
Comp. Part. Mech. (2014) 1:199–209
DOI 10.1007/s40571-014-0022-7

On mesh-particle techniques

Rainald Löhner · Fernando Camelli · Joseph D. Baum ·
Fumiya Togashi · Orlando Soto

Received: 22 December 2013 / Revised: 31 March 2014 / Accepted: 3 April 2014 / Published online: 9 May 2014
© Springer International Publishing Switzerland 2014

Abstract The treatment of dilute solid (or liquid) phases
via Lagrangian particles within mesh-based gas-dynamics
(or hydrodynamic) codes is common in computational fluid
dynamics. While these techniques work very well for a large
spectrum of physical parameters, in some cases, notably
for very light or very heavy particles, numerical instabili-
ties appear. The present paper examines ways of mitigating
these instabilities, and summarizes important implementa-
tional issues.

Keywords Particle methods · Finite elements · Computa-
tional fluid dynamics

1 Introduction

When solving the compressible two-phase equations, the gas,
as a continuum, is best represented by a set of partial differen-
tial equations (the Navier–Stokes equations) that are numer-
ically solved on a mesh. Thus, the gas characteristics are
calculated at the mesh points within the flowfield. However,
as the particles (or fragments) may be relatively sparse in the
flowfield, they can be modeled by either:

Electronic supplementary material The online version of this
article (doi:10.1007/s40571-014-0022-7) contains supplementary
material, which is available to authorized users.

R. Löhner (B) · F. Camelli
Department of Computational and Data Science M.S. 6A2,
CFD Center, College of Science, George Mason University Fairfax,
Fairfax, VA 22030-4444, USA
e-mail: rlohner@gmu.edu

J. D. Baum · F. Togashi · O. Soto
Advanced Technology Group, SAIC, McLean, VA 22020, USA

(a) A continuum description, i.e. in the same manner as the
fluid flow, or

(b) A particle (or Lagrangian) description, where individ-
ual particles (or groups of particles) are monitored and
tracked in the flow.

Although the continuum (so-called multi-fluid) method has
proven relatively successful for compressible two-phase
flows, the inherent assumptions of the continuum approach
lead to several disadvantages which may be countered with a
Lagrangian treatment for dilute flows [15,16,23,30,70]. The
continuum assumption cannot robustly account for local dif-
ferences in particle characteristics, particularly if the particles
are polydispersed. In addition, the only boundary conditions
that can be considered in a straightforward manner are slip-
ping and sticking, whereas reflection boundary conditions,
such as specular and diffuse reflection, may be additionally
considered with a Lagrangian approach. Turbulent disper-
sion can also be treated on a more fundamental basis. Finally,
numerical diffusion of the particle density can be eliminated
by employing Lagrangian particles due to their pointwise
spatial accuracy.

While a Lagrangian approach offers many potential
advantages, this method also creates problems that should
be addressed by the model. For instance, large numbers of
particles may cause a Lagrangian analysis to be memory
intensive. This problem is circumvented by treating parcels
of particles, i.e. doing the detailed analysis for one particle
and then applying the effect of many. In addition, continu-
ous mapping and remapping of particles to their respective
elements may increase computational requirements, particu-
larly for unstructured grids.

The present paper summarizes the procedures used, as
well as some of the difficulties encountered when implement-

123

http://dx.doi.org/10.1007/s40571-014-0022-7

200 Comp. Part. Mech. (2014) 1:199–209

ing a particle description of diluted phases in a flow solver
based on unstructured grids.

2 Equations describing the motion of particles

In order to describe the interaction of particles with the flow,
the mass, forces and energy/ work exchanged between the
flowfield and the particles must be defined. Before going on,
we need to define the physical parameters involved. For the
fluid, we denote by ρ, p, e, T, k, vi , μ, γ and cv the den-
sity, pressure, specific total energy, temperature, conductiv-
ity, velocity in direction xi , viscosity, ratio of specific heats
and the specific heat at constant volume. For the particles,
we denote by ρp, Tp, vpi , d, cp and Q the density, temper-
ature, velocity in direction xi , equivalent diameter, and heat
transferred per unit volume. In what follows, we will refer to
particles, fragments, or chunks collectively as particles.

Making the classic assumptions that the particles may be
represented by an equivalent sphere of diameter d, the drag
forces D acting on the particles will be due to the difference
of fluid and particle velocity:

D = πd2

4
· cD · 1

2
ρ|v − vp|(v − vp). (1)

The drag coefficient cD is obtained empirically from the
Reynolds-number Re:

Re = ρ|v − vp|d
μ

(2)

as:

cD = max

(
0.1,

24

Re

(
1 + 0.15Re0.687

))

The lower bound of cD = 0.1 is required to obtain the proper
limit for the Euler equations, where Re → ∞. The heat
transferred between the particles and the fluid is given by

Q = πd2

4
·
[
h · (T − Tp) + σ ∗ · (T 4 − T 4

p)
]
, (3)

where h is the film coefficient andσ ∗ the radiation coefficient.
For the class of problems considered here, the particle tem-
perature and kinetic energy are such that the radiation coef-
ficient σ ∗ may be ignored. The film coefficient h is obtained
from the Nusselt-Number Nu:

Nu = 2 + 0.459Pr0.333 Re0.55, (4)

where Pr is the Prandtl-number of the gas

Pr = k

μ
, (5)

as

h = Nu · k

d
. (6)

