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Abstract Both continuum and discrete methods are used
to investigate the soil cutting process. The Discrete Element
Method (dem) is used for the discrete modelling and the
Material-Point Method (mpm) is used for continuum mod-
elling. Mpmis a so-called particle method or meshless finite
element method. Standard finite element methods have dif-
ficulty in modelling the entire cutting process due to large
displacements and deformation of the mesh. The use of mesh-
less methods overcomes this problem. Mpm can model large
deformations, frictional contact at the soil-tool interface, and
dynamic effects (inertia forces). In granular materials the
discreteness of the system is often important and rotational
degrees of freedom are active, which might require enhanced
theoretical approaches like polar continua. In polar contin-
uum theories, the material points are considered to possess
orientations. A material point has three degrees-of-freedom
for rigid rotations, in addition to the three classic translational
degrees-of-freedom. The Cosserat continuum is the most
transparent and straightforward extension of the nonpolar
(classic) continuum. Two-dimensional dem and mpm (polar
and nonpolar) simulations of the cutting problem are com-
pared to experiments. The drag force and flow patterns are
compared using cohesionless corn grains as material. The
corn macro (continuum) and micro (dem) properties were
obtained from shear and oedometer tests. Results show that
the dilatancy angle plays a significant role in the flow of
material but has less of an influence on the draft force. Non-
polar mpm is the most accurate in predicting blade forces,
blade-soil interface stresses and the position and orientation
of shear bands. Polar mpm fails in predicting the orientation of
the shear band, but is less sensitive to mesh size and mesh ori-
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entation compared to nonpolar mpm. dem simulations show
less material dilation than observed during experiments.
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1 Introduction

Earthmoving equipment is not only used for mining, it also
plays an important role in the agricultural and earthmov-
ing industries. The equipment is highly diverse in shape and
function, but most of the soil cutting machines can be cate-
gorised into one of three principal classes: blades, rippers and
buckets or shovels. The basic shape of earthmoving tools has
not changed a great deal since antiquity, although most are
operated today by mechanical power sources and their con-
struction benefits from modern metallurgical engineering.

The design of effective and efficient implements begins
with the analysis of the soil failure in order to predict the
forces and energy required by the implements. The simplest
form of soil cutting or tillage is that of a flat blade mov-
ing through the soil. Karmakar [1] summarises the different
approaches used to model soil cutting. Six major methods can
be identified, namely empirical/semi-empirical, dimensional
analysis, Finite Element Methods (fem), Discrete Element
Methods (dem), Artificial Neural Networks (ann) and Com-
putational Fluid Dynamics (cfd).

1.1 Analytical methods

Empirical and semi-empirical analytical models are based
on the physics of soil, tool configuration and simplifying
assumptions. The methods of Coulomb [2] and Perumpral
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[3,4] assume that the material in front of the blade fails and
moves as a rigid body. The sum of all forces acting on this
rigid body can be used to solve for the forces acting on the
blade. Sokolovski [5] used a totally different method based on
the theory of plasticity. This theory is based on the assump-
tion that a state of failure exists at any point within a certain
area (zone ruptures) or on a certain curve (line ruptures).
By means of this assumption and using the equations of
equilibrium, it is possible to solve soil pressure problems.
The material is assumed to be macroscopically homoge-
neous and in a critical state. The definition for critical state
is when the material or part thereof is stressed to the limit
of the Mohr–Coulomb yield criterion at the point just before
slip occurs. The analysis is conducted for static equilibrium
and no dynamic effects are taken into account. Deformation
effects such as dilation are not accounted for. A set of dif-
ferential equations, derived from the Mohr–Coulomb yield
criterion and the equations of equilibrium, is numerically
solved using the method of characteristics and appropriate
boundary conditions and material properties.

The analytical methods discussed here, are based on pas-
sive earth pressure theory and assumptions of a preliminary
soil failure pattern [1]. Dynamic effects, complicated tool
geometry and large deformations can not be modelled using
these methods. Discrete element methods and finite element
methods can be used to overcome some of these problems.

1.2 Discrete element methods

The discrete element methods are based on the simulation
of the motion of granular material as separate particles.
Dem was first applied to soils by Cundall and Strack [6].
Calculations performed during a dem simulation alternate
between the application of Newton’s second law to the par-
ticles and a force-displacement law at the contacts. Dem has
the advantage that it can easily be used for the simulation
of granular flow subjected to large deformations and free
boundaries. The main problem with dem is how to specify the
micro-properties (particle contact properties) so that the flow
on macro-level of thousands of particles behaves in the same
way as real granular flow. Laboratory experiments [7] (e.g.
shear tests, biaxial tests and oedometer tests) or in-situ tests
[8] are necessary to determine these properties before any
useful modelling and predictions can be made. Bohatier and
Nouguier [9] modelled a flat blade cutting through a granular
material using dem. The effect of tool velocity on the draft
force was shown, but no experimental results were presented.

1.3 Finite element and meshless methods

The entire cutting process involves large displacements of the
blade and large deformation of the material being cut, which
makes it difficult to model with classic finite element methods

due to the distortion of the mesh. As a remedy, remeshing
techniques [10] may be used, but all the state variables have
to be mapped from the distorted mesh to a newly-defined one.
Such a mapping introduces additional computational errors
and makes them ineffective [11]. In the work presented here, a
so-called meshless finite element method is used to overcome
this problem.

