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Abstract Recent studies of nano energetic composites
have underscored the need for an effective multiscale pro-
cedure for simulating the responses of discrete nano and
sub-micron structures and assemblies to impact loading. A
particle-based simulation procedure is proposed with a con-
current link between the dissipative particle dynamics (DPD)
method and the material point method (MPM), and a hierar-
chical bridge from molecular dynamics to DPD, in order to
effectively discretize the multiphase interactions associated
with multiscale failure evolution. The proposed procedure
is illustrated using simulations of the dynamic and impact
responses of discrete metallic nano structures. It is shown that
the DPD forces can be effectively coarse-grained using the
MPM background grid, and that the concurrent link between
the MPM and DPD enables near-seamless integration of con-
stitutive modeling at the continuum level with force-based
modeling at the mesoparticle level. Additional improvements
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and applications that build on the current results are dis-
cussed.
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1 Introduction

Energetic composites containing metallic fuel and inorganic
oxidizer have become a research topic of current interest
due to their high energy density, tunable energy release rate
and ignition sensitivity, and benign reaction products [1–4].
While simple physical mixing leads in general to a nonho-
mogeneous distribution of fuel and oxidizer nanostructures
[3,4], optimal performance would require tailored structure
and morphology. Toward this end, composite system designs,
such as the self-assembled thermitic composites consisting
of discrete CuO and Al nano-structures shown in Fig. 1,
have been produced [3,4]. The Al/CuO composite system
has been investigated at the continuum level using an equa-
tion of state (EoS) for the reaction products, formulated under
the assumption of a pressure-dependent reaction rate that is
infinite for the pressure greater than some threshold value but
zero otherwise, and complete neglect of nano structural fea-
tures [4]. However, the real combustion behavior of a nano
energetic composite is affected by several important factors
such as ingredient ratio, mass density, composite morphol-
ogy, and the often diffusion-limited interactions among dis-
crete nano structures of various sizes and shapes. Clearly,
inclusion of such details in a high-fidelity simulation requires
the use of a suitable multiscale method.

It can be observed from Fig. 1 that, under impact loading,
discrete zero-dimensional (particle) and one-dimensional
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Fig. 1 Transmission electron
microscopy images of a CuO
nanostructures and b unreacted
self-assembled mixture of CuO
nanostructures and Al
nanoparticles [3]

(rod and beam) nano structures of suitable sizes will interact
with each other via longitudinal (particle-to-rod or rod-to-
rod), transverse (particle-to-beam or beam-to-beam), and/or
mixed modes. Available experimental techniques do not
enable direct, real-time observation of the nanoscale interac-
tions under impact loading. While recent molecular dynamics
(MD) simulations have demonstrated the size effects on the
responses of single-crystal Cu nanostructures to transverse
[5] and longitudinal [6] impact loading, the complex nature
of general impact modes hinders computer simulations of
nanoscale impacts with atomic resolution due to the large
number of particles required to simulate non-trivial geome-
tries and associated large CPU requirements. Hence, an effec-
tive spatial discretization procedure must be developed to
model and simulate the multiscale interactions involved in
the impact responses of nano energetic composites.

The material point method [7] (MPM, http://en.wikipedia.
org/wiki/Material_Point_Method) is useful for simulating
multi-phase interactions in processes that involve failure evo-
lution, such as impact, penetration, perforation and blast-
fragment interaction. As reviewed by Chen et al. [8], the
MPM is an extension to solid mechanics of the hydrody-
namics method called FLIP which, in turn, evolved from
the Particle-in-Cell Method. The essential idea of the MPM
is to take advantage of the strengths of both the Eulerian
and Lagrangian methods while avoiding the shortcomings of
each. In comparison to other meshless methods [8], the MPM
is less complex and has a cost factor of at most twice that asso-
ciated with the use of corresponding finite elements. In addi-
tion, it can be easily interfaced with the finite element method
(FEM) codes due to the use of the same weak formulation for
both methods. In the original MPM [7], however, there exists
a cell-crossing issue due to the use of local mapping func-
tions; and in addition, special care is required to deal with a
moving boundary condition. Much effort has been expended,
especially over the past decade, to improve the original MPM
through the use of nonlocal treatments (which increase the
computational expense), as illustrated in the representative
references [9–11]. We note three particular advances in the

