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Abstract This paper presents a high performance imple-
mentation for the particle-mesh based method called parti-
cle finite element method two (PFEM-2). It consists of a
material derivative based formulation of the equations with
a hybrid spatial discretization which uses an Eulerian mesh
and Lagrangian particles. The main aim of PFEM-2 is to
solve transport equations as fast as possible keeping some
level of accuracy. The method was found to be compet-
itive with classical Eulerian alternatives for these targets,
even in their range of optimal application. To evaluate the
goodness of the method with large simulations, it is imper-
ative to use of parallel environments. Parallel strategies for
Finite Element Method have been widely studied and many
libraries can be used to solve Eulerian stages of PFEM-
2. However, Lagrangian stages, such as streamline integra-
tion, must be developed considering the parallel strategy
selected. The main drawback of PFEM-2 is the large amount
of memory needed, which limits its application to large
problems with only one computer. Therefore, a distributed-
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memory implementation is urgently needed. Unlike a shared-
memory approach, using domain decomposition the mem-
ory is automatically isolated, thus avoiding race conditions;
however new issues appear due to data distribution over the
processes. Thus, a domain decomposition strategy for both
particle and mesh is adopted, which minimizes the commu-
nication between processes. Finally, performance analysis
running over multicore and multinode architectures are pre-
sented. The Courant–Friedrichs–Lewy number used influ-
ences the efficiency of the parallelization and, in some cases,
a weighted partitioning can be used to improve the speed-up.
However the total cputime for cases presented is lower than
that obtained when using classical Eulerian strategies.

Keywords Particle methods · Lagrange formulations ·
Incompressible Navier-Stokes equations · PFEM · High
performance computing · Distributed memory

1 Introduction

When attempting to classify transport equation solvers, it is
important to take into account the level of locality of the
information needed. One can define as implicit a solution
strategy in which a change in the solution in any part of the
domain can potentially influence the solution on any other
of its parts (enforcing a strong coupling between time and
space). Explicit strategies can therefore be understood as
strategies in which the solution at a point, within a time-
step, is only influenced by a portion of the domain around
the point (the coupling between time and space is somewhat
relaxed).

While the implicit strategies are more robust the explicit
ones are more efficient. This feature is attributed first to the
simplicity of its computation with the minimum amount of
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information needed to update the solution and principally to
be in a better position, taking into account the present state
of hardware technology based on the use of parallel comput-
ers and general purpose graphic processor units (GPGPU).
Focusing on the efficiency, in the explicit strategies, can be
also included those methods that, being implicit, lead to a
linear system of equations that may be factorized once and
solved each time-step with the same factorized matrix as a
preconditioner.

Moreover, formulations for transport equations may be
split in two classes depending on the approach selected to
describe the inertial terms, namely Eulerian and Lagrangian
approaches. Over the last thirty years, computer simulation
of incompressible fluid flow has been mainly based on the
Eulerian formulation of the fluid mechanics equations on
fixed domains [1]. On the other hand, Lagrangian formu-
lations justify their popularity solving free-surface flows or
complicated multi-fluid flows in which the standard Eulerian
formulations are inaccurate or, sometimes, impossible to use.

Particle-based methods, in which each fluid particle is fol-
lowed in a Lagrangian manner, have been continuously used
since Monaghan [2] proposed the first ideas on this approach
for the treatment of astrophysical hydrodynamic problems
with the so-called smoothed particle hydrodynamics method
(SPH). That method was later generalized to fluid mechan-
ics problems [3]. A similar idea to SPH was developed by
Koshizuka et al. [4] for incompressible flows named moving
particle simulation (MPS) methods. SPH and MPS belong
to the family of the so-called meshless methods. Lately, the
meshless ideas were generalized by the meshless finite ele-
ment method (MFEM) [5]. This method, which uses the
extended Delaunay tessellation [6] to rebuild a mesh in simu-
lation time, takes into account the finite element type approx-
imations in order to obtain more accurate solutions.

A natural evolution of MFEM was the particle finite ele-
ment method (PFEM) [7]. The PFEM combines the parti-
cle idea with the finite element method (FEM) shape func-
tions using an auxiliary finite element mesh. PFEM has
been successfully used to solve the Navier–Stokes equations
with free-surfaces [8–10], fluid-structure interaction prob-
lems [11], and fluid mechanics problems including multi-
fluid flows [12]. The idea of combining meshes with moving
particles is also used in the so-called material point method
(MPM) [13]. However, the most important difference is that
in the PFEM the particles do not represent a fixed amount of
mass, but rather material points that transport only intrinsic
properties. This allows using a variable number of particles,
which simplifies mesh refinement due to the possibility to
use more flexible element sizes.

However, only few attempts in the past thought in using
Lagrangian formulation for homogeneous fluid flow can
be presented. Maybe the most relevant work was done by
Joe Stam [14], which solve the Navier–Stokes equations

in the context of video games. One of the reasons why
the above mentioned Lagrangian methods, and particularly
PFEM, are not directly applied on solving homogeneous fluid
flow applications may be the important computational cost
involved in the mesh, grid or neighborhood management.
This severe limitation together with another imposed for the
non-linearities and those proper of explicit schemes made
the efficiency of original PFEM a serious problem, beyond
that the method has evolved thanks to the progress done in
parallel mesh generation and remeshing avoiding this serious
limitation in some measure.

Although the above mentioned limitations, Lagrangian
schemes have some features that show some advantages
against Eulerian frames. The main one is the missing of
the convective term in the balance equations, converting the
non-symmetric equations in symmetric and positive definite.
For Navier–Stokes equations this fact is more relevant, due
to the original non-linear momentum equation is converted
in linear, which allows to avoid the usage of stabilization
terms with the strong consequence of not adding the typical
numerical diffusion. Then, for convection dominated flows
the time step in Eulerian formulations needs to be limited
attending non-linearities and stability reasons. On the con-
trary, the Lagrangian formulations do not suffer from this
inconvenience if and when the equations are integrated with
good accuracy. This is the key point where the emphasis was
put to develop the new generation of PFEM method’s.