Although meshless methods originated about twenty years
ago, little research effort has been devoted to them until
recently. The Material-Point Method (mpm, also called
Particle-in-Cell, pic) is a so-called particle meshless method.
Particle methods can be characterised as methods where the
solution variables are attributed to Lagrangian point masses
instead of computational cells [12].

Sulsky et al. [13] developed a mpm method applicable to
solid mechanics that can be used to model dynamic impact,
penetration and large deformations. Mpm uses two discreti-
sations of the material, one based on a computational mesh
and the other based on a collection of material points or ’par-
ticles’. This approach combines the advantages of Eulerian
and Largrangian descriptions of the material while avoiding
the shortcomings of each. The equations of motion are solved
in a Lagrangian frame on a computational grid, using stan-
dard finite element methods. Convection is modelled by mov-
ing the material points in the computed velocity field. Each
material point carries its material properties without error
while it is moved. Since all the state variables are assigned
to the numerical material points, the information carried by
these points is enough to characterise the flow and the grid
carries no permanent information. Thus, the grid can be dis-
carded and reconstructed for computational convenience at
each time step. The mpm formulation results in an automatic
no-slip condition between different bodies. Bardenhagen et
al. [14] developed an algorithm that precludes interpenetra-
tion of different bodies, but allows frictional slip at the con-
tacting boundary nodes. This contact model is used to model
the frictional soil-blade interface. See “Appendix” for a more
detailed description of mpm.

1.4 Polar continuum

In granular materials the discreteness of the system is often
important and rotational degrees of freedom are active, which
might require enhanced theoretical approaches like polar
continua [15]. The concept of polar continua naturally brings
a length scale into the continuum theory.

In polar continuum theories, the material points are con-
sidered to possess orientations. A material point has three
degrees-of-freedom for rigid rotations, in addition to the
three classic translational degrees-of-freedom. Eringen [16]
describes polar continua in detail. The Cosserat continuum
is the most transparent and straightforward extension of clas-
sic or nonpolar continuum models and was proposed by E.
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and F. Cosserat in 1909 [17]. The nonpolar constitutive laws
must be adapted to include the rotational degrees-of-freedom
which leads to new laws such as polar elasticity and polar
plasticity. The rotations are induced by couple stresses within
the continuum. The presence of couple stresses result in a
stress tensor which is no longer symmetric, as in the case of
a nonpolar continuum.

In this paper, soil cutting is modelled using dem, non-
polar continuum mpm, and polar continuum mpm. The pre-
dicted blade draft force and material flow behaviour are
compared to experimental results [18–20]. The experiments
were performed under conditions that resulted in mainly
two-dimensional flow of the material. The main reason for
this is that the flow patterns could be accurately visualised
and compared to the results from two-dimensional numerical
approaches. Although the flow of material around earthmov-
ing and agricultural equipment would be three-dimensional,
this two-dimensional approach provides more insight of the
material flow directly in front of the cutting tool.

During the initial stages of cutting, shear bands develop
in front of the blade and during the later stages the material
experiences large deformations and free surface flow. The
ability of dem and mpm to model these phenomena is inves-
tigated.

2 Experimental and numerical setup

Two-dimensional experiments were performed by moving
a vertical flat blade (350 mm high) between two glass pan-
els (200 mm apart). The forces acting on the blade could be
measured and the flow patterns could be observed. The blade
was given a constant horizontal velocity of 10 mm s−1. For a
detailed description of the experimental setup and data log-
ging see [18] and [20].

Rowlands [21] observed that seed grains are suitable for
experimental testing and closely resemble natural granular
flow into dragline buckets. The grains have a relatively low
friction coefficient with glass, which makes it a good material
for experiments. The seed grains were also found suitable for
dem simulations because the stiffness of the grains is less
than the stiffness of, say, gravel. The smaller stiffness results
in a larger time step and decreases the total computing time
[18]. For a close-packed assembly the stable time step is
roughly inversely proportional to the particle stiffness [22].
Coetzee and Els [20] used direct shear and oedometer tests
to determine the corn micro (particle) properties to be used
during the dem simulations.

A Mohr–Coulomb constitutive model (perfect-plastic)
[23] was used for nonpolar modelling and a polar Drucker-
Prager model (perfect-plastic) [24] for polar modelling.
Mouazen and Neményi [25] has shown that perfect-plasticity
is a valid assumption for fem modelling of soil tillage. Plane
strain conditions were assumed [26].