MPM that are relevant for multiscale simulation: A multi-
level refinement scheme has been designed for the gener-
alized interpolation material point (GIMP) Method [12]; a
hierarchical approach has been proposed and demonstrated in
which material points at the fine level in the MPM are coupled
directly with the atoms in MD simulations [13]; and a sequen-
tial procedure has been recently developed to formulate the
EoS, based on MD results, for use in macroscopic MPM sim-
ulations [14]. However, each of the hierarchical/sequential or
multi-level refinement approaches just mentioned requires a
transition region between different spatial scales, which lim-
its their usefulness for the study of physical situations where
discrete nano/micro structures (for example, nano/micro rods
and beams in energetic composites) interact with each other.
Recently, a particle-based multiscale procedure has been pro-
posed wherein cluster dynamics (CD) is linked hierarchically
with MD for sub-micron scale domains and concurrently with
the MPM for simulations on larger scales [15]. The method
was used to explore the longitudinal impact response between
two metallic microrods with different nanostructures. How-
ever, the CD method used in [15] relies on certain assump-
tions that limit the range of applicability, and much work
remains to generalize the method to more realistic situations.

In the present study we improve on the particle-based mul-
tiscale procedure described in [15]. Specifically, we com-
bine a hierarchical bridge from MD to dissipative particle
dynamics (DPD) for nanoscale simulations with a concur-
rent link between DPD and the MPM for microscale simula-
tions. Focusing on the link between DPD and the MPM, we
first demonstrate that the dynamics of DPD particles, which
interact via pairwise particle–particle forces, can be coarse-
grained using a straightforward adaptation of the standard
MPM algorithm. Using this capability we then demonstrate
how DPD and MPM subdomains can be treated concurrently,
and nearly seamlessly, in a single simulation domain. Par-
ticular attention is devoted to the development of an effec-
tive interfacial scheme for use in the concurrent simulations.
To provide the foundation for the proposed procedure, the
essential features of the governing equations for MD, DPD,
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and the MPM are summarized in Sect. 2. The proposed
hierarchical and concurrent multiscale solution schemes are
described in Sect. 3. Representative examples are used in
Sect. 4 to illustrate the proposed procedure. Finally, we sum-
marize the current status and mention future research tasks in
Sect. 5.

2 Governing equations at different scales

2.1 Molecular dynamics

Molecular dynamics is a widely used tool for atomic simu-
lations. The dynamics of a conservative system consisting of
N particles is governed by Newton’s equation of motion for
each particle i :

mi
d2ri

dt2 = mi ai = − ∂

∂ri
Utot (r1, r2, . . . , rN ) , (2.1)

where mi , ri and ai are the mass, position, and acceleration
vectors of particle i , respectively, and Utot is the total poten-
tial energy that depends only on the particle positions. In
this paper, we focus on an atomic solid (Cu) and describe
the interatomic potential energy using the Sutton–Chen (SC)
potential [16].

2.2 Dissipative particle dynamics

To bridge the temporal and spatial gaps between nano
and sub-micron scale simulations, the DPD with conserved
energy (DPDE) method [17,18] has been developed starting
from the classical isothermal DPD [19]. In the DPD method
atomic-scale details are averaged and associated with effec-
tive coarse-grained particles. The extent of coarse graining,
that is, the numbers of atoms subsumed by a single DPD
particle, varies widely depending on the application. The
DPDE governing equations for each coarse-grained particle
iare written as follows [17]:

mi
d2ri

dt2 = mi ai = f C
i + f D

i + f R
i , (2.2)

f C
i =

∑

i �= j

−∇U
(
ri j

)
ei j , (2.3)

f D
i =

∑

i �= j

−γi jw
D (

ri j
)

vi j , (2.4)

f R
i =

∑

i �= j

σi jw
R(ri j )dWi j ei , (2.5)

where f C
i , f D

i and f R
i represent, respectively, the conserva-

tive force, dissipative force, and random force vectors act-
ing on particle i . As before, mi , ri , and ai are, respectively,
the mass, position, and acceleration vectors of particle i ,
and U is the inter-particle potential. The quantities γi j and

σi j are coefficients characterizing the strengths of the non-
conservative forces, wD and wR are the weight functions of
ri j = ri − r j , vi j = vi − v j is the velocity difference vector
between particles i and j , and Wi j is the independent d-
dimensional Wiener process. The quantity ei = ri/ |ri | is the
normalized position vector of particle i and ei j = ri j/

∣∣ri j
∣∣ is

the unit vector between particles i and j . The parameters in
the DPD force expression used here were calibrated by using
a genetic algorithm to optimize the fit between the Sutton-
Chen force field for Cu and an analogous coarse-grained
form wherein one mesoparticle corresponds to eight copper
atoms and the coarse-grained lattice parameter is twice that
for atomic Cu in the MD model [20]. The DPD parameter γ

was set to 0.2 amu/ps and the fit was performed based on the
298 K isotherm.