Having established the forces and heat flux, the particle
motion and temperature are obtained from Newton’s law and
the first law of thermodynamics. For the particle velocities,
we have:

ρp
πd3

6
· dvp

dt
= D . (7)

This implies that:

dvp

dt
= 3ρ

4ρpd
· cd |v−vp|(v−vp)=αv|v−vp|(v−vp). (8)

The particle positions are obtained from:

dxp

dt
= vp. (9)

The temperature change in a particle is given by:

ρpcp
πd3

6
· dTp

dt
= Q, (10)

which may be expressed as:

dTp

dt
= 3k

4cpρpd2 · Nu · (T − Tp) = αT (T − Tp). (11)

Equations (8, 9, 11) may be formulated as a system of Ordi-
nary Differential Equations (ODEs) of the form:

dup

dt
= r(up, x, u f), (12)

where up, x, u f denote the particle unknowns, the position
of the particle and the fluid unknowns at the position of the
particle.

3 Numerical integration

As seen above, the equations describing the position, velocity
and temperature of a particle or fragment may be formulated
as a system of nonlinear Ordinary Differential Equations (see
above) of the form:

dup

dt
= r(up, x, u f) . (13)

They can be integrated numerically in a variety of ways. Due
to its speed, low memory requirements and simplicity, we
have chosen the following k-step low-storage Runge-Kutta
procedure to integrate them:

un+i
p = un

p + αi�t · r(un+i−1
p , xn+i−1, un+i−1

f),

i = 1, k, �u0 = 0. (14)

For linear ODEs the choice

αi = 1

k + 1 − i
, i = 1, k (15)

leads to a scheme that is k-th order accurate in time. Note that
in each step the location of the particle with respect to the

123

Comp. Part. Mech. (2014) 1:199–209 201

fluid mesh needs to be updated in order to obtain the proper
values for the fluid unknowns. The default number of stages
used is k = 4. This would seem unnecessarily high, given
that the flow solver is of second-order accuracy, and that the
particles are integrated separately from the flow solver before
the next (flow) timestep, i.e. in a staggered manner. However,
it was found that the 4-stage particle integration preserves
very well the motion in vortical structures and leads to less
‘wall sliding’ close to the boundaries of the domain. The
stability/ accuracy of the particle integrator should not be a
problem as the particle motion will always be slower than
the maximum wave speed of the fluid (fluid velocity + speed
of sound).

The transfer of forces and heat flux between the fluid and
the particles must be accomplished in a conservative way, i.e.
whatever is added to the fluid must be subtracted from the
particles and vice-versa. The Finite Element Discretization
of the the fluid equations will lead to a system of ODE’s of
the form:

M�u = r, (16)

where M,�u and r denote, respectively, the consistent mass
matrix, increment of the unknowns vector and right-hand
side vector. Given the ‘host element’ of each particle, i.e.
the fluid mesh element that contains the particle, we add the
forces and heat transferred to r as follows:

ri
D =

∑
elsurri

N i (xp)Dp. (17)

Here N i (xp) denotes the shape-function values of the host
element for the point coordinates xp. As the sum of all shape-
function values is unity at every point:∑

N i (x) = 1 ∀x, (18)

this procedure is strictly conservative.
The change in momentum and energy for one particle is

given by:

fp = ρp
πd3

6

(
vn+1

p − vn
p

)
�t

, (19)

qp = ρpcpp
πd3

6

(
T n+1

p − T n
p

)
�t

. (20)

These quantities are multiplied by the number of particles in
a packet in order to obtain the final values transmitted to the
fluid. Before going on, we summarize the basic steps required
in order to update the particles one timestep:

– Initialize Fluid Source-Terms: r = 0
– DO: For Each Particle:

– DO: For Each Runge-Kutta Stage:
– Find Host Element of Particle: IELEM, N i (x)

– Obtain Fluid Variables Required
– Update Particle: Velocities, Position, Tempera-

ture, …

– – ENDDO
– Transfer Loads to Element Nodes

– ENDDO

4 Particle parcels

For a large number of very small particles, it becomes impos-
sible to carry every individual particle in a simulation. The
solution to this dilemma is to:

(a) Agglomerate the particles into so-called packets of Np

particles;
(b) Integrate the governing equations for one individual par-

ticle; and
(c) Transfer back to the fluid Np times the effect of one par-

ticle.

Beyond a reasonable number of particles per element (typi-
cally > 8), this procedure produces accurate results without
any deterioration in physical fidelity.

4.1 Agglomeration/subdivision of particle parcels

As the fluid mesh may be adaptively refined and coarsened
in time, or the particle traverses elements of different sizes,
it may be important to adapt the parcel concentrations as
well. This is necessary to ensure that there is sufficient parcel
representation in each element and yet, that there are not too
many parcels as to constitute an inefficient use of CPU and
memory. For example, as an element with parcels is refined
by one level (the maximum is typically four or five levels
of refinement) to yield eight new elements, the number of
parcels per new element will be significantly reduced if no
parcel adaption is employed. This can lead to a reduction in
local spatial accuracy, especially if no parcels are left in one
or more of the new elements.

In order to locally determine if a refinement or a coars-
ening of parcels is to be performed, the number of parcels
in each element is checked and modified either after a set
number of timesteps or after each mesh adaptation/ change.

5 Limiting during particle updates

As the particles are integrated independently from the flow
solver, it is not difficult to envision situations where for the
extreme cases of very light or very heavy particles physically
meaningless or unstable results may be obtained.