Table 1 Material properties

Continuum macro properties Symbol Corn

Young’s modulus E 2.76 MPa

Poisson’s ratio ν 0.2

Density ρ 778 kg m−3

Friction angle φ 26◦

Dilatancy angle ψ 2◦, 10◦, 26◦

Cohesion c 0 Pa

Cosserat shear modulus Gc = 2G 2.3 MPa

Characteristic length l 10 mm

Moment of inertia J33 = 0.5(0.5 l)2 12.5 × 10−6 m2

Friction with steel φs 14◦

Dem micro properties Symbol Corn

Particle stiffness kn = ks 420 kN m−1

Particle density ρp 855 kg m−3

Particle friction μ 0.1

The corn grains had an average size of more or less 10 mm
[20]. The characteristic length used in the polar continuum,
assumed this value [24]. The moment of inertia of each grain
was calculated by assuming a cylinder with a diameter equal
to the internal length. The other material properties are sum-
marised in Table 1. For a detailed description of the dem cal-
ibration and model, see [20]. The material dilatancy angle
could not be determined from the shear test and oedometer
test data [18,20]. A reverse calibration procedure, described
as part of the results, was used to determine the dilatancy
angle. The blade was modelled as a rigid body.

In the dem model, the initial conditions were generated by
letting material (approximately 10,000 particles) fall from a
fixed height along the total length of the test rig [18,20]. For
mpm modelling, the bottom boundary was fixed in the hori-
zontal, vertical and rotational (polar only) directions and the
two side boundaries in the horizontal and rotational (polar
only) directions. The boundaries were far away from the
blade and had no significant effect on the results. No polar
rotation was allowed at the blade-material interface [24]. The
material stresses were initialised using a coefficient of earth
pressure Ko = 1 − sin φ [28].

Commercial dem software, P FC2D [22], was used and
the mpm code was developed at Stellenbosch University in
collaboration with the University of Stuttgart [19].

3 Results

3.1 Material flow

In the first part of the analysis, the material flow is investi-
gated by mainly looking at the ability of the different numer-
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Fig. 1 Comparison between
experimental [20], dem [20] and
nonpolar mpm results of corn
flowing in front of the blade.
Displacement=100 mm and
200 mm

Blade displacement = 100 mm Blade displacement = 200 mm

E
xp

er
im

en
t

D
E

M
N

on
po

la
r 

M
PM

, ψ
=

0°
N

on
po

la
r 

M
PM

, ψ
=

2°
N

on
po

la
r 

M
PM

, ψ
=

10
°

ical methods to predict the free surface. Figures 1 and 2
show the observed flow of material in front of the blade and
the results from dem and nonpolar mpm simulations (the
experimental and DEM results are from [20]). The initial
blade depth was h = 200 mm. With only the dilatancy angle
unknown, the simulation was repeated for three different val-
ues ψ = 2◦, ψ = 10◦ (non-associated) and ψ = φ = 26◦

(associated flow rule). There is good qualitative agreement
between the dem and mpm flow patterns, as shown by the
coloured layers.

Curves were fitted to the free surfaces to make a quanti-
tative comparison of the flow of material, Fig. 3. The free
surfaces exhibit the effect of the dilatancy angle: with an
increase in dilatancy angle, there is an increase in material
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Fig. 2 Comparison between
experimental [20], dem [20]and
nonpolar mpm results of corn
flowing in front of the blade.
Displacement = 300 mm and
400 mm
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volumetric expansion. The free surface is the most accurately
predicted using a dilatancy angle ψ = 2◦ and this value is
assumed for all further simulations.

The mpm simulation was repeated with a Cosserat (polar)
continuum. The friction- and dilatancy parameters are cal-
culated as proposed by Tejchman [24]. A comparison of the
polar and nonpolar mpm flow patterns is given in Fig. 4. At

a displacement of 100 mm there is good agreement, but as
the blade moves further, the polar continuum seems to show
less dilation than the nonpolar continuum. The curves fitted
to the free surfaces are shown in Fig. 5. From these curves
it can be seen that nonpolar mpm predicts the free surface
the most accurately. The dem free surface is in close agree-
ment with the polar mpm free surface up to a displacement of
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Experiment

Nonpolar MPM ψ = 10°

Nonpolar MPM ψ = 0°

Nonpolar MPM ψ = 2°

Displacement = 100 mm Displacement = 200 mm

Displacement = 300 mm Displacement = 400 mm

Fig. 3 Comparison of the free surfaces using different dilatancy angles
ψ and nonpolar mpm

200 mm, but both fail to predict the experimental free surface
accurately.

The forces that should be applied to the blade to move it
at constant velocity are shown in Fig. 6 for different values
of ψ . The force in the vertical direction is negative, which
indicates that the material tends to push the blade upwards,
hence a negative force should be applied to the blade to pre-
vent vertical movement. The draft force (horizontal direc-
tion) is defined as the force needed to push or pull a blade
through the material, in the direction of the motion and is
important in industrial applications such as ploughs, tillers
and bulldozers. Over the first part of the displacement the
responses, using nonpolar mpm, are the same because the
material is in a total elastic state. In the plastic regions, how-

Fig. 4 Comparison between
polar and nonpolar mpm results
of corn flowing in front of the
blade with ψ = 2◦
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ever, there is an increase in blade forces with an increase in
dilatancy angle. This phenomenon has also been observed
for cone penetration tests [27]. The polar mpm result, with
ψ = 2◦ is also shown. Polar mpm, however, predicts forces
13 % lower than nonpolar mpm withψ = 2◦. Polar mpm also
shows an initial elastic stiffness that slightly differs from
that of nonpolar mpm. According to Tejchman [24], the
Cosserat shear modulus Gc has an influence on the material
stiffness.