2.3 Material point method

At the continuum scale, the governing differential equations
under purely mechanical loading can be derived from the
conservation equations for mass and momentum,

dρ

dt
+ ρ∇ · v = 0 (2.6)

ρa = ∇ · s + ρb (2.7)

supplemented with a suitable constitutive equation to descr-
ibe the internal interactions among material points and the
kinematic relation between strain and displacement. In Eqs.
(2.6) and (2.7), ρ(x, t) is the mass density, v(x, t) the veloc-
ity, a(x, t) is the acceleration, s(x, t) is the Cauchy stress, and
b(x, t) is the specific body force due to, for example, grav-
ity. The vector x is the time-dependent position vector of the
material points in the continuum. For given boundary con-
ditions and initial data, the governing differential equations,
if they are well-posed, can be solved either analytically or
numerically. The key difference among different spatial dis-
cretization methods is how the gradient and divergence terms
are calculated.

As a particle method, the MPM discretizes a continuum
body in the original configuration into a finite set of Np mate-
rial points (particles) that are tracked throughout the defor-
mation process. Let xt

p denote the position vector of material
point p(p = 1, 2, . . . , Np) at time t . Each material point
at time t has an associated mass Mp, density ρt

p, velocity
vt

p, Cauchy stress st
p, strain et

p, and any other internal state
variables required by the constitutive description. Thus, these
material points provide a Lagrangian description of the con-
tinuum body. Because the mass for a given material point
is independent of time, Eq. (2.6) is automatically satisfied.
At each time step, information from the material points is
mapped to a background computational mesh. This mesh
spans the computational domain, and the details of its spec-
ification are chosen for computational convenience. After
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information is mapped from the material points to the mesh
nodes, the discrete formulation of Eq. (2.7) can be obtained
on the mesh nodes, as briefly described in Sect. 3.

The weak form of Eq. (2.7) can be found, based on the
standard procedure used in the FEM [7], to be
∫

Ω

ρw · adΩ = −
∫

Ω

ρss : ∇wdΩ +
∫

Sc

ρcs · wd S

+
∫

Ω

ρw · bdΩ, (2.8)

where w denotes the test function, Ss specific stress, Ω the
current configuration of the continuum body, and SC the part
of the boundary subject to a prescribed traction. A boundary
layer can be used to enforce the moving traction boundary
condition given by the prescribed traction vector cs . Because
the whole continuum body is described with the use of a finite
set of material points, the mass density can be written as

ρ (x, t) =
Np∑

p=1

Mpδ
(

x − xt
p

)
, (2.9)

where δ is the Dirac delta function with dimension of recip-
rocal volume. The substitution of Eq. (2.9) into Eq. (2.8)
converts the integrals to the sums of quantities evaluated at
the material points, namely

Np∑

p=1

Mp

[
w

(
xt

p, t
)

· a
(

xt
p, t

)]

=
Np∑

p=1

Mp

[
−ss

(
xt

p, t
)

: ∇w|xt
p
+w

(
xt

p, t
)

· cs
(

xt
p, t

)
h−1

+ w
(

xt
p, t

)
· b

(
xt

p, t
)]

, (2.10)

where h is the thickness of the boundary layer. As can be seen
from Eq. (2.10), the interactions among different material
points are only present in the gradient terms, and a suitable
set of material points must be chosen to represent the bound-
ary layer. In the MPM, a background computational mesh is
required to calculate the gradient terms. To do so, suppose
that a computational mesh is constructed of 8-node cubic
cells (for three-dimensional problems). These cells are used
to define standard nodal basis functions, Ni (x), associated
with spatial nodes xi (t), i = 1, 2, . . . , Nn , where Nn is the
total number of mesh nodes. The nodal basis functions are
selected from conventional finite element shape functions.
The spatial coordinates of any material point in a given cell
at time t can then be represented by

xt
p =

Nn∑

i=1

xt
i Ni

(
xt

p

)
, (2.11)

where xt
i are the nodal coordinates. Similarly, the displace-

ment vector of any material point in a cell is defined by the
nodal displacements, ut

i (t), as follows:

ut
p =

Nn∑

i=1

ut
i Ni

(
xt

p

)
. (2.12)

Because the same basis functions are used for both spa-
tial coordinates and displacements, kinematic compatibility
requires that the basis functions advect with the material, as
in the updated Lagrangian framework; that is, the basis func-
tions must be independent of time. It follows that the velocity
and acceleration of any material point in a cell can be rep-
resented in the same way as that for the displacement in Eq.
(2.12). The test function associated with any material point
also has the same form,

wt
p =

Nn∑

i=1

wt
i Ni

(
xt

p

)
, (2.13)

where wt
i is the nodal test function. While the kinematic

vectors, Eqs. (2.11)–(2.13), are continuous across the cell
boundary, the gradients of these vectors are not—due to the
use of linear shape functions for computational efficiency in
the original MPM formulation [7] that is used here.