According to the above mentioned background, a new
strategy to integrate equations which is named eXplicit Inte-
gration following the Velocity and Acceleration Streamlines
(X-IVAS), was recently developed [15,16]. This form of inte-
grating based in following the streamlines of the flow in the
present time step is a better way to solve the non-linearities of
the equations of the flow. Adding this strategy to the original
PFEM method converges to a new methodology called parti-
cle finite element method second generation (PFEM-2). This
method proves that Lagrangian formulations for homoge-
neous fluid flows, without free-surfaces or internal interfaces,
are able to yield accurate solutions while being competitively
fast when compared to state-of-the-art Eulerian solvers.

This particle-mesh method must be categorized into con-
tinuum mechanics. PFEM-2 is not a molecular dynamics
method, or a method based on force equilibrium, such as
smoothed particle hydrodynamics [2]. It is also not related to
statistical mechanics as the Lattice-Boltzmann method [17].
PFEM-2 is intended to take advantage of the wealth that
balance equations of continuum media offer, but avoiding
an Eulerian formulation to ward off its excessive numer-
ical diffusion and its limited stability in the explicit case
because of the Courant–Friedrichs–Lewy (CFL) condition.
The main interest of the method lies in its capacity to solve
problems of industrial interest, in which usually arbitrary
geometries, non-structured meshes and turbulence modeling
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are employed, typically reaching extreme Reynold numbers,
and also fluid-forces over solid-bodies are required. Finally,
PFEM-2 is intended to be a valid alternative for that design
engineers who nowadays use classical CFD software.

The competitiveness of the method depends on the perfor-
mance of the implementation. A good algorithmic idea can
be overshadowed if a poor programming strategy is used.
Nowadays, an efficient implementation must include strate-
gies to make intensive use of parallel hardware technologies.

An initial step is to develop a code to be executed on multi-
core computers. The multi-core environment is typically non-
deterministic and thread-safety issues make the implementa-
tion into multi-core a non-trivial exercise. A brief summary
about the strategies to avoid race conditions and to improve
the load balancing is reported in this paper. Although this
work is not focused on that architecture, these issues are pre-
sented to introduce it and to compare different algorithmic
solutions. Interested readers can find in [18] a more detailed
description of the shared-memory implementation.

The hybrid spatial discretization used by PFEM-2 allows
us to use the optimum strategy to calculate each equa-
tion term. Convection terms are solved by particles in a
Lagrangian way using the X-IVAS method. On the other
hand, diffusive terms are solved on a mesh in an Eulerian way
using a classic FEM approach. However, keeping in memory
the data of the mesh and of the cloud of particles represents
an important storage cost that limits implementations that run
only on a single computer. Then, a given memory capacity,
FEM simulations which fit in memory might not do it with
PFEM-2 simulations. Therefore, it is imperative to develop
a distributed-memory implementation.

In order to develop a multi-machine implementation for
PFEM-2, it is essential not to reinvent the wheel. Reusing
code amortizes the formidable software development effort
required to support parallel unstructured mesh-based simula-
tions. In the open-source community there are several object-
oriented toolkits and libraries [19–21], which include domain
decomposition, shape functions of many orders, numerical
integration, assembling and solving equation systems, etc.
These packages can be extended by developers for their spe-
cific application libraries. In the current work, the libMesh
library [22] is chosen as the basis of the development, which
is an open-source OOP-C++ library to the numerical simu-
lation using non-structured discretizations over sequential or
parallel platforms.

Although libMesh solves the problem of the implementa-
tion of the FEM issues of PFEM-2, the parallel particle man-
agement remains to be developed. Particle stages in PFEM-2
include the movement of the particles along the entire domain
and the updating of the nodal data from the particle data (or
vice versa). To manage those features, a smart distribution
of the particles over the processes is needed; in this work, a
dual particle-mesh distribution is adopted.

Section 2 presents a review of the PFEM-2 method, with
an explanation of the features that allow the method to run
with large time-steps. Section 3 provides a summary of the
shared memory implementation, focusing on load balanc-
ing problems in X-IVAS integration. Section 4 presents a
detailed analysis of the extension of libMesh to manage
particles, with an emphasis on the strategy to distribute the
cloud along the sub-domains. Several Navier–Stokes simula-
tions over Beowulf clusters are analyzed in Sect. 5, focusing
on the efficiency obtained with the implementation. More-
over, the performance is compared with the widely used CFD
software OpenFOAM®. Finally, some concluding remarks
are provided in Sect. 6.

2 PFEM-2 method review

The goal of PFEM-2 is to solve transport-equations. The
method is principally motivated by solving viscous incom-
pressible flow equations as fast as possible. Its formulation
allows to find numerical results of others scalar or vector-
ial transport equations, such as heat equation or turbulence
modeling, and, also, the coupling between two or more of
them [23].

The Lagrangian expression for a scalar transport-equation
is presented in Eq. 1,

Dφ

Dt
= ∇ · (α ∇φ) + Q (1)

where the unknown is the scalar φ and Q is a external source.
For example, if φ is the temperature, this equation is called
Heat Equation.

On the other hand, Navier–Stokes equation system
describes the behavior of Newtonian viscous incompress-
ible flow. Its formulation is based on momentum-transport
equation, which is normally coupled with the equation for
the local mass balance. Lagrangian expressions are shown in
Eqs. 2 and 3,

ρ
Dv
Dt

= −∇ p + ∇ · (μ(∇vT + ∇v)) + f (2)

∇ · v = 0 (3)

where the unknowns are the velocity vector v and the pressure
p, μ is the fluid dynamic viscosity, ρ is the fluid density and
f is an external force. Lagrangian formulation avoids solving
the non-linearities of the convection in a equation system,
because their issues are approached by solving particle tra-
jectories.

It is well known [24] that the time-step selected in the
solution of the transport equations is stable only for time-
steps which considers the limitation imposed by two critical
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dimensionless numbers: the Courant–Friedrichs–Lewy num-
ber (C F L = |v|Δt

Δx ) and the Fourier number (Fo = μΔt
Δx2 ).

The former concerns with the convective terms and the latter
with the diffusive ones. In Eulerian formulation both num-
bers must be less than a constant order one to have sta-
ble algorithms. For convection dominant problems like high
Reynolds number flows, the condition C F L < 1 becomes
crucial and limits the use of explicit methods or makes the
solution scheme far from being efficient. On the other hand,
in diffusion dominant problems, the Fourier number becomes
critical due to the time-step must decrease with the square of
the grid size, doing unapproachable in problems using very
refined meshes.

