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Abstract A recently proposed nonlocal rheology for dense
granular flow, based on the concept of nonlocal granular flu-
idity, has demonstrated predictive capabilities in multiple
geometries. This work is concerned with determining how
the parameters of this continuum model arise from the prop-
erties of the grains themselves. We perform a controlled study
investigating how the surface friction of the grains influences
the continuum parameters, with a focus on how the nonlocal
amplitude, the model’s one new parameter, is affected. This is
achieved comparing two-dimensional discrete-element sim-
ulations of flowing disks to numerical solutions of the model
in planar shear and several annular shear geometries. A multi-
step calibration scheme for the continuum parameter extrac-
tion is developed and implemented. Results indicate the non-
local amplitude varies less than an order of magnitude over
a wide range of surface frictions, with a slight tendency to
increase as surface friction decreases, particularly in a regime
of small surface friction. Our data also show that the stress
and flow-rate variables deviate little from a local relation-
ship as surface friction vanishes, which corroborates certain
existing experimental findings.
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1 Introduction

Dry granular materials are ubiquitous in day-to-day life
(geotechnical matter, raw materials, food grains, pharma-
ceuticals) and are second only to water as the world’s
most handled industrial material. While modeling efforts for
these materials go back over two centuries, originating with
Coulomb’s pioneering work, a precise continuum descrip-
tion for granular deformation has remained an elusive goal. In
recent years, however, notable progress has been made on the
specific question of how to predict well-developed flows of
dense, dry granular media. A major step was the advent of the
“inertial rheology,” a local constitutive description of flow-
ing grains, ascribing a direct relationship between the local
stress state and the strain-rate [7,13]. The particular relation-
ship that emerges can be understood through dimensional
analysis of planar simple shearing of a material composed of
stiff, round grains with frictional viscoelastic contacts, and
takes the form of a dimensionless relationship

μ = μloc(I ), I = γ̇
√

m/P, μ = τ/P, (1)

where μ is the ratio of shear stress τ and normal pressure
P , I is the inertial number, γ̇ is the shear rate, and m is the
mean mass of a grain. This relation agrees with earlier scaling
relations stemming back to Bagnold [4]. The inertial number
can be understood as a ratio of the macroscopic time-scale
of applied shearing, to the microscopic or inertial time. The
precise function forμloc(I ) is empirically fit from planar sim-
ple shearing data and is characterized by a yield conditionμs

such that μloc(I → 0) = μs , rendering the relation akin to
that of a pressure-dependent yield stress fluid. This rheology
has also been coupled to a granular elasticity relation [14],
thereby closing the system mathematically to compute stress
and velocity in flowing or static grains, producing a general
mechanical law.
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The inertial rheology works well in describing uniform
flows (e.g. planar shearing) over a wide range of flow rates
[7]. It can also be isotropically extended to a fully 3D rheol-
ogy and is able to represent nonuniform flows at rapid rates
[13]. However, in slower, quasi-static zones of flow (roughly
I < 10−3) in nonuniform flow geometries, the one-to-one
inertial relation between μ and I is violated [16], and iner-
tial rheology flow predictions are incorrect. The behavior
displayed in these zones is unexplainable through any local
relation because the bulk stress/strain-rate behavior appears
to vary with the macroscopic geometry, even when the local
kinematics are identical. This has motivated the search for
an appropriate nonlocal model, able to account for such geo-
metric effects, by inclusion of an explicit length-scale based
on the mean grain diameter, d.

A nonlocal rheology that has recently emerged, the
“nonlocal granular fluidity” (NGF) model, appears to have
addressed this issue, and demonstrates the ability to quanti-
tatively predict granular flows in many disparate geometries,
in both rapid and quasi-static regimes [10,15]. Its predic-
tions have been verified in 2D and 3D as compared to both
discrete-particle simulations [15] and experiments [10]. Of
note, it is the first continuum model to quantitatively describe
all known flow data in the complex split-bottom family of
geometries [10]. The NGF model’s form takes inspiration
from the form of other fluidity models for emulsions, derived
from statistical physics arguments [5] rooted in soft glassy
rheology principles [23].

Specifically, NGF (in its reduced scalar form) is composed
of the system

γ̇ = gμ, gloc(μ, P) = γ̇loc(μ, P)

μ
= μ−1

loc(μ)
√

P/m

μ
,

g = gloc + ξ2∇2g. (2)

The field g is the granular fluidity, and ξ is the plastic cooper-
ativity length, which is proportional to d. Note that in planar
shear, flow gradients vanish and the above reduces appropri-
ately to the local rheology, but in the presence of gradients,
the Laplacian term “spreads” fluidity based on ξ . As verified
in multiple ways in [10,15], ξ is in fact not a constant length;
as in [10] we use a form inspired by [5], i.e.

