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Abstract This paper introduces a bilevel programming

approach to electricity tariff optimization for the purpose of

demand response management (DRM) in smart grids. In

the multi-follower Stackelberg game model, the leader is

the profit-maximizing electricity retailer, who must set a

time-of-use variable energy tariff in the grid. Followers

correspond to groups of prosumers (simultaneous produc-

ers and consumers of the electricity. They response to the

observed tariff, schedule controllable loads and determine

the charging/discharging policy of their batteries to mini-

mize the cost of electricity and to maximize the utility at

the same time. A bilevel programming formulation of the

problem is defined, and its fundamental properties are

proven. The primal-dual reformulation is proposed in this

paper to convert the bilevel optimization problem into a

single-level quadratically constrained quadratic program

(QCQP), and a successive linear programming (SLP)

algorithm is applied to solve it. It is demonstrated in

computational experiments that the proposed approach

outperforms typical earlier methods based on the Karush–

Kuhn–Tucker (KKT) reformulation regarding both solution

quality and computational efficiency on practically relevant

problem sizes. Besides, it also offers more flexible mod-

eling capabilities.

Keywords Demand response management (DRM), Smart

grid, Game theory, Optimization, Bilevel programming

1 Introduction

A key to the stable operation of future electricity grid is

realizing efficient demand response management (DRM).

With the increasing share of renewables in energy mix, the

production is becoming less and less controllable. At the

same time, electricity consumption is becoming more

controllable due to new types of loads and storage (e.g.,

electric vehicles, home-level or small business energy

management solutions) and various intelligent appliances

at end consumers. As a result, a gradual shift from the

traditional ‘‘supply follows demand’’ paradigm to a new

‘‘demand follows supply’’ approach can be observed. The

critical success factor for efficient DRM is an appropriate

electricity tariff that motivates consumers to schedule their

loads and manage their batteries in such a way that it

contributes to grid stability.

This paper studies the problem of optimizing the elec-

tricity tariff offered by an electricity retailer to its cus-

tomers in a game theoretical setting. A bilevel

programming approach is introduced, where the retailer is

the leader and the groups of end consumers act as multiple

independent followers. The customers are modelled as

‘‘prosumers’’, i.e., simultaneous producers and consumers

of electricity, who look for the best tradeoff between

maximizing their utility and minimizing their cost of

electricity. An effective and computationally efficient

solution method is proposed. The bilevel program is firstly

transformed into an equivalent single-level optimization

problem using a primal-dual reformulation, and then solved

using a successive linear programming (SLP) algorithm.
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After reviewing the related literature in Section 2, a

formal definition of the tariff optimization problem is given

in Section 3. The proposed approach is presented in detail

in Section 4. The approach is illustrated on a small-scale

example and evaluated in thorough computational experi-

ments in Section 5. Finally, conclusions are drawn and

possible directions for future research are suggested.

2 Literature review

2.1 Game-theoretic models for DRM

Game-theoretic models for DRM have received signifi-

cant attention recently [1]. A fundamental classification of

these models differentiates between ‘‘real-time’’ vs. ‘‘day-

ahead’’ approaches. Real-time pricing (RTP) models often

focus on the present time instant only, and ignore the

interdependence between the present energy tariff and past

or future consumption. Accordingly, these models con-

centrate on load curtailment, but fail to capture deferrable

loads appropriately. This limitation can be lifted by

applying multi-period models. Still, most of the earlier

contributions focus on the RTP scenario with a single time

instant: a multi-leader, multi-follower Stackelberg game is

defined for DRM among independent electricity providers

and consumers in [2]. A closed-form analytical solution is

derived, which can be obtained by a distributed algorithm.

The management of consumer-to-grid systems is modelled

as a Stackelberg game in [3], with a central power station

acting as the leader, and consumers as multiple followers.

Embedded into the Stackelberg game, the consumers play a

generalized Nash game to establish their equilibrium

strategies, and hence, to determine their response to the

energy prices offered by the power station. A similar

approach is applied to electric vehicle charging in [4].