With the use of the above equations and the standard pro-
cedure as employed in the FEM, the discretized governing
differential equations can be obtained as

mt
i a

t
i = (

f t
i

)int + (
f t

i

)ext
, (2.14)

for a lumped mass matrix; where the internal force vector is
given by

(
f t

i

)int = −
Np∑

p=1

Mpss,t
p · Gi

(
xt

p

)
, (2.15)

with ss,t
p = ss

(
xt

p, t
)

and Gi

(
xt

p

)
= ∇Ni |xt

p
; and the exter-

nal force vector takes the form
(
f t

i

)ext = ct
i + bt

i , (2.16)

where ct
i and bt

i denote, respectively, the specific traction and
body force vectors evaluated at the mesh nodes. Note that
the internal force, which represents the interactions among
material points and can be local or nonlocal depending on
the stress-strain relation, is not continuous across the cell
boundary due to the use of linear shape functions. However,
the prescribed traction and body force vectors are continuous
across the cell boundary, provided they are continuous before
the spatial discretization is performed.

For large-scale simulations, an explicit time integrator is
usually used to solve Eq. (2.14) for the nodal accelerations,
with a time step that satisfies the stability condition, that is,
the quotient of the smallest cell size to the wave speed. If

123



Comp. Part. Mech. (2014) 1:147–158 151

a MPM cell includes multiple material points, the material
properties are homogenized over the cell via the mapping and
re-mapping scheme. During each time step, the information
on each material point is mapped to the corresponding nodes
of the cell in which the material point is located. After the
equations of motion are solved on the cell nodes, the new
nodal values of velocity are then used to update the positions
of the material points via the mapping from the cell nodes to
the related material points.

The strain increment for each material point is determined
from the gradient of the nodal velocity evaluated at the mate-
rial point position. The corresponding stress increment can
then be found from the constitutive model. Internal state vari-
ables can also be assigned to the material points and trans-
ported along with them. Once the material points have been
completely updated, if desired, the background mesh can be
discarded and a new mesh defined for the next time step. Due
to the use of the same set of nodal basis functions for both
the mapping from material points to cell nodes and the re-
mapping from cell nodes to material points at each time step,
the interpenetration between material bodies is precluded in
the MPM. This enables simulations of impact and penetration
problems without the need for a special contact algorithm.

3 Particle-based multiscale simulation procedure

Equations (2.1), (2.2), and (2.14) have similar forms although
they are formulated at different scales and with differ-
ent domains of influence. The right-hand sides of these
equations—the force expressions for MD and DPD and con-
stitutive laws for the MPM, which are different for different
materials—include the internal interactions among discrete
particles (atoms, DPD particles, or material points) as well
as the external forces. The difference between the MPM and
DPD or MD is that Eq. (2.14) is evaluated at the background
mesh nodes rather than at the material points. As a result, the
strain and stress fields in the MPM can be easily determined
using the gradient of nodal basis functions and the constitu-
tive model, respectively, instead of defining a representative
domain (a cutoff radius) to determine the strain and stress as
required in DPD and MD.

The proposed multiscale simulation procedure consists
of a concurrent link between the DPD and MPM particles
to simulate microscale responses and a hierarchical bridge
from MD to DPD for nano and sub-micron scale simula-
tions (in which the DPD force expression is parameterized
by fitting to MD results). In the concurrent DPD and MPM
computational domain, a particle is a DPD mesoparticle if
its force expression is defined by Eq. (2.2), which involves a
cutoff distance. A particle is a material point if a constitutive
model at the continuum level is used to calculate the inter-
nal force vector as shown in Eq. (2.15). Within the MPM
framework, the DPD cutoff distance should be larger than

the cubic cell edge length (for three-dimensional problems).
It will be shown in the next section that the DPD details can
be effectively averaged through the use of a coarse MPM
background grid. A single MPM cell can include both DPD
and MPM particles at a given time such that the mapping
and re-mapping procedure in the MPM algorithm yields a
computational homogenization scheme over the cell domain.
The concurrent link between the MPM and DPD enables a
nearly seamless integration of constitutive modeling at the
continuum level with force-based modeling at the mesopar-
ticle level. The simplicity of the proposed particle-based sim-
ulation procedure provides a robust way for zoom-in to near-
atomic-scale details and zoom-out to microscale responses.
The remainder of Sect. 3 describes the specific solution steps
required for a concurrent MPM and DPD simulation.