123

202 Comp. Part. Mech. (2014) 1:199–209

5.1 Small/light particles

In order to see the difficulties that can occur with very small
and/or light particles, consider an impulsive start from rest.
This situation can happen when a shock enters a dusty zone.
The friction forces are proportional to the difference of fluid
and particle velocities to the 2nd power, and to the diameter
of the particle to the 2nd power. The mass of the particle,
however, is proportional to the diameter of the particle to the
3rd power. If the timestep is large and the particle very light,
after a timestep (or Runge-Kutta substep) the velocity of the
particle may exceed the velocity of the fluid. This is clearly
impossible and is only due to the discretization error of the
numerical integration in time (i.e. the timestep is too large).
The same can happen to the temperature (and diameter, in
the case of burning particles) of the particle.

It would be impractical (and unnecessary) to reduce the
timestep so as to achieve high temporal accuracy throughout
the calculation. After all, for the case of a shock entering a
quiescent dusty zone the timestep would have to be reduced
until the shock has traversed the complete region. In order
to prevent this, the changes in particle velocities and tem-
peratures are limited in order not to exceed the differences
in velocities and temperature between the particles and the
fluid. Assume (in 1D) a difference of velocities at time t = tn :

�vn = vn − vn
p. (21)

Furthermore, assume that the particles are updated before the
flow. The particle velocity is then limited as follows:

– If: vn
p < vn ⇒ vn+1

p ≤ vn

– If: vn
p > vn ⇒ vn+1

p ≥ vn

This limiting procedure is applied to each of the Runge–Kutta
stages.

5.2 Large/heavy/many particles

Consider now the opposite case as before. Assume that the
particles are started impulsively from rest (e.g. by a shock
entering a quiescent dusty region), but that there are many or
these and/or they are large or heavy. In this case, when the
drag force is added back to the fluid, if the timestep is too
large a flow reversal could occur (if the particles are acceler-
ated the flow is decelerated). To prevent this unphysical (and
unstable) phenomenon to happen, the source-terms are lim-
ited. This is done by comparing the resulting source-terms
for the momentum and energy equations of the fluid with
the fluid velocities and temperature. Assuming we know the
source-terms for the particles sv, sT and the current timestep
�t , the procedure is as follows:

– Obtain the average particle velocities and temperatures
at the points of the flow mesh vp, Tp.

– Obtain the change in flow velocities and temperatures if
only the source-terms from the particles are added, e.g.
for the velocities:

M ρ �v = sv; (22)

– Obtain the allowed increase/decrease factors from:

αv = |(vp − v) · �v|
�v · �v

; αT = |(Tp − T)

�T
; (23)

– Limit the allowed increase/decrease factor:

αv =max(0, min(1, αv)), αT =max(0, min(1, αT)).

(24)

This assures that the source-terms added to the momentum
and energy equation remain bounded. While this procedure
works very well, avoiding instabilities, it is non-conservative.

6 Particle contact

In some situations, the density of the particles increases to
a point that they basically occupy all the volume available.
Although such high density situations are outside the scope
of the underlying theory, production runs require techniques
that can cope with them. What happens physically is that at
some point particles contact with one another, thereby limit-
ing the achievable density and volume-fill ratio of particles.

6.1 Particle forces due to contact

In order to approximate the forces exerted by the contact, the
first measure that has to be obtained is the equivalent radius.
After all, we are computing packets of particles. Some of
these packets represent hundreds or thousands of actual parti-
cles. Given n p particles of diameter dp, the volume occupied
by them is given by:

V = n p

αK

π

6
d3

p, (25)

where αK is the maximum filling factor (whose theoretical
limit for spheres is the Kepler limit of αK ≈ 0.74). The
equivalent radius is therefore given by:

ra =
[

3

4π
V

]1/3

=
[

n p

8αK

]1/3

dp. (26)

Given two particle packets with positions xi , x j , the overlap
distance is given by:

doi j = ra
i + ra

j − di j , di j = |xi − x j |. (27)

123

Comp. Part. Mech. (2014) 1:199–209 203

The average overlap betwen particles is then:

dos
i j = doi j

1

2

(
1

n pi

+ 1

n p j

)
. (28)

Defining a unit normal n in the direction i, j as:

ni j = xi − x j

|xi − x j | , (29)

the relative velocity of the particles defines a tangential direc-
tion t:

vi j = v j − vi , vn
i j = vi j · ni j , vt

i j = vi j − vn
i j · ni j ,

ti j = vt
i j

|vt
i j |

. (30)

The normal and tangential forces are:

f n
i j = 1

2

(
ki + k j

)
dos

i j , (31)

f t
i j = 1

2

(
hi + h j

)
f n
i j , (32)

where k, h refer to the stiffness and damping specified. The
tangential force is limited so as to avoid a reversal in relative
tangential velocities:

f t
i j = min

(
f t
i j ,

|vt
i j |

�t · max(mi , m j)

)
, (33)

A damping force is added in the normal direction in order to
avoid ‘ringing’. This force is given by:

f nd
i j = −vn

i j
(hi + h j) · (ki + k j)

(mi + m j)
, (34)

and is limited to the lowest possible value of damping in order
to avoid revertion of contact force due to velocity damping:

f nd
i j = max

(
− f n

i j , f nd
i j

)
. (35)

The complete force is then given by:

fi j = (f n
i j + f nd

i j) · n + f t
i j · t. (36)

The particles are stored in a bin in order to quickly find the
particles in the vicinity of any given particle.

