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Abstract The complexity of the interactions between the
constituent granular and liquid phases of a suspension
requires an adequate treatment of the constituents them-
selves. A promising way for numerical simulations of such
systems is given by hybrid computational frameworks. This
is naturally done, when the Lagrangian description of parti-
cle dynamics of the granular phase finds a correspondence
in the fluid description. In this work we employ extensions
of the Lattice-Boltzmann Method for non-Newtonian rhe-
ology, free surfaces, and moving boundaries. The models
allows for a full coupling of the phases, but in a simplified
way. An experimental validation is given by an example of
gravity driven flow of a particle suspension.

Keywords Suspensions · Lattice-Boltzmann method ·
Discrete element method

1 Introduction

Free-surface flows of heterogeneous suspensions are abun-
dant in nature and technical applications. In principle they
are multiphase materials composed of a mixture of a liquid
and of solid grains of various size. A multitude of interaction
mechanisms between these two phases renders the problem
of their description rather difficult. For example very small
grains are bounded to the liquid by electrostatic forces, while
bigger ones interact mainly by viscous forces [10]. Addition-
ally, inter-grain interactions give rise to the typical complex
behavior of granular matter. Often grains have a broad size
distribution spanning over several orders of magnitude. Two
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well known examples are mixtures of mud with sand and
rocks as well as suspensions of Portland cement, sand, and
larger aggregates, also known as fresh concrete. While the
latter is used for construction purposes [13], the former gives
rise to devastating debris flows [23].

The simulation of such materials is based either on con-
tinuum [35,39] or on particle methods [7], depending on
whether the investigated effects arise from the physics of the
fluid or the granular phase. Continuum models are appro-
priate when the rheological behavior of the material can
be captured by rheometry techniques and phenomenological
constitutive laws. However, many physical phenomena are
eluded by this approach such as size and phase segregation.
Examples can be found in concrete casting, where improper
mixing or vibration leads to inhomogeneities in the physi-
cal properties of the hardened concrete. In debris flows, size
segregation leads to locally changing flow properties. A flow
front rich of large grains with high destructive power is com-
monly observed, followed by a fluid in a more homogeneous
tail. Describing this situation by continuum methods is quite
difficult or even physically inappropriate [24]. With particle
methods, such as the Discrete Element Method (DEM), these
phenomena can be naturally captured, which makes them an
ideal tool for the study of the complex behavior of granular
materials.

A complete simulation tool requires a combination of both
continuum and particle description, which poses serious chal-
lenges from a computational point of view. If granular and
fluid phases are fully coupled, grains represent an irregu-
lar and discontinuous boundary for the fluid domain. The
relative motion of the phases complicates the picture further,
because it requires the management of continuously evolving
interfaces. For these reasons, traditional CFD solvers such
as the standard Finite Element or Finite Volume methods,
have enormous difficulties to tackle the issue. An attractive
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alternative is given by the Lattice-Boltzmann Method (LBM)
[20,42], because of its extreme flexibility in the treatment of
elaborate boundary conditions, its ease of implementation
in parallel computing and its superior scaling when com-
pared to traditional solvers. For these reasons, much effort
has been payed to develop a framework for particle–fluid sys-
tems combining the advantages of LBM and DEM. The early
works in this field are due to Ladd [26–28], who first coupled
LBM and boundaries with imposed velocity. The basic model
was enhanced by the use of the Immersed Boundary Method
[12,30,31,36], by the inclusion of turbulence modeling [11],
and extended further to the simulation of non-Newtonian rhe-
ology models [16,29,45] and for free-surface flows [25,46].

Drawbacks of an approach based on the LBM are its lim-
itation to low-Mach and relatively low-Reynolds flows, and
the necessity to rely on a regular grid, since irregular grids are
known to produce a complicated formalism and sometimes
to lower the accuracy [44].