3.1 Preprocessor

The followings steps are performed prior to the first time
step:

1. A continuum body (with single or multiple material
phases) is discretized into a finite set of Np material
points determined with respect to the original configu-
ration of the body. Each material point carries its origi-
nal material properties. The material points are followed
throughout the deformation process of the body.

2. An arbitrary background mesh with appropriate spatial
resolution is defined and used to find the natural coordi-
nates of any material point and to identify the mesh cell
that contains the material point.

3. All state variables at the material points are initialized,
control parameters for the computer code are specified,
and the system of DPD particles and/or material points is
equilibrated to minimize the stress of the initial system.

3.2 Central processing unit

The following detailed steps are performed at each time step
increment:

1. For each material point (both DPD and MPM particles),
perform the mapping operation from the material point
to the cell nodes enclosing the material point.

Map the mass from the material points to the nodes of the
cell containing these points,

mt
i =

Np∑

p=1

Mp Ni

(
xt

p

)
, (s1)

where mt
i is the mass at node i at time t, Mp is the material

point mass, Ni is the shape function associated with node i ,
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and xt
p is the location of the material point at t . Analogously,

for each material point, map the momentum from the material
point to the nodes of the cell enclosing the material point,

(mv)t
i =

Np∑

p=1

(Mv)t
p Ni (xt

p), (s2)

where (mv)t
i denotes the nodal momentum at node i at time

t , and (Mv)t
p is the material point momentum at that same

time. Find the internal force vector at the cell nodes for the
MPM particles associated with that cell,

(
f t

i

)int = −
Np∑

p=1

Gi

(
xt

p

)
· st

p
Mp

ρt
p

, (s3a)

where Gi (xt
p) is the gradient of the shape function associated

with node i evaluated at xt
p. The quantities st

p and ρt
p are,

respectively, the particle stress tensor and the particle mass
density at time t . For the DPD particles associated with that
cell, Eq. (s3a) is replaced with the following expression:

(
f t

i

)int =
Np∑

p=1

(
f C

pj + f D
pj + f R

pj

)
Ni (xt

p), (s3b)

where f C
pj , f D

pj and f R
pj represent, respectively, the conser-

vative force, dissipative force, and random force vectors on
particle p due to particle j ( j = 1, 2, . . . N j

p , where N j
p is the

number of DPD particles within the cutoff radius of particle
p).

2. Apply essential and natural boundary conditions to the
cell nodes, and compute the nodal force vector,

f t
i = (

f t
i

)int + (
f t

i

)ext
, (s4)

where
(
f t

i

)ext denotes the external nodal force vector as
defined in Eq. (2.16).

3. Update the momenta at the cell nodes:

(mv)t+�t
i = (mv)t

i + f t
i�t. (s5)

4. For each material point, perform the mapping operation
from the nodes of the cell containing the material point
to that point.

Map the nodal accelerations back to the material point:

at
p =

Nn∑

i=1

f t
i

mt
i

Ni

(
xt

p

)
. (s6)

Map the current nodal velocities back to the material point
to get the velocity v̄t+�t

p of the particle at the current time
step:

v̄t+�t
p =

Nn∑

i=1

(mv)t+�t
i

mt
i

Ni

(
xt

p

)
. (s7)

Compute the current material point position:

xt+�t
p = xt

p + v̄t+�t
p �t, (s8)

which represents a backward integration.
Compute the material point displacement:

ut+�t
p = xt+�t

p − x0
p. (s9)

As can be seen from Eqs. (s7) and (s8), nodal shape func-
tions are used to map the nodal velocity continuously to the
interior of the cell so that the positions of the material points
are updated by moving them in a single-valued, continuous
velocity field. Because the velocity v̄t+�t

p is used to update the
material point position, the potential numerical error accumu-
lated by the mapping operations is eliminated, such that the
interpenetration between material bodies is precluded. This
unique feature of the MPM enables simulations of impact and
penetration problems without the need for a special contact
algorithm.

5. Map the updated material point momenta back to the
nodes of the cells containing these material points:

(mv)t+�t
i =

Np∑

p=1

(Mv)t+�t
p Ni

(
xt

p

)
. (s10)

6. Find the updated nodal velocities:

vt+�t
i = (mv)t+�t

i

mt
i

. (s11)

7. Apply the essential boundary conditions to the nodes of
the cells containing the boundary points. For the essen-
tial boundary conditions, this treatment is consistent with
the weak form of the governing equations because the
test functions wt

i are assumed to be zero on the essential
boundary.

