so, the Big Particle Approaches
use them only in the case of stress fields (namely in form of
the wall contacts). For particle quantities, the latter introduce
free parameters expressing properties of the wall. In the fol-
lowing sections we apply the criteria developed in 2.3 with
respect to the results gained in Sect. 4.

5.1 Renormalisation

As this approach works only with the quantities of the bulk
and disregards the exterior completely, one can compute
meaningful quantities only up to the wall.

Before turning to the results of Fig. 4, we provide two
more general observations. Let us first study the case of a
linear function Amic(z>0) = c + mz in the vicinity of the
wall and a Gaussian φ. Then, the normalization with n(r)
according to (17) produces a loss (16) of

L = 2
1 − ln 4
4c

mw
√

π
+ 1

. (46)

This implies that naturally the loss vanishes for m = 0 while
for c/m > 0 one always gets an overcompensation. The
w-independence for c = 0 as well as the possibility of a
vanishing denominator stem both from the normalisation of
L, cf. (16).
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Fig. 4 The coarse grained mass density ρ and the stress components
σxx , σzz , σxz , σ ∗

zx = σzx − ∂zCyz close to the wall (unc = uncorrected,
i.e. without wall contributions), modified by the different schemes: ren

= renormalisation, mirr = mirroring, cont = continuation, ew = elastic
wall, istr = infinitely long stress-strings. The computations were done
with w = 2.5 and q = 1/3

Another general property of the renormalisation approach
is that the boundary term in the commutation relation (13)
gets modified:

∂z Ã(z) = ∂z(n(z)A(z)) = (∂zn(z))A(z) + n(z)(∂z A(z))

= n(z)φ(z)
(

Amic,z(z = 0) − Ã(z)
)

+ n(z)

×
∞∫

0

φ(z − z′)∂z′ Amic,z(z′)dz′ . (47)

If Amic,z(z>0) = c in the vicinity of the wall, the boundary
term vanishes so that the commutation between renormalized

coarse graining and differentiation holds like in the bulk. This
is the reason why σxz and σzz , coarse grained according to
the renormalization approach, are constant in Fig. 4 c and d.
Rotational equilibrium (15) is violated, though, cf. Fig. 4d.
The reason is the above mentioned overshooting, which is
even further enhanced by the multiplication by n(r) > 1.

As a straight forward approach that works by multiply-
ing by a correction field n(r), no further modifications are
needed for applying the Renormalisation scheme to complex
wall geometries. The only difficulty remaining in the general
case can be the evaluation of the integral in (18), but for
perpendicular walls it simply factorizes.
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Fig. 5 The excess of the mass density, and the excess of the stress
components σxx and σzx . Both are evaluated at x = 0

Since n(r) is independent of A, the renormalisation
approach is readily performed: All coarse grained fields A
just need to be corrected by the same factor n: Ã(r) =
n(r)A(r). Hence, with respect to computional effort, this
approach is quite cheap, since the same function (possibly
even in tabulated form) is used for every quantity.

5.2 Virtual system

The Virtual System Approach, similar to what was employed
by Zhu et al. [30–32], is convenient because the properties
measured with this approach stem only from the system itself
and the wall geometry, i.e. no additional fields or objects are
introduced.

Concerning the figure of loss L, a straight forward calcu-
lation for Ã(z) = A(z) ± A(−z) shows, independently of
A(z), L to be zero and 2 for plus and minus, respectively.

Complex wall geometries pose a problem for the Virtual
System Approach, though, because the simple mapping (19)
no longer holds true. For convex wall parts, there may be more
than one r for an image r ′ which means overlapping particles
for mirroring and overdetermined Ã-values for continuation.
For concave wall parts, on the other hand, points beyond the
wall may be not reached at all and multiple mirror operations
have to be considered. For a sketch of a two-dimensional
situation, cf. Appendix 3. In three dimensions finally, only
a cube corner is free of such complications. Below we will
only discuss the basic case of a flat wall further.

Regaring the computational cost, both Virtual System
approaches are cheap, involving the evaluation of A beyond
the wall up to at most a few w (concerning a cutoff cf. also
Appendix 4.2).

5.2.1 Mirroring

One can see in Fig. 4 that the mirroring works well for the
“+”-sign quantities (e.g. mass density): σzz is constant and ρ

and σxx are lifted compared to the uncorrected values yield-
ing L = 0. On the other hand, for quantities, for which
mirroring involves the minus-sign, the “correction” actually
makes things worse: As can be seen in Fig. 4e, the shear
stress σxz is not constant in the mirrored case, violating equi-
librium. This stems from reflecting the relative vector at the
wall, but not the x-component of the corresponding force (the
“−”-sign in Eq. (21)). Physically it means that the (infinitely
thin) wall applies a stress on both sides, to the original system
as well as to its mirror image. Not taking it into account as
a source of momentum flux density, equilibrium is already
violated in the microscopic field by a sign change of σxz

along the stress string traversing the wall. This problem is
also reflected by the inevitable L = 2.