3.2 Blade forces

In the second part of the analysis, the ability of the different
numerical models to predict the blade forces is investigated.
As shown in Fig. 6, the blade forces stabilizes after 10 mm
of displacement. During these initial stages, there is little
upheave (bulldozing) of the material in front of the blade and
the forces are mainly due to material failure. Only if the blade
is moved further (>60 mm) does the upheave of the material
tend to have the effect of increasing the blade forces. In order
to make comparisons, only blade forces up to a displacement
of 35 mm are considered, i.e., the effect of upheaving does
not play a role.

Using the dilatancy angle ψ = 2◦ and nonpolar mpm, the
effect of blade depth h on the blade forces is shown in Fig. (7),
using depths h = 150, 250 and 350 mm. As expected, the
forces increase with an increase in blade depth. In order to
compare the mpm results to that from dem, experiments and
Sokolovski’s method of characteristics [5], the average draft
forces are calculated. The average draft forces were calcu-
lated from Fig. 7, using the data between 15 and 35 mm in
displacement. A similar procedure was applied to the exper-
imental results, dem results, and polar mpm results. All the
results are shown in Fig. 8 and show the same general trend
that the draft force is exponentially dependent on the blade
depth. The nonpolar mpm results are in close agreement with
the results from Sokolovski’s method, overestimating it by
12, 6 and 5 % for the depths h = 150, 250 and 350 mm respec-
tively. The nonpolar mpm results underestimate the experi-
mental results by 25, 11 and 9 % for the depths h = 150, 250
and 350 mm respectively. There might be different reasons
for the fact that the simulations predict lower draft forces than
were measured. Although the friction coefficient between the
corn and glass is low, there are still friction forces which will
result in measured values that are higher than it would have
been under purely plane strain two dimensional conditions.
Polar mpm predicts draft forces 30, 21 and 20 % lower than the
measured values for the three different depths respectively
and 28, 14 and 10 % lower than the nonpolar mpm results.
Tejchman [24] reports a 30 % difference in polar and non-
polar continuum results in modelling a strip footing with
standard fem. The percentage difference in polar and nonpo-

Experiment

Polar MPM ψ = 2°

DEM 

Nonpolar MPM ψ = 2°

Displacement = 100 mm Displacement = 200 mm

Displacement = 300 mm Displacement = 400 mm

Fig. 5 Comparison of the experimental, polar mpm (ψ = 2◦), nonpolar
mpm (ψ = 2◦) and dem free surfaces
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Fig. 6 The effect of the dilatancy angle ψ on the blade forces with
blade depth h = 350 mm

lar mpm results compared to experiments seems to decrease
with an increase in blade depth, i.e. an increase in stress.
The dem result, compared to the measured values, predicts
a higher draft force with h =150 mm and h =250 mm and a
lower draft force with h =350 mm.

Figure 9 shows the normal and shear stress at the blade
as predicted by nonpolar mpm, polar mpm and Sokolovski’s
method. The continuum results were obtained from the nodal
forces acting on the blade. The irregularity in the stress close
to the bottom edge of the blade is due to the unit normal
vector at the bottom node which is not horizontal and pos-
sible stress concentrations. The nonpolar mpm results are in
good agreement with the Sokolovski predictions. The polar
mpm results are shown using two boundary conditions: no
rotation at the blade wc = 0 and free rotation at the blade.
Polar mpm predict normal and shear stresses lower than that
of nonpolar mpm and Sokolovski’s method. Having no rota-
tion or free rotation at the blade has little effect on the nor-
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Fig. 7 The effect of blade depth h on the blade forces using nonpolar
mpm and ψ = 2◦
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Fig. 8 Comparison between average draft forces: mpm, dem, experi-
ments and Sokolovski’s method

mal stress, but the shear stress with free rotation, is almost
half the stress when no rotation is allowed. This means
that the rotation has an influence on the friction between
the material and the blade. This has also been observed by
Tejchman [24].

Taking the dem average contacting force of two neigh-
bouring contacts and dividing it by the distance between the
contacting points along the blade, the stress at the blade could
be estimated. Due to the particles moving in a step-like fash-
ion, a time average was used to calculate the stress at the
blade. The average was calculated between a blade displace-
ment of 18 and 22 mm and the result is shown in Fig. 10.
The normal and shear stress are lower than the stresses pre-
dicted by Sokolovski’s method, but higher than the nonpolar
mpm stresses.
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Fig. 9 Normal and shear stress at the blade for h =350 mm: Nonpo-
lar mpm, polar mpm and Sokolovski’s method. Blade displacement =
20 mm
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Fig. 10 Normal and shear stress at the blade for h = 350 mm: dem and
Sokolovski’s method

3.3 Shear banding

In the third part of the analysis, the ability of the different
numerical methods to predict shear banding is investigated.
Again, only blade displacements up to 35 mm are considered,
i.e., the effect of upheaving of material is avoided.