Reference [5] investigates DRM on three levels of hierar-

chy (the grid operator, multiple service providers, and the

consumers) with RTP, and proposes a two-loop Stackel-

berg game model. The existence of a unique Stackelberg

equilibrium is proven by exploiting the strictly convex sub-

problems of the individual players, and an iterative dis-

tributed algorithm is proposed for reaching it. A Stackel-

berg approach is investigated for DRM under load

uncertainty in [6]. Again, an analytical solution could be

derived.

Reference [7] studies a Stackelberg game for RTP over

multiple time periods with a profit-maximizing retailer and

a single end consumer who looks for the best tradeoff

between electricity cost and comfort in the heat manage-

ment of a building. The problem is formulated as a bilevel

program, and then converted to and solved as a single-level

mixed-integer linear program (MILP) using the Karush–

Kuhn–Tucker (KKT) conditions. The same paper shows

that while RTP is vastly efficient for load shifting, it can

cause excessive and imponderable payments for small

consumers. Therefore, more predictable day-ahead pricing

schemes are an attractive approach for households.

Despite this, the literature of ‘‘day-ahead’’ tariff opti-

mization models is significantly scarcer. In [8], a Stackel-

berg model is proposed for energy pricing and dispatch in a

multi-period day-ahead setting in two coupled stages. The

first stage addresses price setting subject to demand

response from consumers who minimize their energy cost

and maximize their utility by scheduling their controllable

loads. In the second stage, the retailer establishes the

operation strategy for its storage unit and its energy con-

tracts by solving a robust optimization problem considering

uncertain market prices. The authors transform this prob-

lem into a single-level MILP by exploiting the KKT con-

ditions and duality theory. In [9], a Stackelberg game is

formulated and solved using an iterative heuristic

approach. Two different games related to demand side

management are studied in [10]: a Nash game between

consumers equipped with batteries and a Stackelberg game

between the utility provider and the consumers. A bilevel

programming approach to the operation scheduling of a

distribution network, with a cost-minimizing network

operator as the leader and multiple profit-maximizing

microgrids as followers, is considered in [11]. Again, KKT

reformulation is applied to arrive at a single-level problem.

A sophisticated Stackelberg game model is presented

in [12] to capture the interplay of a retailer (leader) and

various types of distributed energy resources, including

generators and consumers with different types of control-

lable load as well (followers). Again, the problem is con-

verted to a single-level MILP using the KKT

reformulation. A similar problem, with power flow con-

straints and a retailer who also oversees the operation of

distributed generators and batteries, is studied in [13].

2.2 Related problems in energy management

and DRM

The consumers’ (followers’) problem in the above

Stackelberg games corresponds to an energy management

problem for minimizing the cost and maximizing the utility.

Linear programming (LP) models limited to active power

flow equations are commonly used in the literature for

solving this problem [14]. More sophisticated, non-linear

models allow capture reactive power and voltagemagnitudes

as well [15, 16], or describe the behavior of the energy sys-

tem components (battery, or heating, ventilation, and air

conditioning in buildings) in a more realistic way [17].

Obviously, Stackelberg games and bilevel programming

approach are not the only possible approaches to DRM
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problems. Alternative methods are often based on statisti-

cal models of the grid-level load response to the variation

of energy prices [18]. An iterative solution procedure that

alternates between the optimization problems of the con-

sumers (minimizing the cost) and the grid (maximizing the

load factor) is presented in [19] for smart building-to-grid

systems, using a sophisticated thermal model of the

buildings. In [20], the problem of dynamic pricing for

DRM is formulated as a Markov decision process, and

reinforcement learning is used to solve it. In [21], demand

response is modeled by directly quantifying the delay-tol-

erant demand and its dependence on price by linear,

potential, exponential and logarithmic load functions.

Game-theoretic approaches to different, but related

problems in energy management include [22], where a

Stackelberg approach is proposed for achieving a fair

curtailment of renewable energy generation. A Stackelberg

game model is investigated in [23] with a central produc-

tion unit (leader) who sets the electricity price to maximize

its profit subject to the response from an electricity service

provider (follower) that will accept load curtailment and

distributed generation bids from various microgrids in view

of the central producer’s price. A supply-demand game is

investigated in a smart grid setting in [24], with generators

and loads acting as multiple followers, and a data center

server as the virtual leader; a deep transfer Q-learning

algorithm is applied for finding the equilibrium. The opti-

mal operation of multi-carrier energy systems is modelled

as bilevel optimization problem in [25]. The upper level

problem of minimizing the total energy cost and the lower

level problem of minimizing the operation and dissatis-

faction costs are solved through an iterative procedure.