This was the motivation for the continuation approach,
which turns out to have other problems, though.

5.2.2 Continuation

Naturally, no sign change occurs for σxz in Fig. 4e and thus
e.g. the principal axes of the stress tensor are conserved.
However, other problems occur instead, that have to be taken
care of. With the wall again located at z = 0 (and the system
at z > 0), the continuation scheme reads

σ̃αβ(x, y, z) = σαβ(x, y, z) + σ cont
αβ (x, y, z)

= σαβ(x, y, z) + σαβ(x, y,−z) (48)

with σ̃αβ(x, y, z) = σαβ(x, y, z) for z 	 w and σ̃αβ

(x, y, z) = σ cont
αβ (x, y,−z) = σαβ(x, y,−z) for z �

−w. For the derivatives it follows that

∂xσαx
∣∣
z = ∂xσ

cont
αx

∣∣−z

∂yσαy
∣∣
z = ∂yσ

cont
αy

∣∣−z

∂zσαz
∣∣
z = −∂zσ

cont
αz

∣∣−z (49)

which leads to an inconsistency: If, in a situation more gen-
eral than the lattice system in Sect. 4, equilibrium

∂xσαx + ∂yσαy + ∂zσαz = 0

is maintained with a non-zero ∂zσαz , equilibrium will be vio-
lated in the virtual system (z < 0), because there

∂xσ
cont
αx + ∂yσ

cont
αy − ∂zσ

cont
αz = 0

holds true. The inconsistency is actually present in non-
equilibrium as well: Consider for example a positive momen-
tum density px (x, y, z) in the vicinity of the wall, which
means pcont

x (x, y, z) = px (x, y,−z) > 0 also beyond the
wall. That is incompatible with

∂xσxx + ∂yσxy + ∂zσxz
∣∣
z 
= ∂xσ

cont
αx + ∂yσ

cont
αy + ∂zσ

cont
αz

∣∣−z .

This is not only a “virtual problem”, because the inconsis-
tency “leaks” into the system at z > 0. A solution to this
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problem is to introduce a vectorial differential operator ∇∗
according to (20), i.e.

∇∗ = ex∂x + ey∂y − ez∂z (50)

and to keep the differentiation separate:

∇̃A := ∇ A + ∇∗ Acont . (51)

One can see easily that it solves the inconsistency. The cor-
rection is already employed in Fig. 4e for σ ∗

zx , otherwise the
couple stress contribution would have wrong parity (and too
large amplitude). But it comes with the cost of having to keep
always the two fields A and Acont to be able to apply (51).

5.3 Big particle

In contrast to the Virtual System approaches, there is a cer-
tain freedom of choice concerning the parameters of the Big
Particle. E.g. in Sect. 4, the mass density of the Big Parti-
cle’s material was arbitrarily assumed to be the same as that
of the small particles. This freedom of choice has a direct
impact on the figure of loss L and deprives it of its meaning
for these quantities. This is directly related to the fact that
e.g. the contribution of a high mass density in the wall can
hide a drop of the system mass in the wall’s vicinity. Only
in the case of physical constraints enforcing constant values
in the boundaries as well as in the bulk (like certain stress
components, cf. the cases (c) and (f) in Fig. 4), L should be
zero, which is indeed achieved for σzz and σxz in both Big
Particle approaches.

In the case of point quantities, their microscopic replace-
ments assumed within the wall cause no problems when
extended to complex wall geometries. On the other hand,
we have to distinguish the two Big Particle approaches con-
cerning stresses.

5.3.1 Elastic wall

While a positive L for σxx is denoting a loss, it is negative
for σzx and also for σ ∗

zx , meaning an overcompensation (note
that L cannot be estimated solely from the corrected graphs
in Fig. 4). The latter is due to the missing micropolar char-
acter of the elastic wall, which also leads to a violation of
the equilibrium condition, cf. σ ∗

zx in Fig. 4f. An additional
drawback is the high computational cost of evaluating the
occurring integrals numerically. Even more problematic are
complex wall geometries, where “complex” refers actually
to every deviation from a single flat, infinite wall. That is,
already for the simple case of a rectangular system enclosed
by an otherwise infinite medium, the analytical solutions are
unavailable.