However, the key of the PFEM-2 algorithm is the ability to
reach C F L >> 1 because the information is transported on
the particles. One of the novelties in PFEM-2 with respect to
its predecessor PFEM concerns with the integration of par-
ticle trajectory and the state variables defining the problem.
This integration is performed following the streamlines com-
puted explicitly with the information of the previous time-
step. This new method was named eXplicit Integration fol-
lowing the Velocity and Acceleration Streamlines (X-IVAS)
and it was presented in [15]. X-IVAS represents a more sta-
ble explicit time integration not limited by C F L . Briefly, the
algorithm takes the streamlines as stationary on each time-
step (vn , where n is the previous time-step), then the parti-
cle position follows that velocity field and the particle state
variables are updated by the change rate determined by the
physics equations (also fixed at time n).

xn+1
p = xn

p +
1∫

0

vn(xn+τ
p ) dτ (4)

φn+1
p = φn

p +
1∫

0

gn(xn+τ
p ) + Qn+τ dτ (5)

vn+1
p = vn

p +
1∫

0

an(xn+τ
p ) + fn+τ dτ (6)

where an = −∇ pn + ∇ · (μ(∇vn T + ∇vn)) and gn =
∇ · (α ∇φn), which are nodal variables.

Figure 1 presents a graphical description of the X-IVAS
stage where each particle is transported following the stream-
lines fixed at time n. Temporal integration for the position
and velocity can be solved using analytical expressions [25]
or high-order integrators [26]. However, in this work a sub-
stepping integrator inherited from STS [27] is used, which
can adapt its δt depending on the local C F L number.

xn+1
p = xn

p +
N∑

i=1

vn(x
n+ i

N
p ) δt p (7)

Fig. 1 X-IVAS integration. Particle position and state are updated fol-
lowing the frozen fields vn and an

The expression for δt is

δtp = Δt

K × C F Lh
(8)

where C F Lh = |v|Δt

h
is the C F L number of the element

that contains the particle, and K is a parameter to adjust the
minimal number of sub-steps required to cross an element.

On the other hand, Eqs. (4) and (5) must be used to solve
the passive scalar transport equation with a known velocity
field. Also, to solve the Navier–Stokes equation, systems (4)
and (6) are solved coupled with the incompressibility restric-
tion. A typical Fractional Step Method is used to solve the
coupling between the pressure and the velocity [15].

After streamline integration, nodal values must be updated
with the states transported (and recently updated) by parti-
cles. There are two approaches to carry out that task, each
one generating two versions of the method. The first one is
called Moving Mesh, which creates a new mesh using the
new position of the particles as nodes. The second version,
named Fixed Mesh, projects states from particles to nodes
preserving the initial mesh. These strategies are represented
in Fig. 2.

This work is devoted to the Fixed Mesh version because
avoids the remeshing at each time-step and it has the pos-
sibility of factorizing the matrices of the pressure equation
and the implicit diffusion step only once. As was mentioned,
avoiding the remeshing requires a projection in which a lot
of particles must be employed so as not to introduce exces-
sive numerical diffusion. However, this computational cost is
lower than that of remeshing. Therefore, as it was presented
in previous works, the features mentioned make PFEM-2
Fixed Mesh more efficient than Moving Mesh.

Considering that the incompressibility restriction is non-
local, an implicit scheme is needed. This feature normally
diminishes the efficiency of explicit incompressible flow
solvers causing that the final decision about the selection
of the integration scheme be pushed on fully implicit solver.
In order to keep PFEM-2 explicit and because Fixed Mesh
version may exploit the benefits of having a constant Poisson
matrix for the pressure equation, this matrix is initially factor-
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Fig. 2 Updating nodal values. Left the moving mesh strategy, which remeshes with the new particle positions. Right the approach fixed mesh is
represented, where the particles project their states to the nodes of a fixed background mesh. In this paper the latter approach has been selected

ized (completely or incompletely, depending on the problem
size) and then used as a preconditioner. With this fact in mind
and in order to enlarge the time-step limited by the dimen-
sionless Fourier number, the possibility to solve part of the
diffusion terms in an implicit way may be included. Using
the same idea for the pressure equation, we choose an initial
factorization as a preconditioner for the diffusion part. This
is explained in depth in [16] and [28].

Finally, a brief summary of the PFEM-2 algorithm for
scalar transport problems is presented in the Algorithm 1
shown below. Next, the Algorithm 2 for PFEM-2 for incom-
pressible flows is reported. The latter includes the implicit
correction for the viscous diffusion, which allows to enlarge
the time-step to overcome the critical Fourier number condi-
tion Fo ≤ 1.

Algorithm 1 - Time Step PFEM-2 Scalar Transport
1. Change Rate Stage: Calculate scalar change rate on the nodes like

a FEM:∫
�

N gn d� = − ∫
�

∇ N α∇φn d� + ∫
	

N ∇φn · η d	

2. X-IVAS Stage: Evaluate new particles position and state following
the streamlines:
xn+1

p = xn
p + ∫ 1

0 vn(xn+τ
p ) dτ

φ̂n+1
p = φn

p + ∫ 1
0 (1 − θ) gn(xn+τ

p ) + Qn+τ dτ

3. Projection Stage: Project state to the mesh:
φ̂n+1

j = π(φ̂n+1
p )

4. Implicit Correction Stage: Implicit correction of the diffusion with
FEM:
φn+1

j = φ̂n+1
j + Δt θ gn+1

φn+1
p = φ̂n+1

p + Δt θ π−1(gn+1)

3 Shared memory implementation

The main target of the PFEM-2 method is to look for algo-
rithms to simulate accurately CFD problems as fast as pos-
sible, improving the current performance of general-purpose
commercial and open-source codes. This goal does not mean
obtaining Real Time CFD solution yet, but the aim is to
change days of simulations for hours, making feasible the
present challenging demands of engineering design.

Considering the goal mentioned above, a shared-memory
implementation is a good option to start with the development

of efficient codes [18]. Some details relevant to the current
work are explained in this section.