6.2 Estimating contact stiffness and damping parameters

The estimation of the required particle contact stiffness and
damping parameters presents an interesting challenge. The
measured values for contact stiffness may be very high, forc-
ing a reduction of the allowable timestep. Therefore, an
attempt was made to obtain values that would avoid pene-
tration, yet allow the usual CFL-based flowfield timesteps to
be kept. Let us consider a stationary particle in a flow with

density ρ f and velocity v f . In this case the force exerted by
the fluid is given by:

D = πd2

4
· cD · 1

2
ρ f v

2
f (37)

cD = max

(
0.1,

24

Re

(
1 + 0.15Re0.687

))
, Re = ρ f v f d

μ
.

(38)

The stiffness required in order to avoid a penetration distance
of ξd is then:

kξd = D, (39)

or

k = D

ξd
. (40)

For the low and high Reynolds-number regimes, we obtain:

kRe<1 ≈ 3πμv

ξ
, kRe>>1 ≈ 0.1πdρv2

8ξ
. (41)

7 Accounting for void fractions

The amount the fluid can occupy in any given volume is
reduced by the presence of particles. In the original derivation
of the theory the assumption of a very dilute solid phases
was made. This implied that all volume (or void fraction)
effects could be neglected. As users keep pushing up the
void fraction, these assumptions are no longer valid and the
effect of the void fraction has to be accounted for in the flow
solver. Given a volume V , occupied to the extent V f by a
fluid and Vp by particles, the void fraction ε is defined as:

ε = V f

V
= V − Vp

V
. (42)

The Navier–Stokes equations for the case of noticeable void
fractions are given by [28,69]:

u,t + ∇ · (Fa − Fv) = S, (43)

where

u = ε {ρ , ρvi , ρe} ,

Fa
j = ε

{
ρv j , ρviv j + pδi j , v j (ρe + p)

}
,

Fv
j = ε

{
0 , σi j , vlσl j + kT, j

}
. (44)

S = {
0, pε,x + ερgx , pε,y

+ ερgy, pε,z + ερgz, (pε, j + ερg j)v j
}
. (45)

Here ρ, p, e, T, k, vi , gi denote the density, pressure, spe-
cific total energy, temperature, conductivity, fluid velocity
and gravity in direction xi respectively. This set of equations
is closed in the usual way by providing an equation of state for
the pressure, relating the stress tensor σi j to the deformation
rate tensor.

123

204 Comp. Part. Mech. (2014) 1:199–209

A

B

Fig. 1 Particle tracing on unstructured grid

8 Particle tracking

A common feature of all particle-grid applications is that
the particles do not move far between timesteps. This makes
physical sense: if a particle jumped ten gridpoints during
one timestep, it would have no chance to exchange informa-
tion with the points along the way, leading to serious errors.
Therefore, the assumption that the new host elements of the
particles are in the vicinity of the current ones is a valid one.
For this reason, the most efficient way to search for the new
host elements is via the vectorized neighbour-to-neighbour
algorithm described in [33,45] (see Fig. 1). The idea is to
search for the host elements of as many particles as possible.
The obstacle to this approach is that not every particle will
find its host element in the same number of attempts or passes
over the particles. The solution is to reorder the particles to
be interpolated after each pass so that all particles that have
not yet found their host element are at the top of the list.

9 Particles and shared memory parallel machines

For shared memory parallel machines, the ‘find host element’
technique described above can be used directly. One only has
to make sure that sufficiently long vectors are obtained so
that even on tens of cores the procedure is efficient. For the
‘particle loads to fluid nodes’ assembly, the particles loads
are first accumulated according to elements. Thereafter, these
element loads are added to the fluid nodes using the standard
mesh coloring techniques [45].

10 Particles and GPUs

Almost all physics subroutines employed by the authors
in the FEFLO code have been ported to GPUs using the
semi-automatic tool F2CUDA [49,51,58,59]. Particles on
an unstructured mesh represent two ‘irregular’ data struc-
tures. Therefore, it is not surprising that porting the particle
modules to GPUs required some effort. In order to pre-sort
these particles heavy use was made of the CUDA Thrust

library, in particular the thrust::copy_if option. A fur-
ther algorithmic difficulty was encountered during the step
that adds the source-terms (forces, source-terms) from parti-
cles to points. After all, many particles could reside in an ele-
ment, adding repeatedly to points. Such memory contention
inhibits straightforward parallelization directly over the par-
ticles, necessitating a more advanced algorithm.

One solution is to use the colouring/grouping of elements
(used to avoid memory conflicts during scatter-add opera-
tions) and the host element information of each particle to
presort the order in which the particle source-terms are added.
The problem with this approach is that the number of parti-
cles in each element is not the same. Therefore, besides being
difficult to vectorize, large load imbalances may occur.