8. If needed for the constitutive model of a MPM particle,
find the current gradient of particle velocity,

Lt+�t
p =

Nn∑

i=1

vt+�t
i Gi

(
xt

p

)
, (s12)
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and the particle strain increment,

�ep =
(

symLt+�t
p

)
�t, (s13)

so that the stress increment can be obtained from the con-
stitutive model for the given strain increment to update
the stress tensor of the MPM particle:

st+�t
p = st

p + �s. (s14)

9. Identify which cell each material point belongs to, and
update the natural coordinates of the material point. This
is the convective phase for the next time increment.

10. Repeat steps 1–9 until the time has advanced to the
desired value.

As can be seen from Eqs. (s6), (s7), and (s11), the simu-
lation process will fail if mt

i is close to zero, which happens
when material points are close to the cell boundary. Vari-
ous nonlocal mapping procedures have been developed over
the past decade to avoid the cell-crossing error in the orig-
inal MPM [9–11]. However, incorporating these improve-
ments into the proposed multiscale simulation procedure will
incur considerable computational expense and is beyond the
scope of the current work. Instead, a simple measure is taken
here to circumvent the cell-crossing issue within the origi-
nal MPM framework: If mt

i is less than a small number set
by machine precision, the solutions from the equations in
which mt

i appears in the denominator are not used to update
the variables associated with those equations at that time step.

The procedures associated with Eqs. (s1)–(s14) should
apply equally to DPD and MPM particles simulated within
the MPM framework. Because the method has not been
applied previously to DPD particles, it is necessary to deter-
mine whether (or under what conditions) the “coarse grained
DPD” that results from using the MPM mapping/remapping
algorithm will reproduce the results obtained using stan-
dard, energy-conserving DPD (i.e. DPDE, Eqs. (2.2)–(2.5)).
This intermediate description, which we refer to as the
DPD/MPM-grid model, is tested in Sect. 4.1.1 for the case
of a Cu nanorod flyer impacting a Cu nanorod target, and in
Sect. 4.1.2 for symmetric tensile extension of a Cu nanorod.
Specifically, we compare results obtained using DPDE (here-
after, the DPD-only model) [20] to those obtained using the
DPD/MPM-grid model for several choices of MPM back-
ground grid resolution. These DPD/MPM-grid model calcu-
lations are a necessary validation step on the path to the fully
concurrent DPD/MPM framework, which we refer to as the
DPD/MPM model.

In this paragraph, an interfacial treatment for the DPD/
MPM model is proposed to capture the essential physics by
smoothing the difference in force calculations for DPD and
MPM particles. For simplicity we consider the case where

the DPD and MPM particles are of the same size. The internal
force due to the DPD and MPM particles in the interfacial
region is calculated using the following equation:

(
f t

i
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N d
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(
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pj + f R
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)
Ni
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p

)

−
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p=N d
p +1

Gi

(
xt

p

)
· st

p
Mp

ρt
p

, (3.1)

where N d
p and N m

p are, respectively, the number of DPD and
MPM particles within the interfacial region. For each DPD
particle in the interfacial region, f C

pj , f D
pj and f R

pj in the first
term of Eq. (3.1) are determined as follows:

f C
pj =

N j
p∑

k=1,k �= j

−∇U
(
r jk

)
e jk (3.2)

f D
pj =

N j
p∑

k=1,k �= j

−γ jkw
D (

r jk
)

v jk (3.3)

f R
pj =

N j
p∑

k=1,k �= j

σ jkw
R(r jk)dW jke j , (3.4)

where N j
p is the total number of the particles within the cutoff

radius of DPD particle p. In combination with Eq. (3.1), Eqs.
(s3a) and (s3b) are used to find the internal forces due to the
MPM and DPD particles respectively, outside the interfacial
region. It can be seen from Eq. (3.1) that each DPD particle
inside the interfacial region is subject to interactions with the
MPM particles within its cutoff radius. Similarly, because Eq.
(3.1) includes the internal force contributions from both DPD
and MPM particles located within the interfacial region, each
interfacial MPM particle is also connected with its neigh-
bor DPD particles via the mapping and re-mapping process
within the MPM framework.