5.3.2 Infinitely long stress strings

Since in this approach, the directions of the stress strings in
the wall are parallel to the z-axis (perpendicular to the wall
surface), the wall cannot contribute to the stress on planes
with normals parallel to the wall (σxx and σzx in two dimen-
sions). Consequently, the extension of these stress compo-
nents beyond the wall is zero and thus Ã = A which in turn
implies L = 1. Nevertheless, when all microscopic stress
components at the wall obey equilibrium according to (14)
and (15), also their extension beyond the wall and therefore
their coarse grained fields do so. This is visible also in Fig. 4f
as σ ∗

zx = σxz = const.
Complex wall geometries cause no problem here: The

stress string originating in normal direction from a wall con-
tact does not need to follow this direction, but can follow any
suitable path, as discussed in Appendix 1.

There is no extra computational cost for this approach:
If one end point of (11) is removed to infinity, the integral
actually simplifies to (26) and (27), for stress and couple
stress, respectively.

5.4 Excess

The calculation of the excess quantity differs from the other
schemes, because it is an extrapolation method without any
modifications of the actual field. It is the only scheme that
does not blur the linearity of a microscopic field Amic =
c + mz, because it allows AX = c + mz with X A = 0. Due
to the design of this approach (cf. (34) and (33)), the figure
of loss satisfies X A + L ∫ 0

−∞ A(z)dz = 0.
Complex wall geometries can be a problem for the Excess

approach: The definition (34) of X A assumes an extension of
several w of the vacuum and at least of L for the system. This
condition is violated for curved walls with radii of curvature
smaller than w or L . The choice of a suitable extrapolation
function AX may be a problem, if A is not constant in the
bulk, especially if constraints exists, e.g. that σX

αβ and CX
αβ

fulfill the equilibrium conditions (14) and (15).
Concerning the computational effort, no general statement

can be made since the Excess approach is an extrapolation
method and needs more human based effort and good intu-
ition for finding a fitting AX than actual CPU time.

6 Conclusion

In this work, we have reviewed four different schemes for
overcoming difficulties when coarse graining in a system
with boundaries. Theoretical considerations and the applica-
tion to an idealized system has revealed different shortcom-
ings of these approaches.
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In general, we can conclude that none of them is a uni-
versal best method, suitable for all quantities. Focussing on
the stress fields, the picture is clearer, though: Only the
Infinitely Long Stress Strings (Sect. 3.3.2) reproduces the
correct dynamics of the particles (equilibrium in the sim-
plest case) and has also no other drawbacks. Moreover,
it has a very natural viewpoint of expressing the walls as
sources/sinks of momentum flux density [28]. The other Big
Particle Approach, namely the elastic wall proved to be defi-
cient not only with respect to equilibrium but to all applied
criteria.

For point properties, both approaches using Big Particles
introduce additional free parameters describing properties of
their interior. Depending on the measurement goal, this can
be advantageous or disadvantageous: If there is no physical
background for the choice of a particular value, the resulting
field Ã has an arbitrary component which may even obscure
relevant features of A in the vicinity of the wall, e.g. no
density drop occurs in Fig. 4a (dot-dashed line). On the other
hand, the free parameters may serve for gauging purposes if
a certain reference system/state is available.

If the free parameters of the Big Particle schemes pose
a problem and homogeneity in the wall region is called for,
the Virtual System Approach is the better choice for point
quantities. The absence of arbitrary parameters is shared by
the Excess Approach, where all quantities near the walls stem
from the fit function and the wall itself contributes the excess.

The Renormalisation Approach proves to be the most
robust with respect to its applicability, but being exact only
for constant microscopic fields, the validity of its correction
is without estimate.

Finally, we can say that all presented strategies can
be implemented in simulations and experiments employ-
ing straight walls like flows down inclined planes, sim-
ple shear, hopper flow, etc., without excessive extra effort
(already done by the authors in DEM simulations). For simu-
lations and experiments with more complex geometries (e.g.
Couette cell) the implementation can be more complicated,
though.
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Appendices

Appendix 1: Shape of stress strings

As known [12,25], the precise path of the microscopic stress
fields connecting the centers of mass of two particles is arbi-
trary with respect to the dynamics. While for spherical par-

x

z

Fig. 6 Two non-spherical particles in contact (left). Aligned non-
spherical particles at the wall (right)

ticles, the straight line

σ c
αβ(r, t) = −1

2

∑

i j

fi jαri jβ

1∫

0

δ(r − r i (t) + sr i j )ds

is the most natural choice and following the symmetry, for
non-spherical particles it amounts in general to microscopic
stress outside of any particles (cf. Fig. 6 left). Making the path
run through the contact point avoids this and thus approxi-
mates the real stress fields somewhat better, which gives rise
to an effect especially pronounced in the vicinity of a wall:
Non-spherical particles can becomed aligned and their con-
tributions to σxx and σzx is non-zero only for the path through
the contact point (cf. Fig. 6 right). Especially when resolving
effects close to the wall with a small coarse graining width
w, this will become noticeable. For computational purposes
one can rewrite σ c

αβ for paths leading through the contact
points

σ c
αβ(r, t)=−

∑

i j

fi jα(ri − rc
i j )β

∫ 1

0
δ(r − r i (t) + s(ri − rc

i j ))ds.