The paper is organized as follows: First a classification of
particle suspensions by scales and types of physical interac-
tions is given, before we explain how the dynamics of the
different phases is addressed. In Sect. 3 we summarize the
DEM approach for the granular phase, followed by a sec-
tion with a comprehensive description of the LBM solver for
the fluid phase. Section 5 explains necessary extensions to
the LBM for the simulation of suspensions, like fluid–particle
interaction, non-Newtonian rheology, or the representation of
free surfaces. The experimental validation of the described
model completes the manuscript in Sect. 6, followed by a
brief summary.

2 Dynamics of suspensions

The contribution of grains to the mechanics of the mixture
can be of different nature depending, among other factors, on
the grain size distribution. For a phenomenological classifi-
cation, we use the term small scale when electrostatic forces
are dominant, medium scale when viscous forces prevail, and
large scale when inter-particle collisional forces dominate
[10]. Note that the length-scales defined by grain size are by
no means absolute, but depend on other parameters such as
the concentration of particles, the viscosity of the liquid, and
the state of the system, since the same material can exhibit
different behaviors when sheared at different rates.

Small scale grain dynamics is governed mainly by inter-
actions of electrostatic nature, e.g. Van der Waals forces.
This finer part of the grains, together with water, forms a
colloidal dispersion. A complete description of this kind of
material can be found elsewhere [38]. For practical purposes,
the mechanics of colloidal dispersions is reproduced by con-
tinuum methods. A non-Newtonian model, however, is gen-
erally required, since colloidal dispersions can exhibit both

shear-thinning behavior and plastic properties. In this work
we choose to employ the Bingham plastic, a fluid model with
a yield stress, well-known for its wide applicability [37,47].
It is described as

{
γ̇ = 0 if fluid does not yield(σ < σy),

σ = σy + μpl γ̇ if fluid flows(σ > σy),
(1)

where γ̇ is the magnitude of the shear rate tensor, and μpl ,
σy denote plastic viscosity and yield stress. In analogy to
Newtonian fluids, an apparent viscosity (from now on, simply
called viscosity) can be locally defined as the ratio of shear
rate and shear stress

μapp = σ/γ̇ = μpl + σy

γ̇
. (2)

As the shear rate γ̇ approaches zero, the viscosity becomes
infinite, giving a simple but efficient way to model plastic
behavior.

Medium scale grains are sufficiently big to elude the
effects of microscopic electrostatic forces and therefore need
a different numerical treatment. For them the hydrodynamic
effects due to the viscous nature of the fluid become domi-
nant. In analogy to the smaller scale, grains can be homog-
enized in the fluid. Obtaining an appropriate rheological
behavior of the final mixture is however more difficult. When
experimental data is not available, the value of the viscosity
can be approximated by constitutive relations. A review of
these models can be found in Ref. [41].

Large scale grain dynamics is dominated by collisions.
When collisional effects are not damped by viscosity, grains
give rise to collective phenomena, such as segregation, force
percolation or shock waves [21]. Bagnold defined a dimen-
sionless number as the ratio of grain collisional and viscous
stresses [2]. It reads

Ba = ρsd2
s λ

1/2
s γ̇

μ f
, (3)

where μ f is the dynamic viscosity of the liquid, γ̇ the
magnitude of the shear rate, ρs and ds denote density
and characteristic diameter of the grains, and λs their lin-
ear concentration (function of the solid fraction Cs as
λs = 1/[(Cs,max/Cs)