4 Demonstration

4.1 DPD particles coupled with the MPM background grid

4.1.1 Impact and wave propagation

Our first demonstration of the proposed multiscale simulation
procedure is the impact of a Cu flyer onto a Cu target. We con-
sider two simulation models, the DPD-only model as shown
in Fig. 2a and the DPD/MPM-grid model in which DPD par-
ticles are coupled to the MPM background grid as shown in
Fig. 2b. The target size is 216Å × 72.3Å × 72.3Å(10a ×
10a × 30a, where a = 7.23Å is the coarse-grained lattice
constant for face-centered-cubic (fcc) Cu crystal). The sys-
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Fig. 2 Schematic of a Cu target impacted by a Cu flyer, simulated
using a the DPD-only model and b the DPD/MPM-grid model

tem is non-periodic in all three directions. The flyer is 15
Å thick and is treated as a rigid body with initial velocity 5
Å/ps. Two reference regions of thickness 6 Å each are cen-
tered at 100 Å and 150 Å from the impact surface in order
to estimate the longitudinal wave speed. Prior to impact, the
initial DPD configuration was equilibrated for 1000 ps at 298
K by using the Berendsen thermostat [21]. The final phase
space point from the equilibration was used as the initial
condition for the DPD-only model governed by Eqs. 2.2–
2.5. That same phase space point was also embedded into
the MPM background grid for the coupled DPD/MPM-grid
simulations. Common Neighbor Analysis (CNA) [22] with
the lattice constant a was used to identify the local coarse-

grained crystal structures. In the results discussed in con-
nection with Fig. 4, fcc coarse-grained particles are shown
as green, hexagonal-close-packed (hcp) particles are shown
as red, and the remaining atoms (classified as disordered or
surface particles) are shown as white.

As shown in Fig. 3, the time histories of displacements
of reference regions 1 and 2 in the Cu target, simulated with
the DPD/MPM-grid model for three choices of the back-
ground mesh resolution, apparently converge to that obtained
from the DPD-only model for sufficiently small cell edge
length during the MPM mapping and re-mapping opera-
tion. Although the displacement values obtained from the
simulations with different cell sizes may be different at a
given time, the wave speeds estimated by examining the
displacement history—in particular the difference in times
at which particles in regions 1 and 2 first undergo signifi-
cant displacements—are almost the same for the two models
(∼ 3846 m/s), which indicates that DPD/MPM-grid coupling
captures the essential features of elastic wave propagation.
The estimated wave speed is close to the value (3630 m/s)
obtained in an all-atom MD simulation of wave propagation
in a Cu nanobar with 20a × 20a cross section (where in this
case a is the Cu atomic lattice spacing, 3.63 Å) [6]. Thus,
the elastic wave speed is not strongly affected by the coarse-
graining process.

By contrast, as can be seen in Fig. 4, the MPM mapping
and re-mapping operation leads to coarsening of the detailed
features of the deformation, as characterized using CNA,
compared to the DPD-only result. The DPD-only result is
shown in Fig. 4a and serves as a baseline. Corresponding
results for the DPD/MPM-grid model are shown in Fig. 4b,
c for grid edge lengths 2 Å and 8 Å, respectively. The
DPD/MPM-grid result for the 2 Å grid is similar, though by
no means identical, to the DPD-only result. By contrast, for
the 8 Å grid there is no sign of local structural evolution. This
is not surprising as the mapping/remapping is effectively a
coarse-graining procedure and thus increasing loss of struc-
tural detail is expected as the spatial resolution is decreased.

Fig. 3 Time histories of
displacements of reference
regions 1 and 2 in the Cu target,
simulated using the DPD-only
model (solid curve) and the
coupled DPD/MPM-grid model
with different MPM cell edge
lengths (dashed, dot-dashed,
and dotted curves)
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Fig. 4 Deformed
configurations of the Cu target
at 10 ps after impact, simulated
using a the DPD-only model
and the DPD/MPM-grid model
for MPM cell edge lengths of b
2 Å and c 8 Å

4.1.2 Tensile test

We next consider a Cu rod under dynamic tensile loading
using the DPD-only and DPD/MPM-grid models, as illus-
trated in Fig. 5. The rod has the dimension of 216Å×72.3Å×
72.3Å. The two ends, each of thickness 15 Å, are treated as
rigid bodies with a constant velocity of 2.169 Å/ps applied in
opposite directions. The loading procedure is similar to that
adopted in our previous MD simulations [23,24].

Figure 6 contains plots of the stress–strain relations of
the Cu rod under tensile loading. As can be seen there, the
elastic responses for the DPD-only model and the coupled
DPD/MPM-grid model are generally consistent. The initial
slope of the stress–strain curve is quite similar, which implies

that, for sufficiently small MPM grid edge length, the elastic
modulus is independent of the spatial resolution of the MPM
background grid; and, therefore, the elastic wave speed is not
affected by the coupling between DPD and the MPM back-
ground grid, a conclusion that was reached independently in
connection with Fig. 3. Moreover, it can be seen that as the
resolution of the grid is increased the peak stress approaches
the value predicted by the DPD-only model, which is con-
sistent with the convergence study of displacement histories
discussed in connection with Figs. 3 and 4.