When the blade pushes the material forward, a shear band
develops, reaching from the bottom tip of the blade to the
free surface. Using dem, it can be very difficult to predict
the shear bands, but there is definitely evidence that such
bands exist. Making use of the particle displacement ratio
(pdr), slip lines can be identified. Pdr is defined as the ratio
of the magnitude of the particle displacement vector to the
magnitude of the blade displacement vector. Note that when
the term slip line is used, it is assumed to be a slip plane
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DEM

Experiment Sokolovski

Nonpolar MPM

Polar MPM

Fig. 11 Predicted slip lines using a particle displacement ratio pdr=
0.15. Blade displacement = 15 mm (dem results from [20])

with no width, while a shear band is defined as a region of
slip or a slip plane with a finite width. The top of Fig. 11
[20] shows the results using pdr = 0.15, i.e., all the darker
particles have been displaced a distance of at least 0.15 times
the displacement of the blade). The experimentally observed
slip line and the line predicted by Sokolovski’s method are
also shown. The line shown on the figure indicates the centre
of the observed shear band. With pdr = 0.15, the predicted
slip lines falls between the observed line and the Sokolovski
line at the free surface. Closer to the bottom edge of the
blade, however, the slip line is outside of that predicted by
Sokolovski’s method. This is because the particles have a
finite size whereas in Sokolovski’s method, the slip line is
assumed to start at the bottom edge of the blade.

The lower two images in Fig. 11 show similar results from
nonpolar mpm and polar mpm respectively. All the material
points within the darker region have pdr≥0.15. The nonpo-

Experiment

120 X 70

80 X 50

Experiment

Fig. 12 Nonpolar mpm yield points: mesh sizes 120×70 and 80×50.
Blade displacement = 15 mm

lar mpm predicted slip line meets the free surface at almost
exactly the same place as the dem predicted slip line. Closer
to the blade tip, however, the shear band more closely fol-
lows that of the observed and Sokolovski lines. Contrary to
dem modelling, in continuum modelling there are no parti-
cles with a finite size, which causes the dem slip line to be
outside the Sokolovski line. Polar mpm predicts a slip line
at almost 45◦ and it is less curved than the observed and
nonpolar mpm slip lines.

The predicted slip lines can be manipulated by chang-
ing the pdr value to obtain a better fit. A more precise
method of predicting the shear band is possible with a con-
tinuum method, but not with dem. Using nonpolar mpm,
Fig. 12 shows all the regions which have a stress state
on the yield surface as lighter patches and those which
have stress states below the yield surface (elastic state) as
darker patches. Two mesh sizes were used, 120 × 70 and
80 × 50. Yield points are concentrated around the observed
slip lines. The coarser mesh shows more yield points and
a broader shear region as indicated by the dashed lines.
Figure 13 shows the nonpolar mpm shear strain intensity J ′ =
1
6

[
(εxx − εyy)

2 + ε2
yy + ε2

xx

]
+ε2

xy with lighter regions indi-

cating higher shear strains and vice versa. The shear strain
shows a definite band, bounding the observed and Sokolovski
slip lines. Again, mesh refinement shows convergence of the
shear band width.

It is well-known that the Cosserat rotation is an indication
of shear bands [24]. Figure 14 shows the rotation for two
different mesh sizes with the rotation at the blade interface
unconstrained (free). The shear zones can be identified by
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Experiment Sokolovski

120 X 70

80 X 50

Fig. 13 Nonpolar mpm shear strains: mesh sizes 120×70 and 80×50.
Blade displacement = 15 mm

regions of high (negative) rotations. Again, the shear regions
differ from the nonpolar mpm and experimental results, but
do agree with the polar mpm displacement field as depicted in
the bottom image of Fig. 11. There is little difference in the
results from the two different mesh sizes. A mesh rotated
through 35◦ revealed that the orientation of the nonpolar
mpm shear band is slightly influenced by the mesh orien-
tation. The polar mpm shear band, however, showed to be
independent of the mesh orientation.

The observed shear band had a width of about 7 - 8
particle diameters, i.e., 70–80 mm [18]. The simulations,
polar and nonpolar mpm, predict shear bands 60–80 mm
wide. Tejchman [24] states that if the size of the elements
is smaller than five times the mean grain diameter d50, i.e.
5 × 10 mm = 50 mm, the polar results are independent on the
mesh size. The 120×70 and 80×50 mesh had element sizes
10 mm × 10 mm and 15 mm × 14 mm respectively. These
sizes are well below five times the mean grain diameter.

The standard set of Cosserat constitutive coefficients a1 =
0.375, a2 = 0.125 and a3 = 1 was used. Muhlhaus and
Vardoulakis [29] derived the values of these coefficients by
taking into account slip and rotation in a random assembly
of circular rods. Tejchman [24] investigated the effect of the
Cosserat material parameters on biaxial simulations and con-
cludes that the standard set of parameters turned out to be use-
ful and sufficient in numerical calculations involving locali-
sation. The influence of a3 on the results was rather insignifi-
cant and, in general, the larger the difference between a1 and
a2, the larger the non-symmetry of the stress tensor. Tejch-

Fig. 14 Polar rotations [rad]: mesh sizes 120 × 70 and 80 × 50. Blade
displacement = 15 mm

man [24] also showed that when the following set is used,
a1 = 0.25, a2 = 0.25, a3 = 0.5, the response is slightly
less stiff compared to the standard set. It was found in this
study, that by changing the value of Gc from Gc = 2G to
Gc = 0.5G the draft force on the blade decreased by 1.3 %.
Changing the internal length from l = 10 mm to l = 2 mm,
the draft force decreased by only 1.9 %. These results show
that the model is not sensitive to changes in the values of Gc

and l.