ξ = A√|μ− μs |d, (3)

a form consistent with past work on jamming in amorphous
media [8,17,18,21,24] in that it diverges approaching a yield,
or jamming point. The parameter A, the dimensionless non-
local amplitude, is the only new parameter in the model,
which quantifies the cooperativity in the flow.

With the successes of NGF, a key question to ask is:
What is the connection between properties of the grains
themselves and the continuum parameters/functions of the

model, most importantly the new parameter A? To be able
to answer this question is potentially of great value, as it
would provide more complete upscaling between the micro-
and macro-scales, and moves us closer to the ability to pre-
dict a granular flow upon mere examination of the individual
grains. There are limitless grain properties to consider; we are
aware of past studies that have looked at connections to the
grain shape [2,3], polydispersity [22], and surface roughness
[6], but all have focused on the local continuum response
only. In this paper, we seek to provide a first step to the
broader, nonlocal, scenario by investigating how the NGF
model parameters depend on a single pertinent grain para-
meter while controlling all others. The property we will vary
is the surface friction coefficient, μsur f , which is a prop-
erty expected to have a nontrivial effect down into the quasi-
static regime for which the effect of nonlocality is the most
obvious.

To extract the continuum parameters, our study will utilize
discrete-element method (DEM) simulations of a material
composed of quasi-monodiserse 2D disks. Our general strat-
egy is to simulate flows in planar shear to measure the local
response function μloc(I ), and then to fit A by simulating
the same material in a family of annular shear geometries,
which brings out the nonlocal phenomena clearly. To fit A
we must calculate NGF solutions for comparison against the
DEM, which we do numerically using Mathematica 10. Due
to the symmetry of the annular cell geometry, the fluidity
partial differential equation reduces to an ordinary differ-
ential equation, greatly simplifying the numerical solution
process.

Details of the discrete-particle simulations are described
next, followed by details of the the parameter extraction and
results.

2 Discrete-element simulations

2.1 Studied geometries

The model is compared to two-dimensional annular and pla-
nar systems (see Fig. 1). The annular geometry is defined by
its inner radius R and outer radius Ro. The gap between the
walls is equal to 50d on the planar geometry and equal to
2R on the annular geometry (Ro = 3R), which avoids any
disturbing effect of the walls on the material behavior. The
granular material is composed of dissipative disks of average
diameter d (a polydispersity of 20 % prevents crystallization)
and average mass m. The shear stress is fully mobilized by
the relative motion of two rough walls made of contiguous
glued grains of a diameter equal to 2d. We prescribe the tan-
gential inner wall velocity Vw and the normal stress Pw (indi-
rectly through the motion of the outer wall). The value of Ro
slightly fluctuates with a velocity Ṙo = (P(Ro)− Pw)/gp,
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(a) (b)

Fig. 1 Two-dimensional a annular and b planar shear cells

Table 1 Dimensions of the
annular shear cells

Ri/d �/(2π)

R25 25 1/4

R50 50 1/8

R100 100 1/12

where P(Ro) is the normal stress at the vicinity of the outer
wall and gp is a viscous damping parameter. We define the
(measured) shear stress at the inner wall S.

We take advantage of the symmetry of the simulated sys-
tems introducing periodic boundary conditions along the tan-
gential direction. The annular cell is represented by an angu-
lar sector�, while the plane shear cell presents a width equal
to 50d (see [16] for more details).

Table 1 describes the dimensions of the annular shear cells.

2.2 System parameters

The contacts are described by a standard spring-dashpot law
defined by the damping coefficient gn , the coefficient of fric-
tion μsur f , and the elastic stiffness parameters kn and kt

(see Fig. 2). Physically we can relate gn to the coefficient
of restitution e (gn = −2 ln e

√
mkn/(π2 + ln2 e)) which

Fig. 2 Contact parameters

describes the dissipation of energy during a shock (with dura-
tion τc = π/

√
2kn/m − (gn/m)2).