1/3−1]with Cs,max the maximum solid
fraction). As illustrated in Fig. 1, the Bagnold number is used
to distinguish two different regimes, where different rheo-
logical laws are observed [43]: Mixtures with Ba < 40 are
dominated by viscosity and therefore the shear stress grows
proportionally to the shear rate. Mixtures with Ba ≥ 450
are dominated by collisional effects and grains cannot be
homogenized into a continuum description without a loss in
the descriptive capabilities of the method. An intermediate
range exists, where both effects are not negligible [22].
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Fig. 1 A typical grain size
distribution and its effect on the
dynamics of the mixture. Big
grains fall in the collisional
regime, small ones in the
viscous regime. A transition
zone exhibits hybrid
characteristics. The Bagnold
number is calculated with
μ f = 1.0 Pa s,
ρ = 1,000 kg/m3, λ = 1,
γ̇ = 100 s−1
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The proposed model follows this classification to effi-
ciently simulate and investigate suspensions. Small and
medium scale grains are homogenized for a fluid formula-
tion with a continuum Bingham model. Large scale grains
are represented by a discrete description. The advantage of
this method is that only a small portion grains is explicitly
represented. This fraction is representative both in terms of
mass and influence on the rheology of system.

3 Dynamics of the granular phase with the DEM

The granular phase is represented by the DEM, a well-
established method for granular systems [5]. Every grain p
is characterized as a Lagrangian element, with translation
xp and rotation φp as degrees of freedoms. It is subjected
to multiple interactions that lead to a resultant force Fp and
moment Mp. These interactions can either be due to col-
lisions, hydrodynamics, or volumetric forces and are func-
tions of position, orientation, and velocity of the particles:
Fp = Fp

(
xp, ẋp, φp, φ̇p

)
, Mp = Mp

(
xp, ẋp, φp, φ̇p

)
.

In the simplest case, DEM particles have spherical shape
allowing for fast contact detection and calculation of the over-
lap ξp,q between particles p and q namely

ξp,q = ||dp,q || − Rp − Rq . (4)

Here dp,q denotes the distance between the center of the
spheres with radii Rp, Rq . Unfortunately, for most practical
applications spheres can only be used as a first approximation
of the real particle shape. Note that spheres exhibit artificial
mixing and rolling behavior, which is absent in natural system
that are not composed of spheres. To overcome these effects
we use composite elements, created by aggregating a set of
spherical particles. While preserving the simplicity of the
contact calculation, composite elements allow for a more
realistic representation of granular effects, in particular in
the limit of dense concentrations.

Particle–particle interactions are written as the outcome of
collisional events between particles. Although particles are
geometrically described as rigid spheres, the overlap ξp,q

between particles p and q is used to calculate collisional
forces and to represent the elastic deformation. We use the
law for elastic spheres,

Fn
p,q = 2

3

Y
√

Ref f(
1 − ν2

)
(

ξ
3/2
p,q + A

√
ξp,q

dξp,q

dt

)
np,q , (5)

where Y and ν are the Young modulus and the Poisson’s ratio
of the material, A is a damping constant [6], Ref f the effective
radius defined as Ref f = Rp Rq/(Rp + Rq) and np,q the
normal vector of the contact surface. The tangential contact
force is considered to be proportional to the component of
the relative velocity of the two spheres laying on the contact
surface ut

rel as

Ft
p,q = −sign

(
ut

rel

) · min
(
η||ut

rel ||, μd ||Fn
p,q ||

)
tp,q , (6)

with the tangential shear viscosity coefficient η and the
dynamic friction coefficientμd , thus including Coulomb fric-
tion. The tangential unit vector tp,q is obtained normalizing
the tangential relative velocity. Wall contacts are calculated
in a similar fashion.

The time evolution of the system is solved by integrating
Newton’s second law,

m pẍp = Fp, Jpφ̈p = Mp − φ̇p × (
Jpφ̇p

)
. (7)

While the translational motion is naturally solved in system
coordinates, the rotational motion requires additional consid-
erations. We use quaternion algebra rather that Euler angles
to represent the orientation of the elements, and calculate and
invert rotation matrices without singularities [8]. Newton’s
equations in the body-fixed reference frame produce 6 × N
scalar equation, where N is the number of elements. The Gear
predictor-corrector differential scheme is used to integrate
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them [14]. During the predictor step, tentative values for par-
ticle position, orientation, and their derivatives are computed,
using a Taylor expansion of the previous time step values. The
predicted values are then used to check for contacts, compute
collisional forces, and solve Newton’s equations of motion.
For the corrector step, the difference between the predicted
values for acceleration and their counterpart resulting from
Newton’s equation is computed. This difference is used to
calculate the new corrected values for position, orientation
and their derivatives.