4 Conclusion

Dem and mpm (nonpolar and polar) simulations were com-
pared to experiments of a flat blade cutting through a cohe-
sionless granular material.

Different dilatancy angles were used for nonpolar mpm
modelling and it was found that an angle of ψ = 2◦ resulted
in flow patterns and free surface flows that closely resembled
the observed behaviour. Using ψ = 2◦, polar mpm could not
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accurately predict the free surface flow. Polar mpm showed
less dilation, but compared well to the dem results up to a dis-
placement of 300 mm. The dilatancy angle had a small influ-
ence on the draft force: an increase in dilatancy angle resulted
in an increase in force. Nonpolar mpm predicted draft forces
9–25 % lower than the measured values for different blade
depths. Polar mpm predicted the draft forces 20–30 % lower
than the measured and 10– 28 % lower than the nonpolar
mpm forces. For both nonpolar and polar mpm, the predicted
draft forces were more accurate with an increase in blade
depth, i.e. an increase in average stress. Dem predicted draft
forces of 6 % lower to 12 % higher than the measured values.

Using a particle displacement ratio pdr = 0.15, both non-
polar mpm and dem could accurately predict the position
and orientation of the observed shear band. Polar mpm pre-
dicted a straight shear band at ±45◦. Using the nonpolar shear
strain and the polar rotations, more objective predictions
of the shear bands could be done. The nonpolar approach
showed to be more accurate in terms of predicting the posi-
tion and orientation of the shear band, but also showed that
the band width is mesh size dependent with a decrease in
band width associated with mesh refinement. Although the
polar approach showed that the mesh size had no significant
effect on the shear band width, it failed to accurately predict
the orientation of the shear band.

Using Sokolovski’s method as reference, nonpolar mpm
predicted normal and shear forces against the blade very
accurately. Polar mpm failed to accurately predict the stresses
and showed that the polar rotation at the blade interface had
only a small influence on the stresses. Dem, in general, pre-
dicted lower stresses compared to Sokolovski’s method, but
higher than polar mpm.

Finally it is concluded that dem and mpm can success-
fully model a flat blade cutting through a granular medium.
This process is difficult to model with conventional fem due
to large displacements and severe distortion of the mesh. A
standard set of Cosserat constitutive parameters was used
together with the measured friction angle, dilation angle,
Young’s modulus and characteristic length. These additional
parameters make it difficult to use the Cosserat continuum,
unless accurate laboratory experiments are conducted to
determine these parameters. In general, the Cosserat con-
tinuum performed worse than the nonpolar continuum. The
effect of the different Cosserat parameters on soil flow, shear
band orientation and width and blade-soil interface stresses
needs further study. It is, however, possible if the Cosserat
parameters can be determined more accurately that it will
perform as good as the nonpolar continuum. The inherent
complexity of the Cosserat continuum, however, makes it
unsuitable for everyday practical use.

A cohesionless material was used in this study. The next
logical step would be to include cohesion. Cohesion can be
added to a dem model in the form of inter-particle bonds

[30]. The strength and stiffness of these bonds can be based
on the capillary and dynamic viscous forces induced by the
presence of water between soil particles. Cohesion can easily
be added to the mpm models since it is already included in
the constitutive models used, but set to zero in this study.

This study also focused on two-dimensional modelling.
In the case of a long flat blade and other limited cases
this assumption is valid. When the flow is more complex
around a three-dimensional tool, the numerical models have
to be extended to capture the three-dimensional effects.
Both dem and mpm can be used to model tools of more
complex geometry. Three-dimensional modelling (contin-
uum and discrete) will be computationally more expen-
sive than two-dimensional modelling and the cost will be
determined by the size of the domain modelled, the num-
ber of elements (continuum) and the number of particles
(discrete). Three-dimensional DEM codes are available [22]
and mpm has recently been extended to three-dimensions
[37].

Computation time using dem and mpm was found to be
comparable. Polar mpm was found to be ±50 % slower than
nonpolar mpm. The dem model used was fairly small, and it
is expected that with an increase in the number of particles
in the dem model, computation times would increase and
mpm would be the preferred method of choice.

Appendix: The material-point method

The basic formulation of mpm is presented here. For a more
detailed description, see [19] and one of the pioneering papers
by Sulsky and Schreyer [13]. In the first part of this appen-
dix, index notation is used to denote vectors and matrices.
The subscripts i , j and k are used, assuming values of 1,
2 and 3, unless stated otherwise. In the latter part of the
appendix, Hassenpflug [31] notation is used. A column vec-
tor is indicated by a overbar, x, a row vector by a under-
bar, x and a matrix by both, x. Plane strain conditions are
assumed.