2.3 Mathematical methodology

An introduction to bilevel programming approach,

including basic modelling and solution techniques, is given

in [26, 27]. Approaches to transforming bilevel optimiza-

tion problems into equivalent single-level models, includ-

ing the optimal value or the KKT reformulation, are

studied in [28]. A recent survey on bilevel programming

for price setting problems is given in [29].

SLP has been applied in smart grid community, e.g., to

the planning of generators’ investments and transmission

network extensions [30], or to the tackling of non-linear

phenomena in variants of the optimal power flow prob-

lem [31]. At the same time, to the best of our knowledge,

this paper is the first to apply SLP to tariff optimization for

demand response.

2.4 Positioning of current contribution

This section surveys the literature on game theoretical

models to electricity tariff optimization for DRM and

related problems. The algorithmic techniques applied to

Stackelberg tariff optimization problems are summarized

in a tabular format in Table 1. The survey shows that

although some simpler formulations, all focusing on a

single time period, adopt a solution that can be computed

analytically in closed form, multi-period problems are

computationally more challenging. This observation is also

supported by a formal proof in [32], which states that

multi-period models for DRM with controllable loads at

the consumers are NP-hard. Accordingly, the vast majority

of earlier contributions apply the KKT reformulation to

arrive at a single-level MILP that can be solved using

Table 1 Algorithmic techniques applied for solving Stackelberg tariff optimization models in literature

Paper Game model Time representation Solution approach

[2] Stackelberg game Single period Closed-form analytical solution*

[4, 3] Generalized Nash embedded in Stackelberg Single period Iterative distributed algorithm using KKT & convex optimization

[5] 3-level Stackelberg game Single period Iterative distributed algorithm

[6] Stackelberg game, stochastic Independent

periods**

Closed-form analytical solution

[7] Stackelberg game Multi-period KKT for conversion to single level, MILP

[8] Stackelberg game*** Multi-period KKT for conversion to single level, MILP

[9] Stackelberg game Multi-period Iterative algorithm

[10] Stackelberg game**** Multi-period Iterative algorithm

[11] Stackelberg game Multi-period KKT for conversion to single level, MILP

[23] Stackelberg game Multi-period KKT for conversion to single level, MILP

[13] Stackelberg game Multi-period KKT for conversion to single level, MILP

Note: * denotes that distributed algorithm for achieving the equilibrium is also presented; ** denotes that the multi-period problem can be

reduced to multiple single-period problems; *** denotes that in a 2nd-stage problem, robust optimization is applied to implement the equilibrium

under uncertainty; **** denotes that a Nash game among consumers is also described in the paper.
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commercial solvers. However, at the price of considerable

computational effort, and a number of papers mention that

the solution approach is applicable mostly to small-scale

problems [13]. Other approaches use customized heuristics

for solving the problem.

The contribution of this paper is twofold. On one hand, it

defines a generic game-theoretic model for DRM that slightly

extends the above discussed models (e.g., it captures both

distributed battery storage and controllable loads character-

ized by a given utility function at the consumers). And the key

properties (e.g., necessary conditions for feasibility, compu-

tational complexity) can be formally proven. On the other

hand, it proposes an efficient solution approach based onwell-

established mathematical programming techniques that first

exploits duality for the followers’ model to convert it into a

single-level quadratically constrained quadratic program

(QCQP), and subsequently, applies an SLP approach to solve

it. It is shown in computational experiments that the proposed

approach outperforms earlier KKT-based methods regarding

both solution quality and computational effort for practically

relevant problem sizes.

This paper is a substantially extended version of the

earlier conference paper [33]. In addition to a refined

model that captures the profit-maximizing behavior of the

retailer, the extensions are related to the core contributions

of the present paper, i.e., the formal proofs of the funda-

mental characteristics of the model and the thorough

computational experimentation for assessing solution

quality and computational efficiency.