The DEM time step should be small enough to resolve the
particle contacts. If tc is the collision time, then 
tDEM � tc,
usually 
tDEM < 0.1tc. The collision time can be estimated
for a Hertzian contact as

tc = 2.5

(
m2

e f f

k2||un
rel ||

) 1
5

, with k = 8
15

Y
1−ν2

√
Ref f , (8)

where mef f = m pmq/
(
m p + mq

)
is the effective mass and

un
rel denotes the normal relative velocity at the contact point

at the beginning of the collision.

4 Fluid dynamics with the LBM

The DEM described in the previous section is coupled with
the LBM for solving the fluid phase. LBM has been evolv-
ing very fast in the last two decades and is considered to
be one of the most attractive alternatives to traditional CFD
solvers, especially when problems feature complex boundary
conditions. It originates from the Boltzmann kinetic theory
for the evolution of molecular systems [3,9]. The fluid is
described using a distribution function, f (x, c, t), defined as
the probability density of finding molecules with velocity c
at a location x and at a given time t .

In the LBM, the velocity space is discretized by a
finite number of velocity vectors, ci , such that fi (x, t) ≡
f (x, ci , t). We choose to employ the D3Q19 lattice cell con-
figuration (3 dimensions and 19 velocities, see Fig. 2), which
provides the required symmetries to correctly recover the

incompressible Navier–Stokes equations. In this work, for
simplicity, we use dimensionless lattice units (δx,y,z = 1,

δt = 1).
The reconstruction of macroscopic physical variables such

as density ρ f and velocity u f can be done at every location
x and time t by computing the first two moments of the dis-
tribution function fi (x, t)

ρ f (x, t) =
∑

i

fi (x, t), u f =
∑

i

fi (x, t)ci/ρ f (x, t). (9)

The distribution function evolves according to the Lattice
Boltzmann Equation (LBE), which is written

fi (x + ci , t + 1) = fi (x, t) + Ωi (x, t). (10)

Ωi represents the collision operator, which in our case cor-
responds to the linear approximation given by Bhatnagar–
Gross–Krook [4],

Ωi (x, t) = f eq
i (u f , ρ f ) − fi (x, t)

τ (x, t)
, (11)

where τ is the relaxation time and f eq
i is the equilibrium

distribution function. The relaxation time is directly related
to the viscosity of the fluid

μ f (x, t) = τ(x, t) − 1/2

3
. (12)

For a Newtonian fluid, τ is a constant and global para-
meter. However, as stated in Sect. 2, in order to represent
most suspensions, a non-Newtonian formulation should be
employed. To do this, the relaxation time is treated as a local
variable τ(x, t). The equilibrium distribution function f eq

i
is an expansion in Hermite polynomials of the Maxwell–
Boltzmann distribution in the limit of small velocities [40].
Using the local macroscopic velocity u f and density ρ f , this
yields

f eq
i (u f , ρ f )=ρ f wi

(
1+3ci · u f + 9

2

(
ci · u f

)2− 3

2
u f · u f

)
,

(13)

Fig. 2 a The regular space
discretization of the lattice. b
The 19 discrete velocities
allowed in the D3Q19 lattice
configuration
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where the weights wi are constants that ensure the recovering
of the first and second moments of the distribution function
(Eq. 9). For the D3Q19 lattice configuration they are

wi =
⎧⎨
⎩

1/3 for i = 1
1/18 for i = 2, . . . , 7
1/36 for i = 8, . . . , 19.

(14)

To introduce an external force, we employ the scheme
developed by Guo et al. [19], which consists in modifying
Eq. 10 as

fi (x + ci , t + 1) = fi (x, t) + Ωi (x, t) + Fi (x, t), (15)

where Fi (x, t) is an additional distribution function due to
the force field F, which can be calculated in a similar fashion
as the equilibrium distribution,

Fi (x, t) = wi

(
1 − 1

2τ

) [
3
(
ci − u f

) + 9ci
(
ci · u f

)]
F.