(52)

Note that in (52) the index j runs over all contactpoints of
particle i . So the choice for 2.2.2 is naturally given.

These thoughts are of course also applicable and useful
for the couple stress.

Appendix 2: Symmetries when mirroring

With the wall at z = 0 and due to mirroring the mirrored
microscopic quantities obey:

Amic
mirr(z) = ±Amic(−z) .

The “−”-sign bears on the z-components of the vectorial
quantities (components perpendicular to the wall). As φ(z) =
φ(−z), convolution with φ and mirroring commute, i.e.
∫

Amic(−z′)φ(z − z′)dz′ = A(−z).
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Fig. 7 Mirroring in a two-dimensional corner. The solid lines denote
the walls, the short dashed lines are their images. The latter are the axes
for the next mirroring step, which is the last one in this example. It
necessarily creates a cut (dot-dashed), except for α = π/n, n ∈ N

Coarse graining is linear, so that

Amirr(z) =
∫

(Amic(z′) + Amic
mirr(z

′))φ(z − z′)dz′

=
∫

(Amic(z′) ± Amic(−z′))φ(z − z′)dz′

= A(z) ± A(−z). (53)

Appendix 3: Mirroring at vertices and arcs

3.1: Vertices

As the concept of the Virtual System Approaches is to sub-
stantiate the vacuum beyond the wall with something similiar
to the system itself, a change of the wall geometry has a great
impact on the application scheme, cf. (21) and (22) used in
Sect. 3.2.

The first problems already occur for vertices in two dimen-
sions: Mouths (concave vertices, the more generic ones) lead
to gaps in the virtual fields, while ears (convex vertices) lead
to an overlap of two fields. To “fill the gaps”, the mirroring
can be repeated, using the images of the walls as the new mir-
roring axes, as shown in Fig. 7. Depending on the vertice’s
angle, this can be performed multiple times. In general a gap
remains where the next substantiating step would lead to an
overlap (except for angles of π/n, with n being a natural num-
ber). This can be overcome by cutting the overlaping parts
by the bisecting line of the remaining angle (dot-dashed line
in Fig. 7). The last step can also be used for the overlapping
fields in ears.

The situation is even more complicated in three dimen-
sions, but corner cubes, as the simplest case of this general-
ization, can be handled straightforwardly.

3.2: Arcs

For curved walls, a point r will be mirrored with respect
to a wall point b, the normal of which is co-linear with the
line connecting the two points. Then, the mirrored point r ′
can be constructed with or without taking into account the
radius of curvature R of the wall at b. We consider only the
latter case, i.e. ‖r − b‖ = ‖r ′ − b‖. Nevertheless, the density
of a mirrored point cloud will be higher (lower) behind a
convex (concave) wall part. This directly affects the particle
density for the Mirroring Approach, while the Continuation
Approach just “copies” the already coarse grained density
field. The general effect will vanish with decreasing w/R,
though.

Another aspect is the existence of multiple b(r) for con-
cave wall parts, which in turns lead to multiple r ′. These have
mutual distances of at least the order of the (smallest) radius
of curvature R. Hence, for w � R, only one of them will
contribute.

Appendix 4: Computational efficiency

The following strategies might be very helpfull to save com-
putation time.

4.1: Translational symmetries

A lot of computational effort can be saved by taking the
geometry into account. For systems with translational invari-
ance in the x- and y-direction (the one in Sect. 4 is such a
case in two dimensions) one can use an adjusted Gaussian
instead of isotropic coarse graining and then averaging over
these two directions:

φ(z) = 1

Lx L y

∫
φ(r) dx dy = 1

π3/2w3Lx L y

∫
e

−r2

w2 dx dy

= 1

π1/2wLx L y
e

−z2

w2 (54)

That means, one has to convolute only with respect to z.

4.2: Cut-off

For coarse graining functions with an infinite support (e.g.
Gaussian), all particles or contacts contribute in principle to
any location of measurement. This would render the mea-
surement an operation of order O(N ) for every point. For
quickly decreasing functions, a cutoff radius should be intro-
duced beyond which the values are numerically negligible.
When using, as in most cases, double precision, this defines:

φ(rcutoff) = 10−16 (55)

Of course a function with bounded support contains intrinsi-
cally this cut-off.
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