An alternative approach is to apply data-parallel algo-
rithms provided by the Thrust library [29]. In particu-
lar, prior to scattering particle-point contributions, they
are first written to a temporary array along with the
point index to which the contributions should be scat-
tered. Next, the contributions array is sorted by the point
indexes using thrust::sort_by_key, which is based on
the Merrill-radix-sort algorithm [57]. With particle-point
contributions now arranged consecutively in memory, the
next step is to sum the contributions to each point using the
thrust::reduce_by_key algorithm. Given that not nec-
essarily all points will receive a contribution from particles,
it is necessary to then perform a thrust::scatter to map
the computed particle contributions to the appropriate points.
While most of FEFLO is automatically ported to the GPU via
F2CUDA [49,51], this is one instance where this is not the
case. The employed translator allows for incorporating man-
ual overrides of the original Fortran code. This is done here
by expressing the algorithms in terms of standardized data-
parallel primitives. These primitives are highly non-trivial to
implement efficiently, but are easily accessible via the Thrust
library. An advantage of this approach is that future perfor-
mance improvements to the Thrust library will be immedi-
ately reflected in the GPU version of FEFLO.

We remark here, as we have done on several occasions
before, that favourable GPU timings require that all opera-
tions be performed on the GPU.

11 Particles and distributed memory parallel machines

Porting particle tracing and particle/fluid interaction options
to a distributed memory environment within a domain
decomposition framework/ approach requires the proper
transfer of particles from one domain to the other, with the
associated extra coding. FEFLO uses overlap of domains that
is one layer thick. While this has many advantages, in the case
of particles one faces the problem that a particle could be in

123

Comp. Part. Mech. (2014) 1:199–209 205

several domains. In order to arrive at a fast particle transmis-
sion algorithm, the following procedure was implemented:

– Obtain all the elements that border/overlap other domains;
– Order these border elements according to the communi-

cation passes that exchange mesh information with neigh-
bours;

– Obtain all the particles in each element;
– In each exchange pass:

– From the list of border elements and the list of parti-
cles in each element: assemble all particles that need
to be sent to the neighbouring domain;

– Exchange the information of how many particles will
be sent and received in this pass;

– Send/receive the particles from the neighbouring
domains;

– Remove the duplicate particles residing in the domain.

A number of problems had to be overcome before this
procedure would work reliably and without excessive CPU
requirements:

– Duplicate iarticles after exchanging the particles, the same
particle may appear repeatedly in the same processor. For
example, the particle may be moving along the border
of two domains, or may move slowly (which implies it
was also sent from the neighbouring domain in the pre-
vious timestep). The best solution for this dilemma is to
assign to each particle a so-called ‘unique universal num-
ber’ (UUN). The particles are then traversed, and those
whose UUN is already in the list are discarded.

– Particles with same location due to flow physics and/or
geometric singularities distinct particles may end up in the
same location. This is avoided by traversing all elements,
finding the particles in each, and then separating in each
element those that are too close together. This last step is
done by assigning a small random change to the shape-
functions of the particles at the current location.

It was observed that the parallel particle update modules
required a considerable amount of CPU resources. For cases
where the particle count per processor was in the millions
(and this happens frequently), an update could take 2–3 min
(!). After extensive recoding and optimization for both MPI
and OMP, the same update was reduced to 2–3 s per update.

12 Examples

The techniques described above were implemented in
FEFLO, a general-purpose CFD code based on the following
general principles:

Fig. 2 a Tube with particles: fluid density. b Tube with particles: fluid
velocity. c Tube with particles: fluid pressure

– Use of unstructured grids (automatic grid generation and
mesh refinement);

– Finite element discretization of space;
– Separate flow modules for compressible and incompress-

ible flows;

123

206 Comp. Part. Mech. (2014) 1:199–209

Fig. 3 a Tube with particles: fluid density. b Tube with particles: fluid velocity. c Tube with particles: fluid pressure. d Tube with particles: dust
velocity. e Tube with particles: dust density

– Edge-based data structures for speed;
– Optimal data structures for different architectures;
– Bottom-up coding from the subroutine level to assure an

open-ended, expandable architecture.

The code has had a long history of relevant applications
involving compressible flow simulations in the areas of tran-
sonic flow [37,52–56], store separation [4,7,9,11,12], blast–
structure interaction [3,5,6,8,10,13,14,40,46,63,65,67],

123

Comp. Part. Mech. (2014) 1:199–209 207

incompressible flows [2,39,42,50,60,62,66], free-surface
hydrodynamics [36,43,44], dispersion [17–20,41], patient-
based haemodynamics [1,21,22,37,47] and aeroacoustics
[31]. The code has been ported to vector [38], shared mem-
ory [35,64,68], distributed memory [34,48,60,61] and GPU-
based [24–27,49] machines.

12.1 Shock into dust

This case considers a 60-cm-square rigid shaft, with the
axis running in the x-direction. The shaft is considered as
semi-infinite starting at x = −250 cm. The gas is air,
and treated as a perfect gas obeying p = ρ R T with
R = 2.869 · 106 dynes − cm/g − K and γ = 1.4. The
air for x > 0 is initially at p = 1.01 · 106 dynes/cm2

and T = 15.15oC = 288.3o K . The air for x < 0 is ini-
tially at p = 4000 psi = 2.7579 · 108 dynes/cm2 and
T = 1430.6o K . Initially the region x > 250.0 cm is filled
with a mixture of air and uniformly distributed dust. The dust
particles have a density of ρp = 2.3 g/cm3 and D = 100 nm.
The average mass loading of dust inside the disk is 0.1 g/cm3.
The dust particles therefore occupy a volume fraction of
0.1/2.3 = 0.0435 within the dusty region, sufficiently low
for a dilute species assumption. At time t = 0 the gases
are allowed to begin interacting as in a Riemann problem,
launching a shock wave propagating in the +x direction.
Although the problem is one-dimensional, it was run using
the 3-D code. The results obtained have been summarized
in Fig. 2a–c, which show the variables along the centerline
of the tube for different times. The emergence of the classi-
cal Riemann problem is visible, followed by slowdown and
partial reflection due to the presence of the particles. This
is a high-loading case (the density of the particles are 100x
the ambient density of air), and can lead to instabilities. In
order to trigger these, we ran on a cartesian mesh split into
tetrahedra, with 2 × 2 × 2 particles per cartesian cell. Note
the emergence of oscillations in the velocities as the shock
enters the region of quiescent particles. Without the limiters
described above, this type of run would fail.