4.1 Space discretisation

First, the initial configuration of the body is divided into a
number of subregions. This is done as depicted in Fig. 15.
In the centre of each subregion a material point or particle
is placed. This material point represents the subspace, and is
given a mass m p. The mass is calculated by assuming that the
whole mass of the subregion is concentrated at the material
point. The mass of a material point is constant and does not
change with time or position. The density ρ (xi ) represented
by this collection of discrete mass points is approximated
using the Dirac delta function
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x1

x2

Element mesh

Subdomain

Material point

Fig. 15 Typical mpm discretisation indicating the finite elements and
material points

ρ (xi ) =
Np∑

p=1

m pδ
(
xi − x p

i

)
(1)

where xi is an arbitrary position vector, x p
i is the position

vector at material point p, Np is the total number of material
points and the Dirac delta function is defined as follows

δ (x − a) =
{

0 x �= a
∞ x = a

and

+∞∫

−∞
δ (x − a) dx = 1 (2)

For clarity, the equations of motion are derived for a sin-
gle element only. The whole system would be analysed by
assembling the matrices and vectors as in standard fem rou-
tines. The mass of each material point is fixed which ensures
mass conservation.
The weak from of the linear momentum equation is given by

∫

V

ρ
dvi

dt
wi dV =

∫

V

ρ fiwi dV

−
∫

V

ρσ s
i jwi, j dV +

∫

S

τiwi d S (3)

where vi is the velocity vector, fi the body forces and τi the
surface traction acting on surface S andwi is test function.σ s

i j
is the specific stress tensor defined as the Cauchy stress tensor
divided by the material density. Substitution of the discrete
density representation, Eq. (1), into Eq. (3) and making use
of the definition of the Dirac delta function yields an discrete
expression where the integration is performed as a sum of
material point properties.

Np∑
p=1

m p
dv p

i

dt
w

p
i =

Np∑
p=1

m p f p
i wi

−
Np∑

p=1

m p σ
sp
i j w

p
i, j +

∫

S

τiwi d S (4)

The superscript p indicates a variable evaluated at the mate-
rial point. For example, the specific stress σ sp

i j ≡ σ
sp
i j

(
x p

i

)
.

4.2 Element formulation

The element mesh used is similar to that of fem. Four noded
quadrilateral elements are used. Under the assumption of
two-dimensional conditions, the acceleration field v̇i ≡ dvi

dt ,
for example, can be written in terms of nodal- and shape
function-values

v̇ (x, t) ≡ [v̇1 v̇2]T = N v̇
n

(5)

where N is a matrix containing the shape functions. The ele-
ment nodal acceleration vector, v̇

n
, contains the nodal values

of the acceleration field. The same can be applied to the vec-
tor fieldwi to obtain a vector w. Define the following vectors
under plane strain conditions,

σ s ≡
⎡
⎣
σ s

11
σ s

22
σ s

12

⎤
⎦ , f ≡

[
f1

f2

]
, τ ≡

[
τ1

τ2

]
(6)

with σ s
12 = σ s

21. Note that under the assumption of plane
strain, the third normal stress component σ s

33 is not included
in the definition above. This component is, however, calcu-
lated at each material point and used in the constitutive model.
Using these definitions, Eq. (4) can be written as follows

wT
Np∑

p=1

m p

(
N

p
)T

N
p

v̇
n = wT

Np∑
p=1

m p

(
N

p
)T

f
p

−wT
Np∑

p=1

m p

(
B

p
)T

σ sp + wT
∫

S

(
N

p
)T

τ d S (7)

where the superscript p indicates values to be evaluated at the
material points, e.g. N

p ≡ N
(
x p). The arbitrary test vector

w appears in all the above terms and can thus be dropped.
The final discretised system of equations follows as

M v̇
n = F

int + F
ext

(8)

where the mass matrix M is given by

Mi j ≡ M =
Np∑

p=1

m p

(
N

p
)T

N
p

(9)
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the internal force vector is given by

F int
i ≡ F

int = −
Np∑

p=1

m p

(
B

p
)T

σ sp (10)

and the external force vector is given by

F ext
i ≡ F

ext =
∫

S

(
N

p
)T

τ d S (11)

The matrix B
p

contains shape function gradients. In practice,
to simplify computations, a lumped mass matrix may be used
instead of the consistent mass matrix given by Eq. (9). The
lumped mass matrix is a diagonal matrix with each entry
being the corresponding row sum of the consistent mass
matrix. Matrix inversions become trivial if a lumped matrix
is used, at the cost of introducing a small amount of numeri-
cal dissipation [32,33]. The consistent mass matrix can also
be singular for certain arrangements of the particles. There
appears to be only a few arrangements of particles that yield
a singular consistent mass matrix, but nearby arrangements
might result in an ill-conditioned matrix. On the other hand,
the lumped matrix is diagonal and well conditioned.

4.3 Time integration

Let the time step size be 
t . The solution to the system of
Eq. (8) is found at discrete instants in time t, t + 1, . . . , t +
n. The calculation during each time increment consists of
three phases; a initialisation phase, a Langrangian phase and
a convective phase [34].

4.3.1 Initialisation phase

Assume that the position and velocity vector, stress tensor,
strain tensor and history dependent variables of each material
point are known at time t . With the position of each parti-
cle known, its shape function values can be computed and
hence the mass matrix, M

t
, given by Eq. (9). Mapping of the

particle velocities to the nodes, provides the initial data for
the solution to Eq. (8). The following equation is solved to
obtain the nodal velocity vn,t at time t .