3 Problem definition

3.1 System architecture

This paper investigates DRM as an interaction among an

electricity retailer and various prosumers, i.e., clients who can

both produce and consume electricity, in a smart grid. In order

to ensure the tractability of the problem over a large popula-

tion, prosumers are classified into prosumer groups (PGs),

where each PG consists of prosumers with similar electricity

consumption and production profiles as well as storage

capabilities. The system architecture is displayed in Fig. 1.

PGs are characterized by their uncontrollable production

and consumption, controllable load requirements as well as

their storage capabilities. The uncontrollable production

Cþ
i;t and consumption C�

i;t of PGi is fixed and given in the

input for each time period t ¼ 1; 2; :::; T . In addition, PGi

needs to schedule a (potentially zero) controllable load of

Mi (Mi is the total controllable load during the horizon)

over the time horizon, where a maximum of �Li;t can be

scheduled in each period t. It is noted that time windows

can be defined for the controllable load by setting �Li;t ¼ 0

for the appropriate period t. The preferences of PGi on the

timing of the controllable load are encoded in utility values

Ui;t, where Ui;t captures the utility of scheduling a unit of

controllable load in t. Hence, if PGi decides for a con-

trollable load of Li;t over time, this incurs a utility of

PT

t¼1

Ui;tLi;t for the PG. Similar models for controllable load

are used frequently in the literature [8].

PGs can further optimize their energy management by

the appropriate charging and discharging of their battery

storage. The battery is characterized by its capacity Bi, the

maximum charge and discharge rates Rþ
i and R�

i , the initial

battery state-of-charge (SoC) bi;0, and its cycle efficiency

gi. In order to safeguard from unexpected power outages,

the prosumer wishes to retain a given, time-varying mini-

mum SoC Bi;t in the battery.

Each individual PG schedules its controllable load Li;t and

determines its battery SoC bi;t over time to optimize its own

objective, composed of maximizing the utility and mini-

mizing the electricity cost with regard to the energy tariff set

by the retailer. This PG model is generic enough to capture

the behavior of diverse types of prosumers, ranging from

households or offices with uncontrollable consumption only

(and therefore, unresponsive to the energy tariff), via pro-

sumers equipped with renewable energy generation and/or

storage devices, owners of electric vehicles, to complex

microgrid systems. It should be noted that various alternative

approaches for modeling prosumer behavior have been

subjected to extensive research recently. Questions of spe-

cial interest include addressing individual prosumers or

organizing them into PGs as well as using deterministic or

probabilistic models. A richer, probabilistic approach to

characterize the responsiveness of prosumers to the variation

of the electricity tariff is presented in [34], together with a

review of the recent literature on the benefits and drawbacks

of different approaches.

...

Fig. 1 System architecture with a retailer and multiple PGs
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The retailer employs the same time-of-use electricity

tariff for all prosumers. The tariff is specified in the form of

day-ahead electricity purchase prices Qþ
t and feed-in prices

Q�
t offered to PGs for periods t ¼ 1; 2; :::; T . It is assumed

that the tariff is regulated by an a priori agreement between

the retailer and the prosumers, which defines minimum,

maximum, and maximum average electricity prices in the

form of 0\Q�Q�
t �Qþ

t �Q and 1
T

PT

t¼1

Qþ
t � ~Q, where ~Q is

max. average electricity price for prosumers; Q is maxi-

mum electricity price for prosumers; Q is minimum elec-

tricity price for prosumers. Such an agreement is necessary

to prevent the profit maximizing retailer from increasing

purchase prices without any limit [7].

The focus of this paper is on the problem faced by the

retailer, who has to cover the (potentially negative) net

consumption of the ensemble of all prosumers from the

electricity purchased or sold on the wholesale market. This

paper assumes a time-variant dual pricing scheme on the

wholesale market, given in the form of purchase prices Pþ
t

and feed-in prices P�
t . It is noted that the same model can be

naturally applied to markets with uniform pricing (purchase

prices equal to selling prices) by letting Pþ
t ¼ P�

t . It is

assumed that the retailer appears as a price-taker on the

market, without any ability to influence the market prices.

By offering an appropriate electricity tariff to its prison-

ers, the retailer can initiate a demand response program that

motivates the prosumers to purchase electricity in valley

periods. When an ample amount of cheap energy is available

on the market, the retailer can sell their surplus energy in

peak periods. In this way, the retailer can contribute to the

grid stability and maximize its profit at the same time. In this

paper, the maximization of the retailer’s profit is addressed.