The components of the contact forces (Fn and Ft ) depend
on normal and tangential components of the contact displace-
ments (respectively δn and δt ) and also on the time deriva-
tive of the normal displacement δ̇n . For two particles in con-
tact (δn ≥ 0), the normal component Fn = knδn + gn δ̇n is
always repulsive (Fn ≥ 0), while the tangential component
Ft = ktδt is limited by Coulomb friction (−knδnμsur f ≤
Ft ≤ knδnμsur f ). The motion of the particles is discretized
using Gear’s order three predictor-corrector algorithm [1].
A time step equal to τc/100 was chosen to perform simula-
tions with standard molecular dynamics method as in Refs.
[7,15,16].

Dimensional analysis allows us to reduce the number of
parameters to a few dimensionless quantities. We adopt the
relation kt/kn = 0.5 and e = 0.1, two parameters with
nearly no influence in dense granular flows [7]. We set the
relation between the normal stiffness and the confining pres-
sure kn/Pw = 104 in order to simulate quasi-rigid grains.
The motion of the outer wall is controlled by the dimension-
less number gp/

√
mkn = 0.1 which guarantees a permanent

contact between the wall and the material avoiding any even-
tual disturbance of the granular behavior.

We analyze the effect of different materials with a wide
range of coefficients of friction μsur f (0, 0.025, 0.05, 0.1,
0.2, 0.4 and 0.8) in all shear cells.

Similar to the inertial number I , we can define the dimen-
sionless wall velocity V :

V = Vw
d

√
m

Pw
, (4)

which describes the shear state in the scale of the system.
The local behavior of each granular material μloc(I ) is

obtained by plane shear simulations at different values of V
(0.005, 0.025, 0.05, 0.25, 0.5, 2.5, 5.0 and 7.5). The non-
local behavior is obtained in the annular cells with V = 2.5,
where a transition between inertial to quasi-static regimes is
observed from the inner to the outer wall.

2.3 Steady shear states

Initially, the particles are randomly disposed inside the cells,
producing very loose samples. As observed in [16], the sys-
tem reaches a steady state, characterized by constant time
averaged profiles of velocity and stress, after a short tran-
sient inferior to the shear length V�t ≈ 50 (where �t is
the simulation time). In practice, we adopt the conservative
steady state condition V�t = 100. All quantities result from
a time average of 400 steps distributed over the distance
V�t ≈ 200. The material bulk behavior is obtained from
space averages of the whole sample (excepting the very first
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layers near the walls) in plane shear. Annular results are ana-
lyzed by radial profiles smoothed through central moving
averages of d length (see Appendix for more details).

3 Continuum parameter extraction

Because the nonlocal effect is characterized by its ability
to remove uniqueness of the local rhelogical connection
between μ and I apparent in gradient-free flow geometries,
it is sensible to calibrate A based on how theμ and I fields in
the annular cell differ from the μloc relation in planar shear.
Our calibration strategy takes a few steps. For each value of
μsur f ,

1) The inertial rheology, given by the function μloc, is fit by
conducting a sequence of planar shear DEM simulations
of different prescribed I , measuring μ. The result is then
fit to a general mathematical form; we have found the
following form appropriate,

μ = μloc(I ) = μ0 + bI + (μs − μ0) exp(−I/C), (5)

see Fig. 3 for example. A simple linear relation between
μ and I is often assumed, but the above nonlinear form
permits us to better fit data for lowμsur f grains for which
past studies have revealed a non-negligible curvature of
the μloc function at low I [7]. We note that curvature of
the μ versus I relation is also observed for large I [12],
but in a range outside that of our current interest.

2) Three separate annular shear flow DEM simulations are
conducted, for R = 25, 50, and 100d. Coarse-grained
data is recorded when steady state is reached. The stress
distributions obtained, for each R, are fit to the mechan-
ically justified relations

μ(r) = SwR2

r2 P(r)
, P(r) ∼= Pw. (6)

Fig. 3 Relationship between local parameters and the fit-form for the
inertial rheology

The former relation is implied from torque balance, and
always well-fit to DEM data, and the latter is valid based
on our own data as well as others’ in this particular geom-
etry [15,16]. Here, Sw is the shear stress acting on the
inner wall.