(16)

With this technique, the computation of the macroscopic
velocity field in Eq. 9 also needs to be modified,

u f =
(∑

i

fi (x, t)ci + F/2

) /
ρ f (x, t). (17)

The described approach reproduces the Navier–Stokes
equations in the incompressible limit. The pressure is directly
computable from the density as

Pf (x, t) = ρ f (x, t) · c2
s , (18)

where cs is the speed of sound of the fluid, which corresponds
to cs = 1/

√
3 (lattice units). The stability and accuracy of

the LBM are guaranteed for small Mach numbers, Ma ≡
||u||/cs � 1.

For every time step one first calculates the macroscopic
variables, using Eq. 9, and the corresponding equilibrium
distribution, from Eq. 13. Then, one uses Eq. 10 to evolve
the distribution function, which provides the new density and
velocity of the fluid for the next time step. Being solved
mostly at a local level, the scheme can be easily implemented
in a parallel environment [33].

5 Extensions of the LBM for the simulation
of suspensions

To widen the range of applicability of the model to hetero-
geneous suspensions, we need to incorporate a few more
features. First, we introduce no-slip moving boundaries, nec-
essary for the coupling with the DEM, and second, in Sect.

5.2, we extend the model to simulate free surfaces. Finally,
Sect. 5.3 describes the method for non-Newtonian formula-
tions.

5.1 Coupling with particles

The coupling with the DEM and the treatment of no-slip
boundary conditions are performed at a local level by modi-
fying the LBE. Lattice nodes are divided into fluid and solid
nodes, the latter ones representing particles and walls (see
Fig. 3). Solid nodes are inactive, i.e. on them the LBE is not
solved. No-slip is performed with the so-called bounce-back
rule: every time a distribution function fi (x, t) is streaming
in the direction i towards a solid node, it gets reflected back
in the opposite direction i ′. If the boundary is moving, the
reflected distribution needs to be corrected as

fi ′(x, t + 1) = fi (x, t) − 6wiρ f uw · ci , (19)

where uw is the local velocity of the wall at the bounce-back
location. If the wall represents the surface of a particle, the
local velocity can be obtained as

uw = up + rw × ωp, (20)

where up and ωp are the linear and angular velocity of the
particle, and rw is the vector connecting its center of mass
with the bounce-back location. The momentum exchange
experienced by the reflected distribution can also be used to
compute the force exerted on the wall when integrated over
all bounce-back locations,

Fp =
∑ (

2 fi (x, t) − 6wiρ f uw · ci
)

ci . (21)

Solid boundaries treated this way are located halfway
between solid and active nodes. This technique was devel-
oped for moving boundaries by Ladd [26] and Aidun and
Lu [1].

Particles move over a fixed, regular grid. Of course the
node classification into fluid and solid is not fixed but needs
to be updated. Following the particle motion, fluid nodes are
created (deleted) in the wake (front) of moving particles. The
macroscopic density and the velocity of the newly created
nodes are calculated as the average over the values in the
neighborhood as initial values for the distribution function
fi (x, t) through Eq. 13. Deleted fluid nodes are converted
to solid ones and therefore made inactive. Both processes
introduce small variations in the global mass and momen-
tum. However, due to the fact that all our simulations are
performed in the incompressible limit (variation of density
are very small), and that fluid nodes close to a particle pos-
sess nearly the same velocity as the particle, we expect these
variations to be negligible. Another problem is the represen-
tation of the particle boundaries on the regular lattice, which
leads to a zig-zag approximation of the spherical shapes. An
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Fig. 3 Sketch showing how
particles or solid objects are
discretized on the regular lattice.
The free-surface is treated in a
similar way, with a special type
of nodes defining the interface

Solid nodes

Liquid nodes

Solid-liquid interface

Particle real border

Gas nodes

Liquid nodes

Gas-liquid interface

Real interface

Interface nodes

alternative way to overcome these problems is the use of the
Immersed Boundary Method [12] or of a fictitious domain
[17,18]. Both methods are more precise and smooth the ill
effects of particles traveling though the lattice. At the same
time, they require additional computations and are therefore
avoided following the spirit of this paper.