3.2 Stackelberg game model and its basic

characteristics

The following communication protocol is implemented

among various stakeholders: the retailer firstly announces

the day-ahead electricity tariff to all prosumers. The pro-

sumers observe this tariff and optimize their consumption

profile, i.e., the amount of electricity purchased from or fed

into the grid over time. Then, the parties implement their

actions as planned. It is assumed that the retailer is aware of

the decision model and the parameters of PGs. This leads to

a ‘‘Stackelberg game’’ with the retailer as the ‘‘leader’’ and

PGs as ‘‘multiple followers’’. The so-called ‘‘optimistic’’

assumption is adopted, i.e., if a follower has more than one

optimal solutions according to its own objective, then it

chooses its optimal solution that is the most favorable for the

leader. The following additional assumptions are made,

which guarantee the feasibility of the problem:

XT

t¼1

�Li;t �Mi 8 i ð1Þ

Bi;t �Bi 8 i; t ð2Þ

bi;0 �Bi 8 i ð3Þ

bi;0 þ tRþ
i �Bi;t 8 i; t ð4Þ

where T is the number of time periods.

These assumptions require that bounds on the control-

lable load allow schedule the required power over the

horizon as for (1), the bounds on the battery SoC are

consistent as for (2), the initial battery charge satisfies these

bounds as for (3), and finally, that the charging rate of the

battery allows satisfying the lower bounds on the SoC as

for (4).

Lemma 1 (Existence of a solution) If assumptions (1)–

(4) hold, then the followers’ problem is feasible for any

electricity tariff Qþ
t and Q�

t set by the leader.

Proof Setting the battery SoC to the required minimum,

i.e., bi;t ¼ max bi;t�1;Bi;t

� �
, and scheduling the controllable

as early as the bounds allow, i.e., Li;t ¼

min �Li;t;Mi �
Pt�1

u¼1

Li;u

� �

result in a feasible solution for

each follower i.

Lemma 2 (Independence of followers’ problems) The

optimal demand response of an individual PG to a given

energy tariff is independent of the response of other PGs.

Proof The objectives of the individual PG, i.e., its energy

cost and utility, depend solely on the energy tariff and the

consumption profile of the given PG. Moreover, the fea-

sibility of a consumption profile is also independent of

other PGs’ response, since the amount of electricity that

can be purchased or sold on the market by the retailer to

maintain the grid-level balance is unbounded.

It is emphasized that different PGs’ problems are still

interconnected trough the retailer’s problem, but for any

fixed decision of the retailer on the tariff, the PGs can

optimize their behavior without considering the problems

faced by fellow PGs. Hence, the problem can be modeled

as a Stackelberg game with a single leader (the retailer) and

multiple independent followers (the PGs). It is noted that

when the optimal response of a follower is not unique, the

response induced by the optimistic assumption (from the

set of all optimal responses) can be dependent on other

PGs’ response.

Lemma 3 (Computational complexity) The above defined

bilevel energy tariff optimization problem is NP-hard.
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Proof The simple multi-period energy tariff optimization

problem (SMETOP) has been introduced as a minimal

bilevel optimization model of energy tariff optimization for

DRM, and it has been proven to be NP-hard in [32]. The

problem investigated in this paper generalizes SMETOP in

the sense that, in addition to all features captured by

SMETOP, it also handles batteries and uncontrollable

energy production and consumption at the PGs as well as

bidirectional grid connections. This implies that the cur-

rently investigated, generalized problem is NP-hard, too.

4 Solution approach

4.1 Overview

This section presents a bilevel programming formulation

of the above Stackelberg game model, and proposes an

efficient solution approach for that formulation. First, the

models of an individual follower and the leader are for-

mally defined. Then, the bilevel programming model

received as a combination of the two parties’ problems is

reformulated into a single-level QCQP, which is, in turn,

solved using an SLP algorithm.