This case was repeated with 4x4x4 per cartesian cell. The
results are shown in Fig. 3. Note that the oscillations have
largely disappeared.

12.2 Blast in room with dilute material

This example considers the flow and particle transport result-
ing from a blast in a room where dilute material has been
deposited. The powder-like material is modeled via particles.
The geometry, together with the solution, can be discerned
from Fig. 4.

The compressible Euler equations are solved using an
edge-based FEM-FCT technique [32,45,52]. The initializa-
tion was performed by interpolating the results of a very

Fig. 4 Blast in room: pressures and particle velocities

Table 1 Blast in room with dilute material

nelem CPU/GPU mvecl Time (sec)

4.0 M Xeon E5530 (1) 32 305

4.0 M Xeon E5530 (2) 32 178

4.0 M Xeon E5530 (4) 32 113

4.0 M Xeon E5530 (6) 32 79

4.0 M Xeon E5530 (8) 32 68

4.0 M Tesla C2070 51200 49

detailed 1D (spherically symmetric) run. The particles are
transported using a 4th order Runge-Kutta technique. The
timing studies (summarized in Table 1) were carried out with
the following set of parameters:

– Compressible Euler
– Ideal Gas EOS
– Explicit FEM–FCT
– Initialization from a 1D file
– 4.0 Million elements, 93,552 particles
– Run for 60 steps

13 Conclusions and outlook

The treatment of dilute solid (or liquid) phases via Lagrangian
particles within mesh-based gas-dynamics (or hydrody-
namic) codes is common in computational fluid dynamics.
While these techniques work very well for a large spectrum
of physical parameters, in some cases, notably for very light
or very heavy particles, numerical instabilities appear. The
present paper has examined ways of mitigating these instabil-
ities. Furthermore, important implementational issues were
summarized.

123

208 Comp. Part. Mech. (2014) 1:199–209

Current efforts are directed at porting all compressible
flow modules to account for volume blockage effects, and
the link to chemical reactions with burning particles.

Acknowledgments This research used resources of the Oak Ridge
Leadership Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725, and also resources
of the DoD High Performance Computing Modernization Program. This
support is gratefully acknowledged.

References

1. Appanaboyina S, Mut F, Löhner R, Putman CM, Cebral JR (2008)
Computational fluid dynamics of stented intracranial aneurysms
using adaptive embedded unstructured grids. Int J Numer Methods
Fluids 57(5):475–493

2. Aubry R, Mut F, Löhner R, Cebral JR (2008) Deflated precondi-
tioned conjugate gradient solvers for the pressure–poisson equa-
tion. J Comput Phys 227(24):10196–10208

3. Baum JD, Löhner R (1991) Numerical simulation of shock inter-
action with a modern main battlefield tank AIAA-91-1666.

4. Baum JD, Löhner R (1993) Numerical simulation of pilot/seat ejec-
tion from an F-16 AIAA-93-0783.

5. Baum JD, Luo H, Löhner R (1993) Numerical simulation of a blast
inside a boeing 747; AIAA-93-3091.

6. Baum JD, Luo H, Löhner R (1993) Numerical simulation of a
blast withing a multi-room shelter. In: Proceedings of the MABS-
13 conference. The Hague, pp 451–463

7. Baum JD, Luo H, Löhner R (1994) A new ALE adaptive unstruc-
tured methodology for the simulation of moving bodies; AIAA-
94-0414

8. Baum JD, Luo H, Löhner R (1995) Numerical simulation of blast
in the world trade center; AIAA-95-0085

9. Baum JD, Luo H, Löhner R (1995) Validation of a new ALE, adap-
tive unstructured moving body methodology for multi-store ejec-
tion simulations; AIAA-95-1792

10. Baum JD, Luo H, Löhner R, Yang C, Pelessone D, Charman C
(1996) Coupled fluid/structure modeling of shock interaction with
a truck; AIAA-96-0795

11. Baum JD, Luo H, Löhner R, Goldberg E, Feldhun A (1997) Appli-
cation of unstructured adaptive moving body methodology to the
simulation of fuel tank separation from an F-16 c/d fighter; AIAA-
97-0166

12. Baum JD, Löhner R, Marquette TJ, Luo H (1997) Numerical sim-
ulation of aircraft canopy trajectory; AIAA-97-1885

13. Baum JD, Luo H, Mestreau E, Löhner R, Pelessone D, Charman
C (1999) Coupled CFD/CSD methodology for modeling weapon
detonation and fragmentation; AIAA-99-0794

14. Baum JD, Mestreau E, Luo H, Löhner R, Pelessone D, Giltrud
ME, Gran JK (2006) Modeling of near-field blast wave, evolution;
AIAA-06-0191