Algorithm 2 - Time Step PFEM-2 Incompressible Flow.
1. Acceleration Stage: Calculate acceleration on the nodes like a FEM:∫

�
N an

τ d� ≈ 1
ρ

∫
�

N ∇ · τ n d� = 1
ρ
(− ∫

�
∇ N · (μ(∇vn +

∇vn T )) d� + ∫
	

N (∇vn + ∇vn T ) · η d	)∫
�

N an
p d� ≈ 1

ρ

∫
�

N ∇ pn d� = 1
ρ
(− ∫

�
∇ N pn d� +∫

	
N pnη d	)

an = −an
p + (1 − θ) an

τ

2. X-IVAS Stage: Evaluate new particles position and state following
the streamlines:
xn+1

p = xn
p + ∫ 1

0 vn(xn+τ
p ) dτ

ˆ̂vn+1
p = vn

p + ∫ 1
0 an(xn+τ

p ) + fn+τ dτ

3. Projection Stage: Project state to the mesh:
ˆ̂vn+1

j = π( ˆ̂vn+1
p )

4. Implicit Viscosity Stage: Implicit correction of the viscous diffusion
with FEM:
ρv̂n+1

j = ρ ˆ̂vn+1
j + Δt θ an+1

τ

5. Poisson Stage: Search the pressure value solving the Poisson equa-
tion system with FEM:
ρ∇ · v̂n+1

j = Δt ∇ · [∇(δpn+1)]
6. Correction Stage: Update the mesh and particle velocity with pres-

sure and diffusion corrections:
ρvn+1

j = ρv̂n+1
j − Δt (an+1

p − an
p)

ρvn+1
p = ρv̂n+1

p − Δt π−1(an+1
p − an

p) + Δt θ π−1(an+1
τ )

The shared-memory approach introduces an issue of
thread safety that can have catastrophic consequences if
not addressed correctly. The load balancing problem is less
severe but it can easily deteriorate the efficiency by generat-
ing non-scalable codes.

In X-IVAS stage there are no concurrence problems
because a loop over all particles is done and each one updates
only its own information. The adaptive sub-stepping inte-
grator used in this work is faster than the traditional ones
because it allows the algorithm not to lose computing time
on particles that move more slowly (small C F L p) and to be
more accurate on critical domain zones (large C F L p). How-
ever, using that integrator, a load balancing problem appears,
especially in those cases of high variability of C F L p. A high
value of C F L p implies to calculate a lot of sub-steps for the
particle p, which typically also includes several changes of
the element where the particle belongs. On the contrary, a
small C F L p requires few sub-steps normally without ele-
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Fig. 3 Speed-up comparison of
the X-IVAS stage on
shared-memory implementation

ment changes. Because PFEM-2 tries to use the largest time-
step possible, high values of Courant are common.

Then, a smart particle distribution is needed. If a static
scheduling is used, the load balancing problems is more likely
to appear. An improved strategy is to use a dynamic schedul-
ing.

In the current implementation, the widely used API speci-
fication for multi-platform shared-memory parallel program-
ming called openMP is used. For dynamic scheduling, the
option of thefor directiveschedule(guided,chunk)
(where chunk depends on the number of particles of the prob-
lem) is selected. Section 3.1 presents a case in which the
dependency of the speed-up with the scheduling strategy and
with the maximum Courant (C F Lmax = max{C F L p}) is
demonstrated.

Regarding memory management, sequential containers
for elemental data, also for nodal and particle data, are
selected. The particle loop chose in X-IVAS allows the imple-
mentation to store a cached copy of the particle data until its
movement ends. However, when a particle changes its ele-
ment, the data of new element should be read; this action is
typically not cache-friendly. However, using sequential stor-
age, along with a previous load of neighbor elements, reduces
the occurrence of cache misses. Another possible solution to
that issue consists of doing an elemental loop (moving all
particles inside each element), but this alternative is not rec-
ommended when high Courant numbers are used because
several elemental loops must be done.

On the other hand, the stage of the projection of the states
from the particles φp to the nodes φ j is also critical. Here,
each node receives information from the particles P , which
belong to its neighborhood, averages the data and updates
its state. Then, the projection function π can be viewed as
a multiple averaging, in which several weighting factors can
be used. In the current version of the method, the linear shape
function N j of each node evaluated in the particle position xp

is used as weight. Then, the algorithm employed is presented

in 9

φ j = π(φp) =
∑P

p=1 N j (xp)φp∑P
p=1 N j (xp)

(9)

Implementing this projection stage with a particle loop
could introduce thread locks when the nodal accumulator is
updated. A solution can be using a coloring strategy [21]
which allows data independence per interpolation kernel.
However, in the current work, taking advantage of the fixed
mesh and the data redundancy of the library, a loop over
nodes is done. The last option avoids naturally the threads-
locks and does not introduce extra cost because a particle only
contributes to one node due to neighborhood definition [28].

3.1 Shared-memory tests

The problem to solve is the widely known test called flow
around a cylinder in 2d. A node with a single Intel i7-2600K
quadcore CPU (3.4 GHz) and 16 Gb RAM is used. Physical
and geometric parameters are set to obtain a Reynold number
(Re) of 1,000. The finite element mesh employed consists
of 85,000 linear triangles, with 42,520 nodal points, and the
grid is refined near the cylinder. Also, Δt is selected to obtain
several C F Lmax to analyze. Finally, the simulation was per-
formed with 1, 2 and 4 OpenMP processes and its parallel
performance is discussed in the following paragraph.

Figure 3 shows speed-ups of X-IVAS stage with different
scheduling strategies for particles partition. The speed-up Sn

is calculated by Sn = T1
Tn

, where T1 and Tn are computing
times with one and n processors, respectively. The reader can
observe how the performance of the implementation varies,
in the first place, according to the scheduling strategy selected
and, next, by the C F Lmax used. This assumption is rein-
forced by the results obtained in the following distributed
memory benchmarks, which exhibit similar performance to
static scheduling.
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4 Distributed memory implementation

4.1 Motivation

FEM libraries must store several data about the used mesh.
Each element requires connectivity data, neighboring infor-
mation, and some pre-calculated properties. Moreover, nodal
data must contain the position, state, element pointers and
physical properties. A quick estimation shows that at least
100 bytes per element and 200 bytes per node are needed. As
an example for a medium-size 3d incompressible flow prob-
lem with a mesh of 107 tetrahedra and about 2.5×106 nodes,
FEM simulations require at least 1.5 Gb of RAM memory.