When two particles approach each other, the distance
between the surfaces can become smaller than the lattice node
spacing, resulting in an imprecise resolution of the collision
process. To overcame this problem, we use the lubrication
theory of Nguyen and Ladd [34]. In this theory, when two
particle are moving with a relative velocity urel , the correc-
tion force

Flub
p,q = −6μ f ||un

rel ||R2
e f f

(
1/sp,q − 1/dlub

)
np,q , (22)

is added, where sp,q = −ξp,q is the distance between the
particle surfaces and dlub denotes a cut-off distance above
which no force is computed.

5.2 Free surface representation

We employ the mass tracking algorithm described in Refs.
[9,32] which, despite its simplicity, leads to a stable and accu-
rate surface evolution. Fluid nodes are further divided into
liquid, interface and gas nodes: Liquid and interface nodes
are considered active, and the LBE is solved. The remaining
nodes are the gas nodes and are inactive, with no evolution
equation. Liquid and gas nodes are never directly connected,
but through an interface node (see Fig. 3).

An additional macroscopic variable for the mass m f (x, t)
stored in a node is required, defined as

⎧⎨
⎩

m f (x, t) = ρ f (x, t) if the node is liquid,
0 < m f (x, t) < ρ f (x, t) if the node is interface,
m f (x, t) = 0 if the node is gas.

(23)

The mass is updated using the equation

m f (x, t + 1)=m f (x, t)+
∑

i

αi [ fi ′(x+ci , t) − fi (x, t)] ,

(24)

where αi is a parameter determined by the nature of the neigh-
bor node in the i direction,

αi =

⎧⎪⎪⎨
⎪⎪⎩

1
2

[
m f (x, t)+m f (x+ci , t)

]
if the neighbor node is interface,

1 if the neighbor node is liquid,

0 if the neighbor node is gas.

(25)

When the mass becomes zero (m f (x, t) = 0), the interface
node is transformed into gas, with all liquid nodes connected
to it becoming interface. Analogously, an interface node
whose mass reaches the density (m f (x, t) = ρ f (x, t)) is
transformed into liquid, and all connected gas nodes become
interface. However, due to the discrete integration, these
equalities are not in general satisfied. The surplus of mass is
equally distributed to the neighboring interface nodes, con-
serving the total mass of the system.

Because gas nodes are not active, there are no distribu-
tion functions streaming from gas nodes to interface nodes.
These missing distribution functions are computed from the
macroscopic variables at the interface, atmospheric density
ρatm and interface velocity uint , as

fi ′(x + ci ′ , t + 1) = f eq
i (uint , ρatm) + f eq

i ′ (uint , ρatm)

− fi (x, t). (26)

Note that this implies that gas nodes have the same macro-
scopic velocity as the connected interface nodes.

5.3 Bingham plastic rheology model

The presence of the small particle fraction in the fluid leads to
non-Newtonian behavior, that needs to be considered. For the
LBM this implies that the relaxation time τ is not a global
parameter for the system, but rather τ = τ(x, t). A non-
linear dependency of viscosity, and thus of τ , on the shear rate
requires an explicit computation of the shear rate tensor. This
can be done with ease in the LBM from the non-equilibrium
part of the distribution functions,

γ̇ab(x, t) = 3

2τ(x, t − 1)

∑
i

ci,aci,b
(

fi (x, t) − f eq
i (x, t)

)
.