15. Balakrishnan K, Menon S (2010) On the role of ambient reactive
particles in the mixing and afterburn behind explosive blast waves.
Combust Sci Technol 182:186–214

16. Benkiewicz K, Hayashi K (2003) Two-dimensional numerical sim-
ulations of multi-headed detonations in oxygen–aluminum mix-
tures using an adaptive mesh refinement. Shock Waves 12(5):385–
402

17. Camelli F, Löhner R (2004) Assessing maximum possible damage
for contaminant release events. Eng Comput 21(7):748–760

18. Camelli F, Löhner R, Sandberg WC, Ramamurti R (2004) VLES
study of ship stack gas, dynamics; AIAA-04-0072

19. Camelli F, Löhner R (2006) VLES study of flow and dispersion
patterns in heterogeneous urban areas; AIAA-06-1419.

20. Camelli F, Lien J, Dayong D, Wong DW, Rice M, Löhner R, Yang
C (2012) Generating seamless surfaces for transport and dispersion
modeling in GIS. GeoInformatica 16(2):207–327

21. Cebral JR, Löhner R (2001) From medical images to anatomically
accurate finite element grids. Int J Numer Methods Eng 51:985–
1008

22. Cebral JR, Löhner R (2005) Efficient simulation of blood flow
past complex endovascular devices using an adaptive embedding
technique. IEEE Trans Med Imaging 24(4):468–476

23. Clift R, Grace JR, Weber ME (1978) Bubbles, drops and particles.
Academic Press, New York

24. Corrigan A, Camelli F, Löhner R (2010) Porting of an edge-based
CFD solver to GPUs; AIAA-10-0523.

25. Corrigan A, Camelli F, Löhner R, Mut F (2010) Porting of FEFLO
to GPUs. In: Proceedings of the ECCOMAS CFD 2010 conference.
Lisbon, June 14–17.

26. Corrigan A, Camelli FF, Löhner R, Wallin J (2011) Running
unstructured grid based CFD solvers on modern graphics hard-
ware. Int J Numer Methods Fluids 66:221–229

27. Corrigan A, Löhner R (2011) Porting of FEFLO to multi-GPU
clusters; AIAA-11-0948.

28. Deen NG, Sint Annaland Mv, Kuipers JAM (2006) Direct numer-
ical simulation of particle mixing in dispersed gas–liquid–solid
flows using a combined volume of fluid and discrete parti-
cle approach. In: Proceedings of the fifth international con-
ference on CFD in the process industries CSIRO, Melbourne,
13–15 Dec.

29. Hoberock J, Bell N (2010) Thrust: parallel template library. Version
1:3

30. Kim CK, Moon JG, Hwang JS, Lai MC, Im KS (2008) Afterburning
of TNT explosive products in air with aluminum particles; AIAA-
2008-1029.

31. Liu J, Kailasanath K, Ramamurti R, Munday D, Gutmark E, Löhner
R (2009) Large-eddy simulations of a supersonic jet and its near-
field acoustic properties. AIAA J 47(8):1849–1864

32. Löhner R, Morgan K, Peraire J, Vahdati M (1987) Finite element
flux-corrected transport (FEM-FCT) for the Euler and Navier–
Stokes equations. Int J Numer Methods Fluids 7:1093–1109

33. Löhner R, Ambrosiano J (1990) A vectorized particle tracer for
unstructured grids. J Comp Phys 91(1):22–31

34. Löhner R, Ramamurti R (1995) A load balancing algorithm for
unstructured grids. Comput Fluid Dyn 5:39–58

35. Löhner R (1998) Renumbering strategies for unstructured-
grid solvers operating on shared-memory, cache-based parallel
machines. Comput Methods Appl Mech Eng 163:95–109

36. Löhner R, Yang C, Oñate E (1998) Viscous free surface hydro-
dynamics using unstructured grids. In: Proceedings of the 22nd
Symposium Naval Hydrodynamics. Washington, D.C., Aug

37. Löhner R., Yang Chi, Cebral J, Soto O, Camelli F, Baum JD, Luo H,
Mestreau E, Sharov D, Ramamurti R, Sandberg W, Oh Ch (2001)
Advances in FEFLO; AIAA-01-0592.

38. Löhner R, Galle M (2002) Minimization of indirect addressing for
edge-based field solvers. Commun Numer Methods Eng 18:335–
343

39. Löhner R (2004) Multistage explicit advective prediction for
projection-type incompressible flow solvers. J Comput Phys
195:143–152

40. Löhner R, Baum JD, Rice D (2004) Comparison of coarse and
fine mesh 3D Euler predictions for blast loads on generic building
configurations. In: Proceedings of the MABS-18 conference bad.
Reichenhall, Germany, Sept

41. Löhner R, Camelli F (2005) Optimal placement of sensors for con-
taminant detection based on detailed 3D CFD simulations. Eng
Comput 22(3):260–273

123

Comp. Part. Mech. (2014) 1:199–209 209

42. Löhner R, Chi Yang JR, Camelli O Soto (2006) Improving the
speed and accuracy of projection-type incompressible flow solvers.
Comput Methods Appl Mech Eng 195(23–24):3087–3109

43. Löhner R, Yang Chi (2006) On the simulation of flows with violent
free surface motion. Comput Methods Appl Mech Eng 195:5597–
5620

44. Löhner R, Yang Chi (2007) Simulation of flows with violent free
surface motion and moving objects using unstructured grids. Int J
Numer Methods Fluids 53:1315–1338