It should be noted that for the DPD force expression used
here [20], the values of the peak stress predicted by both the
DPD-only model and the DPD/MPM-grid model are higher
than that obtained from all-atom MD simulations [23,24].
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Fig. 5 Schematic of a Cu rod
subjected to tensile loading at
both ends, simulated using a the
DPD-only model and b the
DPD/MPM-grid model

Fig. 6 Stress–strain relations for the Cu rod under tensile loading at
strain rate 0.02/ps, simulated using the DPD-only model (solid curve)
and coupled DPD/MPM-grid model for different MPM cell edge lengths
(dashed, dot-dashed, and dotted curves)

This may be due to the fact that only the pressure-density
relations from the DPD and all-atom MD systems were used
in parameterizing the DPD force expression. Further work is
required to improve the DPD forces, for example, by includ-
ing additional information such as the stacking fault energy
and surface energy in the DPD parameterization.

4.2 Concurrent simulation

Having demonstrated the consistency between DPD-only
and coupled DPD/MPM-grid models, we now test the con-
current model wherein both DPD and MPM particles exist in
a single computational domain (the DPD/MPM model). As
an initial validation case, we investigate elastic wave prop-
agation across the interface between DPD and MPM sub-
domains, as illustrated in Fig. 7. The flyer/target scenario

Fig. 7 Schematic of a Cu target impacted by a Cu flyer, simulated using
the concurrent DPD/MPM model. The physical situation is the same as
depicted in Fig. 2 (see Sect. 4.1.1) except that in the present case the
right half of the target (and the flyer) consists of DPD particles and the
left half consists of MPM particles. The MPM particles are displayed
with an artificially increased diameter for clarity of visualization

studied is the same as discussed in Sect. 4.1.1 (see Fig. 2)
except that here the left and right halves of the sample consist
of MPM and DPD particles, respectively. Both particle types
are the same size; the MPM particles in Fig. 7 are artificially
increased in size for ease of visualization.

Figure 8 shows the displacement profiles for the concur-
rent DPD/MPM model at different times. Although there
is some apparent effect of the coupling at the midpoint of
the target at the shortest time shown, the wave propagates
essentially smoothly through the interface between MPM
and DPD regions. The elastic wave speed (∼ 4338 m/s) esti-
mated in this case is in reasonable agreement with those
obtained in Sect. 4.1 (percentage difference = 12 %); and
in good agreement with the values obtained from all-atom
MD simulations of wave propagation in a Cu nanobar with
40a × 40a cross section and samples with periodic bound-
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Fig. 8 Displacement profiles at various times for the physical situation
depicted in Fig. 7, simulated using the concurrent DPD/MPM model.
The edge length of the MPM grid used is 4 Å. The interface between
the DPD and MPM subdomains is initially located at x ≈ 9.35 nm

ary conditions in directions transverse to the propagation
direction (∼ 4537 m/s in both cases, percentage difference =
4.5 %) [6]. That the agreement is better for the case of large-
cross-section nanobars or periodic samples is not surpris-
ing because the MPM description is based on a constitutive
model that does not include the effects of the free surfaces
that significantly affect wave propagation in the smaller nano-
bars. Additional work would be required to incorporate such
free-surface effects into the MPM constitutive description for
the kinds of nanoscale structures studied here.

5 Concluding remarks

A particle-based multiscale simulation procedure has been
described that includes a hierarchical bridge from MD to
DPD and a concurrent link between DPD and the MPM.
A simple interfacial treatment has been proposed for con-
current DPD/MPM simulations based on the features of the
DPD force expression and the MPM constitutive model,
and demonstrated by simulating the dynamic and impact
responses of discrete nano structures. It was shown that the
DPD details can be effectively coarse grained through the
use of a coarse MPM background grid (the DPD/MPM-grid
model) while the concurrent link between the MPM and DPD
enables the near-seamless integration of constitutive mod-
eling at the continuum level with force-based modeling at
the mesoparticle level (the DPD/MPM model). Although the
elastic responses predicted by the proposed procedure are
reasonable, further studies are required to improve the cur-
rent DPD forces, understand the size effect on the inelastic
responses, and simulate the impact responses of discrete nano
structures with various shapes and compositions.
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