(27)
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Fig. 4 Representation of the rheology model employed for plastic flu-
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With the second invariant of the shear rate tensor

�γ̇ (x, t) =
∑

a

∑
b

γ̇abγ̇ab, (28)

the magnitude of the shear rate is calculated as

γ̇ (x, t) =
√

2�γ̇ (x, t). (29)

This can be included in any constitutive equation for purely
viscous fluids. As outlined before (Sect. 2), we choose the
Bingham constitutive model and get a new form of Eq. 12
for the explicit update of τ ,

τ(x, t) = 1

2
+ 3

(
μpl + σy

γ̇ (x, t)

)
. (30)

The accuracy and stability of LBM are guaranteed only
over a certain range of values for τ . This limits the applica-
bility of Eq. 30, because τ diverges when γ̇ → 0. Following

Švec et al. [46], we use a simple solution to this problem,
imposing that τmin ≤ τ(x, t) ≤ τmax . Reasonable values
for τmin and τmax are, respectively, 0.501 and 3.5. The con-
stitutive equation arising from this approach is that of a tri-
viscosity fluid (see Fig. 4). If μ f,min < μpl the model repre-
sents a bi-viscosity, and if μ f,max 	 μpl , the approximation
of the Bingham model is fair. With these extensions the model
is complete and we can address examples.

6 Experimental validation by a gravity-driven flow

The capabilities of the model are shown by comparing with
an experiment, featuring a free-surface flow of a suspen-
sion under the effect of gravity. We employ fresh concrete,
since it poses all the challenges necessary to validate the
method: a non-Newtonian rheology and an irregular granu-
lar phase. The cement paste is obtained with a commercial
Portland cement of type CEM I 42.5N. Water is added until
a water/cement ratio of 0.4 is reached. The rheology of the
obtained paste is measured with a coaxial rotational viscome-
ter Haake RV20. The measurement procedure consists in the
uniform shearing of the paste at 200 s−1 for 120 s, followed
by a shear rate continuous ramp from 0 up to 200 s−1 occur-
ring over 120 s [15]. The obtained rheological curve is shown
in Fig. 5.

The paste is mixed with 1,000 silica rounded pebbles
with radius R = 4.0 ÷ 8.0 mm. The total weight of the
grains is 2.629 kg, and the density ρs = 2,680 kg/m3. The
components are mixed in a bowl until homogenization and
then vibrated for degassing. The final mixture is poured in a
150 × 150 mm rectangular box, open on top and bottom and
positioned over a wooden board inclined at 15◦. The board
surface is upholstered with sandpaper and wetted before the
start of the test. The test is performed by steadily lifting the
box, and letting the sample spread on the board under the sole
effect of gravity. The flow falls in the intermediate regime (see

Fig. 5 Rheology test on the
fresh cement paste. A linear
Bingham approximation is used
to fit the data, obtaining μpl
and σy
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Fig. 6 Experiment setup with an inclined plane of 933 × 700mm. The
internal size of the box is 150×150 mm. The dark gray area represents
the surface covered by the sandpaper

Fig. 1). Collisional effects are therefore not dominant, but still
important. The geometry of the test is illustrated in Fig. 6,
and Fig. 7a is a picture of the final deposition of the sample.

The same environment is set up with a simulation on an
LBM lattice of 350 × 250 × 80 nodes, with the lattice spac-
ing corresponding to 2.0 × 10−3 m in physical units. The
initial configuration of the fluid is a cube with edge length
of 0.15 m, corresponding to 75 × 75 × 75 liquid nodes. The
pebbles are represented with 1,000 discrete elements, each

composed of 4 spheres with tetrahedral structure. The total
number of spheres is 4,000. The box is represented by a set of
moving walls and is set as solid boundary both for fluid and
granular solvers. The lifting speed of the box is 0.15 m/s.
The properties of the fluid are obtained from the viscometer
data, as represented in Fig. 5. A good fit is obtained with a
Bingham model with plastic viscosity μpl = 0.15 Pa s and
yield stress σy = 62 Pa. The model is imprecise for lower
shear rates, which is one of the limitations of the chosen
linear approach. Fig. 8 shows the results of the simulation
on the longitudinal cross section of the sample. The evo-
lution of the shear rate and the particle distribution can be
tracked continuously. The final shapes of the experimental
and numerical solution are compared in Fig. 7c, showing
excellent agreement.