On the other hand, PFEM-2 simulations must store par-
ticle data (position, state and other info) which is approxi-
mately 100 bytes per particle. In a typical 3d PFEM-2 fixed-
mesh simulation about of 10 particles per element are needed
(for this reason approximately extras 10 Gb are needed only
to store particle data). Therefore, when only one computer
is used, restriction is much stronger in terms of problem-
size for PFEM-2 than for FEM solvers. Consequently, a
distributed-memory approach to run on multi-node architec-
tures is urgently needed.

The parallel numerical framework developed uses as basis
the library libMesh. For a detailed description of libMesh,
see Kirk [22]; here some of the fundamental concepts are
addressed. libMesh is an object-oriented library written
in C++ to solve FEM problems with adaptive refinement
and coarserning (AMC), which performs the communication
between nodes through the standard message passing inter-
face (MPI). Several libraries are also included in the suite, but
the main ones are PETSc [29], METIS [30] and ParMETIS
[31]. The first one is used for the solution of linear systems
on both serial and parallel platforms, whereas the second and
the third ones implement a domain-decomposition based on
graph partitioning schemes for serial or distributed meshes,
respectively.

Two main classes are added to the library: Particle
and PFEM2. The former, which derives from the class
Point, represents individually each particle of the system,
whereas the latter encapsulates the entire library and has
two main attributes: the cloud of particles (a Particle’s
sequential array) and an instance of the libMesh class
EquationSystem, which contains the mesh data and
FEM systems to solve.

4.2 Domain decomposition

Critical to any implementation of distributed computing is
the methodology used to distribute the global computational
task to the local processor resources. In a numerical simula-
tion, the tasks are generally aligned with integration points
on a body in space; hence dividing the physical space may

be used to parallelize a problem. That strategy is adopted
by most FEM parallel implementations through domain-
decomposition methodology, where a problem domain is
geometrically divided into sub-domains that can then be dis-
tributed across the available computational resources. The
sub-domains exchange data with one another through their
boundaries.

On the other hand, most of the particle methods, includ-
ing the one presented in this work, have a natural parallelism
because force calculations and position updates can be done
simultaneously for all particles. Two main ideas have been
exploited to achieve this parallelism [32]. The first method
is called atom decomposition of the workload, since the
processor computes forces on its particles no matter where
they move in the simulation domain because the assignment
remains fixed for the duration of the simulation. The sec-
ond method consists simply of the above mentioned spatial
decomposition. Oriented to PFEM-2, the former has shown
good performance for shared memory computers as was
seen above, but the global character of the employed algo-
rithms produces inter-processor communication overhead on
distributed memory machines, because an updated copy of
the entire mesh in each processor is needed. Therefore, the
domain-decomposition is also selected for particles. Finally,
the selection of domain-decomposition techniques for both
mesh and particles in the implementation of PFEM-2 is here
called dual particle-mesh distribution.

Regarding the update calculations, domain decomposi-
tion requires significant communication between the sub-
domains and/or some degree of zone duplication to ensure
accuracy. These zones along the segmented planes are called
ghost or virtual. For the typical first order strategy of FEM
used by PFEM-2, the zone simply refers to any immediately
adjacent nodes. However, to calculate a particles trajectory
using large time-steps, this dimension may extend through
several layers of elements, unless a particle leaves the sub-
domain and is immediately sent to the neighbor processor to
continue the calculation. This approach adds inter-processor
communication in the X-IVAS stage, but it eliminates the
uncertainty of not knowing how many layers of ghost ele-
ments are needed to perform the trajectory. Layers definition
can be a several problem when unstructured meshes are used.

As was mentioned above, the basic principle of paral-
lelizing the X-IVAS algorithm in the domain-decomposition
manner is that each CPU calculates the trajectories of its set
of particles (those that reside in it at the given time-step).
When a particle, due to its movement, changes the partition
where it belongs, the particle data are transferred to the CPU
in control of the partition the particle has entered and the
control of that particle is given to that CPU [21].

An option to implement particle transfer could be an asyn-
chronous transfer, in which the particle data is packed in a
continuous data buffer and sent to the CPU that is in control of
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the partition on the other side of the partition boundary. When
there are no more particles to be tracked on the partition, the
algorithm leaves the tracking loop and enters in a dummy
loop where it checks if a particle data message has been sent
to it from another CPU. If so, it accepts the message, unpacks
the data, proceeds to the tracking loop and starts tracking the
newly acquired particle. This approach has an issue to calcu-
late the termination condition because a synchronous point
for all CPUs is required [33]. Then, attempt to minimize the
communication and due to the need for a synchronous point,
the buffer of particles is only packed but not transferred until
the particle loop ends. This strategy transfers particles and
synchronizes simultaneously, and is selected for the current
implementation.

To perform parallel particle tasks, a Particle
Communication class is implemented, which through the
MPI method Alltoallv, allows each sub-domain to send
and receive a set of particles. This strategy is easy to imple-
ment; however, because it is a collective operation, only use-
ful when few processors are used. Other possibilities must be
analyzed, trying to reduce the communication when a large
number of processors are used. Interchanging information
only with the neighbor sub-domains through point-to-point
communications can be the best alternative.

Because a particle can cross more than two sub-domains
in a time-step, an external loop is needed which breaks when
no more particles are transferred. Algorithm 3 presents a
transcription of the code where the external loop is observed
alongside the loop over the particles and the stop condition
(when all processors do no have any more particles to trans-
fer). The for loop, whose iteration starts from the last par-
ticle analyzed to the last particle in the current array, inte-
grates the trajectory of each particle computing each sub-
time-step in a while loop. There are four options at each
sub-time-step: in the first case, the particle has completed its
sub-time-step and must calculate the rest of the trajectory; in
the second case the particle has left out the domain boundary
and its computation finishes; in the third case, the particle
has crossed to other sub-domain (in this case, it is queued
to be sent to the other processor); finally, in the last case the
particle finishes the entire time-step.

4.3 Partitioning the physical space: load balancing

In a parallel FEM calculation, the domain distribution must
be done so that the number of elements assigned to each
processor is the same, and the number of adjacent elements
assigned to different processors is minimized. The goal of
the first condition is to balance the computations among the
processors. The goal of the second condition is to minimize
the communication resulting from the placement of adjacent
elements to different processors.