3) Numerical simulation of NGF is begun by inputting the
above fit for μ(r), the local flow-rate γ̇loc(r) as obtained
applying the inertial rheology, and a guess for A. The
fluidity system, Eq. 2, is then solved for g(r), in the
three annular shear geometries, assuming g = gloc on
the boundaries. We have used this boundary condition
in past annular shear flow simulations with success [15],
however, the question of the precise form of the fluidity
boundary condition is still open. One other condition has
been used before, the Neumann condition ∂g/∂n = 0
[10]. Both are simple and pass the minimal test of yield-
ing a uniform g field in planar shear, as one would expect
for ‘ideal’ walls with small wall effects, and result in
very similar solutions overall, with small differences only
within a few grain diameters of a boundary. The latter
point is owed to the nature of the fluidity PDE being of
source-diffusion type, such that boundary effects tend to
be dominated over a short distance by the bulk source.
Once g(r) is computed, I (r) is obtained trivially from its
definition in Eq. 1.

4) Plots of μ versus I are made for all three annular shear
NGF solutions, and compared directly against scatter-
plots of those of the DEM. A is varied under a simple
bisection calibration approach until the NGF solutions
best match those of the DEM. We judge the match over
two decades of I , from 0.0005 to 0.05, which is low
enough to cover a broad range of behavior dominated by
the nonlocal effect but still large enough to capture the
transition zone where the local influence is diminishing.

4 Results

Our tests cover seven different surface roughness values:
μsur f = 0, 0.025, 0.05, 0.1, 0.2, 0.4, 0.8. Figure 4 shows
the results of our fitting of the inertial rheology to the pla-
nar shear DEM data for each μsur f . The parameters corre-
sponding to each fit can be viewed in Table 2 (Local). Over-
all, the local fitting form appears sufficient. In some of the
DEM data a smalll oscillation in the μ versus I behavior is
apparent for very low I . This behavior would be in line with
certain experimental results [9], though most existing DEM
data in this geometry display monotonicity down to low I
[19]. At this point we would rather not speculate on whether
this is a physical or numerical perturbation. Figure 6 indi-
cates the clear trend of the bulk static friction coefficient,μs ,
monotonically decreasing albeit nonlinearly with μsur f , in
good agreement with past work on roughness effects in the
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(a) (b)

Fig. 4 Planar shear flows: DEM data (squares) and selected fit functions per Eq. 5 (dashed lines) corresponding to all seven particle surface
frictions, displayed simultaneously in a linear and b semilog

Table 2 Calibrated model parameters for all different grain frictions

μsur f Continuum parameters

Nonlocal Local
A μs μ0 b C

0.8 0.84 0.290 0.300 1.50 0.014

0.4 0.80 0.265 0.270 1.45 0.025

0.2 0.85 0.245 0.250 1.35 0.020

0.1 0.83 0.205 0.215 1.35 0.033

0.05 0.97 0.170 0.200 1.20 0.025

0.025 1.03 0.145 0.185 1.20 0.022

0 1.05 0.106 0.160 1.25 0.011

inertial rheology [6]. The decreasing amount of curvature
in the plots for larger μsur f is captured by the decreasing
separation between μs and μ0 as μsur f increases.

The calibrated values of the nonlocal amplitude, A, are
also presented in Table 2 along with the corroborating plots
in Fig. 5, where NGF outcomes forμ versus I in the four dif-
ferent geometries are compared directly to those of the DEM,
for each μsur f . The degree of agreement between DEM data
and the NGF model, for each μsur f , as seen in the figure,
lends confidence to the fits for A and the effectiveness of the
NGF model. However, there is some bumpiness evident in the
extracted A versus μsur f relation (Fig. 6), which could arise
from sampling uncertainties in the DEM combined with the
sensitive four-step calibration process used to obtain A. The
latter point reflects the nature of A within the system as that of
a coefficient of a high-order derivative of an implicitly solved
variable g, which precludes a straightforward measurement
scheme for A from DEM data.

In Fig. 5, it is interesting to note that the degree of deviation
from the local (i.e. planar shear) data appears to decrease as

μsur f decreases, yet A is actually increasing with decreasing
μsur f (see Fig. 6). This may seem counterintuitive, but it can
be explained. Indeed, if all all other model parameters are
held fixed, the extent of deviation from locality always grows
with A and vanishes as A vanishes, in a given geometry.
However, as μsur f varies, the other NGF model parameters
are not staying fixed. In other words, if deviation from locality
were assigned a measure, one might say A acts as an amplifier
of deviation, but the term it amplifies depends on the other
model parameters.

Our results suggest three conclusions about A. The first
is that, unless the surface friction is very small (< 0.1), the
nonlocal amplitude does not appear to vary to a significant
extent with μsur f (neither does μs). Secondly, in the case
of small μsur f , A actually displays an increasing behavior
as μsur f decreases, as previously noted. The third is that
the overall size of A remains order-one over the range of
μsur f considered—even as the increasing behavior of A with
decreasingμsur f becomes evident, this increase is much less
than an order of magnitude. The order-one nature of A agrees
with past NGF work [10,15].