45. Löhner R (2008) Applied CFD techniques, 2nd edn. Wiley, New
York

46. Löhner R, Luo H, Baum JD, Rice D (2008) Improvements in speed
for explicit, transient compressible flow solvers. Int J Numer Meth-
ods Fluids 56(12):2229–2244

47. Löhner R, Cebral JR, Camelli FF, Appanaboyina S, Baum JD,
Mestreau EL, Soto O (2008) Adaptive embedded and immersed
unstructured grid techniques. Comput Methods Appl Mech Eng
197:2173–2197

48. Löhner R, Mut F, Camelli FF (2011) Timings OF FEFLO on the
SGI-ICE machines; AIAA-11-1064.

49. Löhner R, Corrigan A (2011) Semi-automatic porting if a general
fortran CFD code to GPUs: the difficult modules; AIAA-11-3219.

50. Löhner R, Mut F, Cebral JR, Aubry R, Houzeaux G (2011) Deflated
preconditioned conjugate gradient solvers for the pressure–poisson
equation: extensions and improvements. Int J Numer Methods Eng
87(1–5):2–14

51. Löhner R (2012) F2GPU a general fortran to GPU translator. In:
Proceedings of the NVIDIA GTC conference. San Jose, May

52. Luo H, Baum JD, Löhner R (1994) Edge-based finite element
scheme for the Euler equations. AIAA J 32(6):1183–1190

53. Luo H, Baum JD, Löhner R, Cabello J (1994) Implicit finite ele-
ment schemes and boundary conditions for compressible flows on
unstructured grids; AIAA-94-0816.

54. Luo H, Baum JD, Löhner R (1999) An accurate, fast, matrix-free
implicit method for computing unsteady flows on unstructured
grids; AIAA-99-0937.

55. Luo H, Sharov D, Baum JD, Löhner R (2000) A class of matrix-
free implicit methods for compressible flows on unstructured grids.
In: First international conference on computational fluid dynamics,
Kyoto, July 10–14

56. Luo H, Baum JD, Löhner R (2001) A fast, matrix-free implicit
method for computing low mach number flows on unstructured
grids. Int J CFD 14:133–157

57. Merrill D, Grimshaw A (2010) Revisiting sorting for GPGPU
stream architectures. UVA CS Report CS2010-03 Charlottesville.

58. NVIDIA Corporation. NVIDIA CUDA 3.2 Programming Guide
(2010).

59. Peterson P (2009) F2PY: tool for connecting Fortran and python
programs. Int J Comput Sci Eng 4:296–305

60. Ramamurti R, Löhner R (1993) Simulation of flow past complex
geometries using a parallel implicit incompressible flow solver.
In: Proceedings of the 11th AIAA CFD conference, Orlando, pp
1049–1050

61. Ramamurti R, Löhner R (1996) A parallel implicit incompressible
flow solver using unstructured meshes. Comput Fluids 5:119–132

62. Ramamurti R, Sandberg WC, Löhner R (1999) Computation of
unsteady flow past deforming geometries. Int J Comput Fluid Dyn
13:83–99

63. Rice DL, Baum JD, Togashi F, Löhner R, Amini A (2008) First-
principles blast diffraction simulations on a notebook: accuracy,
resolution and turn-around issues. In: Proceedings of the MABS-
20 conference, Oslo

64. Sharov D, Luo H, Baum JD, Löhner R (2000) Implementation
of untructured grid GMRES+LU-SGS method on shared-memory,
cache-based parallel computers; AIAA-00-0927.

65. Stück A, Camelli F, Löhner R (2010) Adjoint-based design of shock
mitigation devices. Int J Numer Methods Fluids 64:443–472

66. Tilch R, Tabbal A, Zhu M, Decker F, Löhner R (2008) Combination
of body-fitted and embedded grids for external vehicle aerodynam-
ics. Eng Comput 25(1):28–41

67. Togashi F, Baum JD, Mestreau E, Löhner R, Sunshine D (2009)
Numerical modeling of long-duration blast wave evolution in con-
fined, facilities; AIAA-09-1531.

68. Tuszynski J, Löhner R (1998) Parallelizing the construction of indi-
rect access arrays for shared-memory machines. Commun Appl
Numer Methods Eng 14:773–781

69. Vreman AW, Geurts BJ, Deen NG, Kuipers JAM (2004) Large-
eddy simulation of a particle laden turbulent channel flow. In: Pro-
ceedings of the direct and large-eddy simulation V. ERCOFTAC
Series 9, pp 271–278

70. Zhang F (ed.) (2009) Shock wave science and technology reference
library, vol. 4: heterogeneous detonation. Springer, New York.

123

	On mesh-particle techniques
	Abstract
	1 Introduction
	2 Equations describing the motion of particles
	3 Numerical integration
	4 Particle parcels
	4.1 Agglomeration/subdivision of particle parcels

	5 Limiting during particle updates
	5.1 Small/light particles
	5.2 Large/heavy/many particles

	6 Particle contact
	6.1 Particle forces due to contact
	6.2 Estimating contact stiffness and damping parameters

	7 Accounting for void fractions
	8 Particle tracking
	9 Particles and shared memory parallel machines
	10 Particles and GPUs
	11 Particles and distributed memory parallel machines
	12 Examples
	12.1 Shock into dust
	12.2 Blast in room with dilute material

	13 Conclusions and outlook
	Acknowledgments
	References