Algorithm 3 - X-IVAS over distributed-memory

int ini_ip = 0;
while (1){

std::map <int ,std::vector <int >
>particles2send;

np = vP.size();
for(unsigned int ip=ini_ip;ip <np;ip++){

int c=0, pid_send;
bool next_ddt = true;
while(next_ddt){

c = integrateSubStep(vP[ip],pid_send);
switch(c){

case 0:// substep complete
break;

case 1://out of domain
next_ddt = false;
break;

case 2://out of sub -domain
next_ddt = false;

particles2send[pid_send ]. push_back(ip);
break;

case 3://time -step complete
next_ddt = false;
break;

}
}

}
ini_ip=np;
next = particles2send.size();
Parallel ::max(next); //max All_reduce
if(!next) break; //no particles to send
ParticleCommunication ().interchangeParticles
(particles2send ,vP); // Alltoallv

}

The graph partitioning strategy implemented by the library
Metis can be used to successfully satisfy these conditions
by first modeling the finite element mesh with a graph, and
then partitioning it into equal parts. The user can control the
distribution associating a positive weight η(v) with each edge
v of the graph.

For the case of FEM simulations, a typical selection of the
weights is η(v) = ηn(v) = #dofs_of_element, because the
amount of computational task of each element is directly pro-
portional to the number of degrees of freedom. Then, because
the current implementation uses only linear simplices, after
a domain decomposition each processor has approximately
the same number of elements. At the beginning of the simu-
lation, each processor creates a fixed number of particles on
each own element; this guarantees that the initial load of par-
ticles over processors is also balanced. However, when the
simulation starts, this distribution can be modified according
to the particle movement itself.

The number of particles on each element rarely keeps
constant, being in general very common to find some ele-
ments empty of particles or some elements with many more
particles than that desired. Beyond the balancing problem,
the main drawback is the loss of accuracy of the solution;
then PFEM-2 solves this issue seeding and removing parti-
cles, as clearly explained in [28]. In addition, using those
strategies, the number of particles is kept approximately
constant.
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An approximately constant number of particles in each
sub-domain only guarantees a proper load of particles on
each processor. However, due to the adaptive integrator used,
that balanced distribution does not ensure a balanced work-
load over each CPU, similarly to the case of static scheduling
over shared-memory.

The parallel architecture in multi-core environments
makes possible a dynamic scheduling to distribute the work
over processors because each particle has access to the entire
domain data. This feature is not possible in multi-node envi-
ronments with the domain geometrically divided but, as it
was explained above, the atom decomposition is not a proper
choice because adds more serious problems.

A possible solution to the work-load balancing of the
X-IVAS stage on distributed-memory is including informa-
tion about the C F Lh on the partition algorithm through a
weights array ηw(V ) �= ηn(V ). A dynamic solution con-
sists of, starting from an initial partition, interchanging few
elements between processors according to how the solution
temporally varies, optimizing both the number of elements
that are moved and the edge-cut of the resulting partitioning.
However, many other parameters must be optimized, as the
time interval between those repartitions and partition quality;
therefore, exhaustive research is needed to achieve successful
results with this solution.

An easier option to implement is using a static approach,
in which the weighted partition is done only at the begin-
ning of the simulation. It requires knowing or estimating the
solution previously, which is impossible in most of the cases.
Therefore, an initial simulation must be done in which the
weights are calculated, saved, and used in the partitioning
algorithm of a new run.

4.4 Other stages

X-IVAS implementation on distributed-memory is the main
novelty of this paper. However, there are other relevant stages
of the algorithm, whose implementation should be detailed.

There are many Finite Element calculations in a PFEM-
2 time-step: acceleration, viscous-diffusion correction and
pressure are calculated by FEM. In the PFEM-2 fixed mesh
version, the benefits of having a constant Poisson matrix for
the pressure equation may be exploited. This matrix is ini-
tially factorized and then used as a preconditioner. This fea-
ture also appears for the implicit diffusion step if the vis-
cosity is not time-dependent. Then, libMesh library must
be used smartly, assembling only once those matrices and
specifying parameters to reuse the preconditioner. While in
shared-memory implementation the complete Cholesky fac-
torization is used, this option is not affordable with large
problems or in parallel executions with PETSc. Therefore,
they are being used as iterative preconditioners like diagonal,
incomplete Cholesky or algebraical multigrid.

On the projection stage, the main parallel issue is the cal-
culation of the state of the nodes over the boundary between
sub-domains. To perform this task, ghost nodes are also cal-
culated by processors. In the projection algorithm, at the end
of the loop over particles, the processor owner of the bound-
ary node receives the partial state of ghost node from the
neighbor processor and calculates the complete nodal state.
Because projection methods are based on weighted averages
(which is a non associative operation), the parallel calcula-
tion must be done carefully: they must not be calculated as
partial averages on each processor and later averaging the
result again on the owner processor. Proper implementation
requires, for each ghost node, calculating and sending two
partial summations (numerator and denominator) and per-
forming the division only in the owner CPU.

5 Distributed-memory tests

The distributed-memory implementation has been evaluated
on our local Beowulf cluster at the Research Center on
Computational Mechanics (CIMEC) [34]. The cluster has a
server Intel i7-2600K 8 Gb RAM and six single socket nodes
with i7-3930K hexacores CPUs (16 Gb RAM) connected by
Gigabit Ethernet. In order not to introduce disturbance into
the results, technologies Intel Turbo Boost and Intel Hyper-
threading are disabled on the processors, giving a total of 36
computational cores of 3.4 GHz. The code was compiled with
g++ 4.7.2, and it uses the libraries mpich2-1.4, petsc-3.3-p7
and libmesh-0.8.0.

5.1 Advective transport of a Gaussian hill

The transport of a Gaussian Hill problem was used to demon-
strate the goodness of PFEM-2 method to solve a scalar trans-
port problem [25]. This case also made evident the pathol-
ogy that explicit Eulerian approaches suffer in solving a pure
advective transport problem with C F L > 1. The problem
consists of a Gaussian hill signal used as initial condition
with no diffusion. The velocity field is a flow rotating around
the center of a square domain. The Gaussian signal is dis-
placed from the center of the domain at a certain radius and
its shape makes the transported signal have a non-zero value
in a limited region of the domain initially. The signal should
be transported following circular path lines and preserving
its original shape and its original amplitude. Figure 4 shows
the problem definition.