A good compromise between stability and speed is
obtained with a time step of 
tLBM = 3.0 × 10−5 s.
This sets the maximum allowable speed in the system as
0.667 m/s. The parameters in lattice units are then viscosity
μLBM

pl = 6.25×10−4, relaxation time τLBM
y = 7.75×10−6,

and gravity ||gLBM|| = 4.41 × 10−6. The simulation is
stopped when 95 % of the fluid has reached the maximum
viscosity. The total simulation time is 63 hours, with a paral-
lel run on 4 cores with an Intel Xeon E5-1620 processor at
3.60 GHz.

Fig. 7 Final shape of the
flowing mass. a, d Numerical
shape; b, e Experimental shape.
Fluid mass opacity in the
numerical shape is lowered for a
better visualization of particles;
c, f Comparison of numerical
shape (solid line) and
experimental shape (dashed
line). The background grid has
5 cm spacing

(c)

(d)

(f)

(e)

(b)(a)
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Fig. 8 Dynamic viscosity
contour on the longitudinal
cross section of the simulation.
Particles are represented in light
gray and walls in dark gray. The
yielded region of the fluid grows
from a small portion close to the
box walls to the whole sample
during the first part of the
simulation. When a new
equilibrium is reached, the
yielded region reduces and the
flow is slowed
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7 Summary

In this paper a model for the simulation of the flow of sus-
pensions was proposed. The multiscale nature of the model
is justified by the different interaction mechanisms acting
between the liquid and the granular phase. A practical mean
of phenomenological classification of interactions is given
by the Bagnold number: small grains are considered to be
governed by the viscous nature of the liquid and are mod-
eled as part of the fluid phase itself with the use of a plastic
non-Newtonian formulation. Grains with a sufficiently large
size are dominated by collisional mechanisms. This is mod-
eled with a two-way coupling between fluid and grains, along
with the resolution of particle contacts.

The problem was solved with a hybrid of the Discrete Ele-
ment Method for grains and the Lattice-Boltzmann Method
for fluids. A combination of the most successful advances
in these methods was employed. The mass-tracking algo-
rithm allows an inexpensive way to simulate free surfaces,
while the variable relaxation time formulation can repro-
duce non-Newtonian constitutive laws. The hydrodynamic
interactions with the granular phase were fully solved with

the bounce-back rule for coupling non-slip moving bound-
aries and fluid. The proposed model finds its best application
in the simulation of real flows and in particular of hetero-
geneous suspensions with a granular phase that features a
complete size distribution, due to its multiscale nature. The
intrinsic advantages of the Lattice-Boltzmann solver, with
its high-level performance, and its relatively simple imple-
mentation make it a good choice for the fast development
of such methods. Moreover, the core of the solver works
at a local level, making the parallelization of the code easy
and natural. Grain–grain interactions were solved with a
Discrete Element Method. We assured that the scaling of
the particle solver was not too far from the almost linear
performances of the fluid solver. The Hertzian contact law
was used, and a formulation for non-spherical particles was
included. The capabilities of the approach were shown by
comparing to an experimental free-surface flow of a fresh
concrete sample. An excellent agreement between numeri-
cal and experimental data was found in the comparison of
the final shape of the sample. The results of the simula-
tion can provide insight into the mechanics of the flow. The
spatial distribution of particles can be tracked, along with
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the variables of the flow: velocity, pressure, shear rate and
viscosity.

Another challenging application of the model is the
prediction of debris flows, which can hardly be assessed
experimentally. Future works will focus on the rheology of
debris materials, and on the full simulation of events for
deeper physical understanding, and on techniques for the
design of effective protection measures.
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