The various curves relatingμ and I displayed in Fig. 5 may
shed insight on observations that have been made in flows
of suspensions. As discussed in [11,20], dense suspension
flows tend to obey a single local rheology rather well, even
in small geometries (relative to the particle size). This notion
lies in contrast to our observations with frictional dry granu-
lar media for the majority ofμsur f cases. In view of Fig. 5, as
surface friction drops, we observe that the rheological curves
of granular matter in different geometries, i.e. the correspon-
dences betweenμ and I , begin to collapse together. In fact, in
theμsur f = 0 case, the dispersion between the curves seems
to vanish altogether and a dominantly local response is evi-
dent. Hence, the dispersion of μ versus I loci over different
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Fig. 5 Calibrated NGF model [c.f. Table 2] (lines), versus DEM data (symbols) for planar shear (diamond) and annular shear geometries with
R = 25d (circle), 50d (square), 100d (right pointing triangle). Corresponding geometries are color-matched
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Fig. 6 Dependence of the nonlocal amplitude and the static planar
shear strength on surface friction

geometries diminishes in circumstances where particle inter-
actions lack a tangential force component. In suspensions, the
suspending fluid may behave as a lubrication layer between
adjacent particles, which reduces tangential drag. It there-
fore stands to reason that the lack of geometry-dependence
among the rheological curves in a dense suspension may be
due to the same effect of reduced surface drag we observe
herein.

5 Summary and future work

We have performed the first upscaling study to link the recent
NGF model for granular flow directly to particle properties.
Our parameter study has focused on the effect of particle
roughness, corroborating past work on local rheology depen-
dences and revealing a number of conclusions about its effect
on the nonlocal amplitude. Perhaps the over-riding point is
that A is influenced by μsur f but not tremendously. This
result would support the idea that A is mostly a reflection of
the geometric constraints involved in particles moving past
other particles in a dense packing, and not so much a prod-
uct of the contact interaction details. Although A slightly
increases as μsur f decreases, Fig. 5 indicates that the rhe-
ological curves obtained from different geometries are in
fact collapsing more and more as μsur f decreases. As we
have noted, this observation corroborates the high degree of
collapse observed in some suspension flows, wherein liquid
lubrication between grains reduces tangential contact force.

It remains future work to continue such a study to analyze
the effects of varying other particle properties individually, or
combinations of properties. Obvious properties to consider
next would be particle shape and polydispersity, though we

Fig. 7 Weight function ψi (r)

note that size-segregation effects will complicate a polydis-
persity study under our current calibration approach, which
involves imposition of a nonuniform flow field, which can
induce spatial variations in the size distribution. It would
also be interesting to expand this analysis to three dimen-
sions, where past results suggest the nonlocal amplitude will
be overall smaller [10,15]. From a physical standpoint, it
also remains to attempt a theoretical understanding for these
results. This is a non-trivial task, but might be achievable
by revisiting how particle contact interactions factor in to
the existing theoretical derivation for the nonlocal fluidity
model.

6 Appendix: Averaging method

The radial profiles of different quantities are obtained by an
averaging procedure over coordinate θ along the coordinate
r , where each of the n grains i is taken into account (see
Fig. 7). We define a weight function ψi as the intercepted
angle defined on Fig. 7, where cos(ψi (r)/2) = (r2 + r2

i −
d2

i /4)/(2ri r) for a disk of diameter di and a radial position
ri .

We consider the polar basis er (φ) = (cosφ, sin φ) and
eθ (φ) = (− sin φ, cosφ). Hence, the radial profile of the
orthoradial velocity is

vθ (r) = 1
∑n

i=1 ψi (r)

n∑

i=1

∫ θi +ψi /2

θi −ψi /2
vi · eθ (φ)dφ. (7)

The stress tensor of each grain i is defined as

σ i = 1

Ai

∑

j 	=i

Fi j ⊗ r i j , (8)
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with the particle area Ai = πd2
i /4, the contact force

(between two particles i and j) Fi j and the corresponding
position and r i j . The radial profiles of the components of the
stress tensor are

σαβ(r) = 1

�

n∑

i=1

∫ θi +ψi /2

θi −ψi /2
eα(φ)σ

i eβ(φ)dφ. (9)
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