In this paper simulations with a finer mesh are presented, in
which it is possible to analyze the performance of the X-IVAS
implementation, leaving the physical results of the problem
at a second level. A structured 2d finite element mesh is used
with a million of nodes and two million of triangular ele-
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Fig. 4 Initial temperature distribution for the advective transport
problem

ments to represent the fluid velocity and the temperature dis-
tributions. Because the velocity is proportional to the radius
v = v(r) a non-constant field of C F Lh is obtained using
a structured mesh non-aligned with v, which also depends
on r, then C F Lh = C F Lh(r). Fixing v and δx , the only
one free variable on C F Lh is Δt ; then several time-steps are
chosen in order to have different magnitudes of local C F L
numbers.

The weight array selected for the partitioning algorithm is
ηn(v), which ensures a proper division of the total number of
elements and particles over each processor. Figure 5 shows
the distribution after partitioning with 1 to 16 sub-domains.
However, as it was mentioned above, this strategy can insert
issues of work-load balancing on streamline integration and
these are more evident when large C F L are used. Due to the
independence of C F Lh of the angle C F Lh �= C F Lh(θ), the
best option to balance the X-IVAS workload is partitioning
by the angle but, using the k-way partitioner, this happens
only with 2 and 4 processors. This behavior is reported in
Fig. 6, which shows the speed-up Sn obtained by X-IVAS
stage choosing different C F L (the maximum local C F L is
reported in the Figure). For # processors <= 4 the speed-
up is practically independent of C F Lh ; however when the
number of sub-domains is increased, imbalance appears and
the scalability worsens with large C F Lh . The other stages
of the algorithm (change rate calculation and projection) are
not presented in the graph because their scalability is not
dependent on the C F Lh (being approximately S16 = 12x
and S16 = 11x respectively) and also their relevance in the
entire wall-clock reaches only approximately 20 %.

5.2 Flow around a cylinder

The flow around a cylinder is a typical benchmark for incom-
pressible flow. Figure 7 shows the geometry used for the three
dimensional (3d) case, where D = 1 is the diameter of the
cylinder, the bounding box is [−2.5D, −5.5D, −5.5D] to
[2.5D, 15.5D, 5.5D], with the axial direction of the cylinder
over the x axis, and centered in [0 0 0]. The two dimensional
(2d) case uses the same geometry without the extrusion in
the axial direction.

Regarding boundary conditions, the test is run for the case
Re = 1,000, then U = [0; 1; 0] is imposed on the inflow
surface, fixed pressure on the outflow, slip condition on front
and back surfaces (3d cases), non-slip boundary condition
on the cylinder, and U = [0; 1; 0] on the upper and bottom
surfaces. The initial fields are U = [0; 1; 0], p = 0 with
the fluid properties viscosity μ = 10−3 and density ρ = 1.

The calculations in 2d are done using a mesh containing 88
thousand triangular elements with 43 thousand nodes refined
towards the cylinder, whereas the three dimensional mesh
used has 1.6 million tetrahedral elements and 356 thousand
nodes also refined towards the cylinder.

The mesh refinement is designed in order to capture the
fluid forces over the cylinder more accurately. Since the C F L
number depends on the inverse of the element size h, its value
increases next to the cylinder. As was extensively mentioned
above, the elements with large C F L will have more work-
load in the X-IVAS stage; then, to balance this work-load a
partitioning weighting with a factor proportional to C F Lh

can be done. However, this strategy unbalances the work-
load in all other stages, where the number of elements (FEM
calculations) or the number of particles (projection and cor-
rection) must be balanced on each processor to optimize the
performance.

The formula used to calculate the weight of the vertex v j

of the partitioning graph (i.e. the weight of the element e j )
is the same as that which calculates the number of sub-steps
of each particle in the streamline integration:

ηw(v j ) = min{Nmax , max{Nmin, K × (C F Lh) j }} (10)

where Nmax and Nmin are the maximum and minimum
number of steps required to move a particle along the entire

Fig. 5 Domain partitioning with 1–16 sub-domains. Case: advective transport problem. T he entire work-load is balanced with 1, 2 and 4 processors,
but with 8 and 16 (and more) processors, only the number of elements and the number of particles are balanced
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Fig. 6 SpeedUp X-IVAS.
Case: advective transport of a
Gaussian hill. In explicit scalar
transport PFEM-2, X-IVAS
stage represents about 80 % of
the entire wall-clock time

Fig. 7 Geometry flow around a cylinder in three dimensions. Two-
dimensional geometry excludes the axial propagation over the x axis

time-step and K is a parameter to adjust the minimal number
of sub-steps required to cross an element.

The performance of the parallelization solving the flow
around a cylinder 2d with Δt = 0.025 and C F Lmax ≈ 15
is presented in Fig. 8 which shows the speed-up obtained by
each stage of the method according to the weighted parti-
tioning strategy selected. Table 1 presents a summary with
the CPU-times for each stage. Note that although ηw(v)

improves the X-IVAS performance around 4× compared
with η(v) (from 8x to 12x), the influence of this stage
in the total time is not very relevant. Therefore, the strat-
egy with ηn(v) reaches the best overall results. It should
be noted that the size of the problem is not large enough
to get good performance with approximately more than 10
processors.

In the three-dimensional case, the current PFEM-2 imple-
mentation and the widely used CFD software OpenFOAM®

are compared. OpenFOAM®is an open source code increas-
ingly used on engineering and industrial environments.
Therefore, considering the main aim of the method here pre-

sented, it is necessary to show a screen-shot of the current
status.

The main idea of the comparison is to force the time-step
Δt to be the maximum such that the solver is stable and
accurate. For the PFEM-2 results, the CPU-times obtained
treating implicitly the viscous term (implicit diffusion as
described at the beginning of the paper) are reported, and for
OpenFOAM®results the solver pimpleFoam is selected,
which is the fastest and most robust for incompressible flow
because it allows the time-step to grow more than many other
solvers as icoFoam. Absolute tolerances for pcg are set to
10−6 for each solver.