M
t
vn,t =

Np∑
p=1

m p

(
N

p,t
)T

[
v

p,t
1

v
p,t
2

]
(12)

where
[
v

p,t
1 v

p,t
2

]T
is the material point velocity vector at

time t , containing the velocity components in the x1- and x2-
directions respectively. This equation expresses equivalence
of momentum calculated for the material points and for the
nodes [35].

4.3.2 Lagrangian phase

With the shape functions of each particle known, the internal-
and external-force vectors can be calculated using Eqs. (10)
and (11) respectively. With these two vectors and the mass
matrix known, Eq. (8) is solved for the nodal acceleration at
time t .

v̇
n,t =

(
M

t
)−1 (

F
int,t + F

ext,t
)

(13)

The “new” nodal velocity, vn,t+1, at time t + 1 is obtained
by using an explicit time integrator

vn,t+1 = vn,t +
t v̇
n,t

(14)

which obviously requires very small time steps to ensure
accuracy. Using the new nodal velocity, the increment in
strains can be calculated at the particles. Define the vector of
strain increment as follows


ε p ≡ [
ε

p
11 ε

p
22 ε

p
12

]T
(15)

This vector can be calculated using matrix B
p,t


ε p,t+1 = 
t B
p,t

vn,t+1 (16)

With the increment in strain known, the new stress state
σ p,t+1 at each material point can be calculated based on the
chosen constitutive model. One way of doing this, would be
to calculate the stress increment, using the tangent modulus
M

p,t


σ p,t+1 = M
p,t

ε p,t+1 (17)

The use of the tangent modulus in a numerical algorithm,
however, results in a tendency for the stress to drift from the
yield surface [13]. In practice a incremental iterative scheme
is rather used. With the given increment in strain, the material
is assumed to be elastic, and a trial stress state is computed.
The yield function f is evaluated using the trial state, and if
f ≤ 0 the material point is still in the elastic region and no
further calculations are needed. However, if f > 0, return
algorithms, based on the flow potential g, are needed to force
f back to zero. In the case of a Mohr–Coulomb or Drucker–
Prager model, a simple one-step return to the yield surface is
possible [23]. For other models like Lade, a iterative proce-
dure is needed.

History dependent variables such as strain-hardening
parameters may also be updated at this stage. During the
Lagrangian phase the nodes are assumed to move at the com-
puted nodal velocity vn,t+1. Thus, points in the interior of the
element move in proportion to the motion of the nodes, as
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given by the representation using the nodal shape functions.
Since shape functions are used to map the nodal velocity
continuously to the interior of the element, the positions of
the material points are updated by moving them in a single-
valued, continuous velocity field. Similarly, the velocity of a
material point is updated by mapping the nodal accelerations
to the material point position. The updated position vector
and velocity vector follow as

x p,t+1 = x p,t +
t N
p,t

vn,t+1;
v p,t+1 = v p,t +
t N

p,t
v̇

n,t
(18)

Because the velocity field is single-valued, interpenetration
of material is precluded. This feature of the algorithm allows
simulations of impact and penetration without the need for a
special contact algorithm.

4.3.3 Convective phase

At this point in the computational cycle, the material points
are completely updated and carry the complete solution, i.e.,
all the state variables needed to start a new calculation step are
carried by the material points. During the convective phase,
the material points are held fixed and the element mesh can be
redefined. The mesh can be chosen in any convenient manner,
for example adaptive meshes can be used to resolve sharp
gradients and interfaces. The simplest and most convenient
choice is, however, to keep the existing mesh. Any motion
of the mesh relative to the material points model convection.
Since the material points do not move during the convective
phase, material point properties have the same value at the
end of the convective phase as they had at the end of the
Lagrangian phase. This completes the computational cycle.
A new cycle is begun using the information carried by the
material points to initialise nodal values on the element mesh.

4.4 Stability

In the previous sections, a simple explicit time integrator is
used of which the time step should satisfy the stability con-
dition, i.e. the critical time step should be the smallest ratio
of the element size to the wave speed through the material.
For small displacements, the spatial discretisation in mpm is
equivalent to that of fem using Gauss points at the same
locations as those of the material points in each element.
Therefore, the convergence behaviour of the integrator used
is similar to that employed to integrate the corresponding
equations in fem. However, according to Chen et al. [36],
no consistent theoretical results have been obtained for the
convergence behaviour of time integrators when larger defor-
mations occur and a reasonable time step is usually found
through numerical experiments.

4.5 Contact model

The mpm formulation presented here automatically enforces
no-slip contact between two different bodies. The reason for
this is that a single-valued velocity field is used for updat-
ing the particle positions. Bardenhagen et al. [14], however,
developed an algorithm which relaxes the no-slip condition
and allows Coulomb friction and slip at contacting boundary
nodes. This contact algorithm was implemented to model the
blade-soil interface. The friction angle between the corn and
the steel blade is given in Table 1. The theory behind the
contact model is not presented here and the reader is referred
to Bardenhagen et al. [14].
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