Table 2 presents the time-steps (Δt) used by each solver
and shows the CFL values that each simulation reaches.
In pimpleFoam maxCo = 10 is set and the time-step
shown is an average of the instantaneous values used by
the solver. Both solvers are able to solve with large time-
steps, but results are too diffusive (drag and lift coeffi-
cients were checked) and they are considered inaccurate.
Finally, in the mentioned table, the speed-up and the total
CPU-time to compute 1 s of real time with 16 proces-
sors are reported. From the results it can be concluded
that, keeping a similar parallel efficiency, PFEM-2 is about
three times faster than the fastest incompressible solver of
OpenFOAM®.

The performance of the parallelization is presented in
Fig. 9, which shows the speed-up obtained by each stage of
the method considering the weighting strategy selected. In
this case the problem is large enough to reach good speedup
with more than 10 processors. The stage of velocity correc-
tion by the pressure gradient is the most efficient because
of its simplicity and the locality of the data, and it reaches
approximately S16 ≈ 14x − 15x .
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(a)

(b)

Fig. 8 Speed-Up comparison between partitioning weighted by num-
ber of degrees of freedom ηn(v) (a) and partitioning weighted by ηw(v j )

(b). Case: flow around a cylinder in 2d

The scalability of the FEM stages, which is inherited
from the libMesh implementation, obtains values from
S16 ≈ 10x to S16 ≈ 12x using the weighting formula ηn(v),
whereas with ηw(v) only values from S16 ≈ 7x to S16 ≈ 9x
are obtained, indicating an imbalance of the number of ele-
ments. X-IVAS stage is improved by ηw(v), but that does
not compensate the worsening of the remainder stages of the
algorithm.

Table 1 Comparison table for CPU-times for the different PFEM-2
stages

Stage 1× (s) 16 × ηn(v) (s) 16 × ηw(v) (s)

Acceleration 40.5 5.81 7.36

X-IVAS 88.55 11.02 7.3

Projection 42.87 6.87 7.83

Implicit correction 33.71 11.58 12.84

Poisson 50.23 16.44 18.22

Correction 34.73 2.44 3.09

Total 290.5 52.93 56.48

Case: flow around a cylinder in 2d

Table 2 Comparison of time-steps with different solvers

Solver Re Δt (s) Comean Comax S16 CPU-time (s)

PFEM-2 1,000 0.05 ≈ 0.75 ≈ 8 10.45× 202.56

OpenFOAM® 1,000 ≈ 0.025 ≈ 0.5 ≈ 10 9.41× 613.98

Case: flow around a cylinder in 3d. PFEM-2 partitioning with ηn(v)

5.2.1 Test over infiniband cluster

It must be emphasized that an important reason for the loss
of efficiency for a large number of processors in all PFEM-2
tests and OpenFOAM®is due to the interconnection network
used: Gigabit Ethernet is a multi-purpose architecture, which
introduces several delays in a congested network, as it hap-
pens when many nodes are computing and sending data. The
employement of dedicated architectures should have a big
impact over the quality of the results. Then, in this section
the results for the same case of the flow around of the cylinder
in 3d are presented, but executing the code over a Infiniband
interconnected cluster.

The mentioned cluster has dual socket nodes, with Intel
Xeon E5-2600 CPUs and 64 Gb RAM, interconnected with
IB-QDR 40 Gbps (libraries used were the same as presented
above). Although the cluster is more powerful than the used
in the previous test, the main aim of this section is to show
the dependence of the results with the interconnection net-
work; leaving the design and solution of larger problems, that
requires the entire capacity of the cluster, for next works. For
the comparison, the same mesh and configuration of the test
is taken. Also the partitioned domains are distributed in the
same way over the nodes, it is: four processes per node. This
configuration allow us to reach the main aim proposed.

Figure 10 presents the scalability of each PFEM stage and
of the entire simulation using the weighting formula ηn(v).
The differences are notable: with sixteen cores a scalability
of S16 ≈ 14.5x is obtained comparing with S16 ≈ 10.45x
obtained with the Gigabit Ethernet cluster. Moreover, the effi-
ciency in the Infiniband cluster is good enough also running
with 32 cores, reaching a global S32 ≈ 26x . Using more cores
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(a)

(b)

Fig. 9 Speed-Up comparison between partitioning weighted by: a
number of degrees of freedom ηn(v) and b partitioning weighted by
ηw(v). Case: flow around a cylinder in 3d

the efficiency decays because there is not enough work for
each process to overweight the communication time. But, it
can be noted that this minimum limit is reached using smaller
domain partitions in the Infiniband cluster.

6 Conclusions and future work

The methodology for parallelizing PFEM-2 presented in this
paper is an initial approach towards massively parallel com-

Fig. 10 Speed-up over an infiniband cluster. Case: flow around a cylin-
der in 3d

putations using the method to solve both scalar and vectorial
transport equations.

The domain decomposition through a graph partitioner
using nodal weights allows us to select, depending on the
problem to solve, the stage of the algorithm that will be solved
more efficiently. In simulations where X-IVAS stage domi-
nates the calculation (this is for scalar transport problems and
flow problems with low Fourier number, in which no implicit
viscous-diffusion is needed), using a weight array with values
proportional to the elemental Courant number improves the
parallel performance of the streamline integration, therefore,
of the overall simulation. In incompressible flow problems
with large Fourier the overall time is controlled by FEM cal-
culations due to the addition of the implicit correction of the
viscous diffusion; therefore, the weights array must contain
values proportional to the number of degrees of freedom of
each element to optimize the performance.

It should be noted that the current work does not deeply
analyze the performance of the solution of equation systems.
The reason for this is that in this first stage, we was focused
on the Lagrangian–Eulerian parallel coupling. In next works,
as it was reported in this work, faster clusters with high band-
width and low latency are required. It remains to perform a
weak scalability analysis of the code, with special emphasis
on analyzing a correct selection of preconditioners of linear
equation systems.

Finally, the efficiency measured in terms of CPU-time for
reaching a given final time in the simulation showed impor-
tant advantages of the present method against OpenFOAM®.
In this paper, the speed-up reached by PFEM-2 is similar to
that achieved by the CFD software, but a factor approxi-
mately 3× was obtained at the same level of accuracy, which
places the method among the fastest. Also, the implementa-
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tion has demonstrated good behavior over a cluster dedicated
to scientific computing, which give us warranties to use it as
starting point of a massively parallel code.
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