4.2 Prosumer groups’ (followers’) problem

The decision problem faced by an individual PGi (the

follower) is a parametric optimization problem, whose

parameters encode the electricity tariff determined by the

retailer (decision variables Qþ
t and Q�

t controlled by the

leader). The problem can be captured by the following LP,

where the symbol uk
i;t on the right-hand side of the con-

straints denotes the dual variables associated with the given

constraint:

min giðQþ;Q�Þ ¼
XT

t¼1

Qþ
t x

þ
i;t � Q�

t x
�
i;t � Ui;tLi;t

� �
ð5Þ

s.t.

Cþ
i;t � C�

i;t þ xþi;t � x�i;t � Li;t ¼ rþi;t � r�i;t 8 t; ½u6
i;t�

ð6Þ

gi r
þ
i;t � r�i;t ¼ bi;t � bi;t�1 8 t; ½u7

i;t� ð7Þ

XT

t¼1

Li;t ¼ Mi ½u8
i � ð8Þ

Li;t � �Li;t 8 t; ½u9
i;t� ð9Þ

Bi;t � bi;t 8 t; ½u10
i;t � ð10Þ

bi;t �Bi 8 t; ½u11
i;t � ð11Þ

rþi;t �Rþ
i 8 t; ½u12

i;t � ð12Þ

r�i;t �R�
i 8 t; ½u13

i;t � ð13Þ

0� xþi;t; x
�
i;t; r

þ
i;t; r

�
i;t; Li;t 8 t ð14Þ

where xþi;t is the electricity purchased; x�i;t is the electricity

fed into the grid; rþi;t is the electricity charged into battery;

r�i;t is the electricity discharged from battery; uk
i;t is the dual

variables.

The follower’s objective (5) is comprised of the total

cost of energy, i.e., the cost of energy purchased minus the

income from feeding energy into the grid, and the PG’s

utility achieved by the timing of the controllable load.

Constraint (6) encodes that the energy balance at the PG is

maintained. Equation (7) computes the battery state-of-

charge based on the charge and discharge rates. Constraints

(8) and (9) ensure that the amount and the timing of the

controllable load satisfies the requirements. Finally,

inequalities (10)–(14) define the allowed range of the bat-

tery SoC, the charge and discharge rates as well as the

electricity purchase and feed-in rates at the PG.

It is noted that all constraints in the followers’ model are

linear, whereas the objective contains the leader’s variables

as multipliers, making it a bilinear (quadratic) expression.

The models of different followers are linked only via the

problem of the leader’s decision.

4.3 Retailer’s (leader’s) problem

The optimization problem faced by the retailer can be

formulated as a bilevel program that contains the PGs’

problem as a nested sub-problem. This nested sub-problem,

encoded as a constraint in the model, expresses that a part

of the variables (decision variables xþi;t and x�i;t, corre-

sponding to the amount of electricity purchased from and

fed into the grid) are controlled by the followers, according

to their known decision model:

max f ¼
XT

t¼1

XN

i¼1

Qþ
t x

þ
i;t � Q�

t x
�
i;t

� �
� Pþ

t y
þ
t þ P�

t y
�
t

 !

ð15Þ

s.t.

yþt � y�t ¼
XN

i¼1

ðxþi;t � x�i;tÞ 8 t ð16Þ

Q�Q�
t �Qþ

t �Q 8 t ð17Þ

1

T

XT

t¼1

Qþ
t � ~Q ð18Þ
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xþi;t

x�i;t

 !

2 argmin giðQþ;Q�Þ j ð6Þ � ð14Þf g 8 i ð19Þ

where N is the number of PGs.

The leader’s objective (15) is to maximize its profit,

calculated as its revenue from the prosumers, minus the

cost of electricity purchased on the market, and plus the

income from the electricity sold on the market. Equa-

tion (16) encodes the grid-level energy balance. Inequali-

ties (17) and (18) define the valid range of the energy tariff

variables. Finally, constraint (19) states that the electricity

purchase and feed-in values of prosumers are determined

using the above optimization model.

4.4 Single-level QCQP reformulation

When the complexity of a bilevel optimization problem

does not allow developing an analytical solution, which is

apparently the case above, the two candidate solution

approaches are the application of (meta-)heuritics directly

to the bilevel problem, or the reformulation to a single-

level problem. The considerable benefit of the latter tech-

nique is that it allows the application of theoretically well-

founded, potentially even exact mathematical program-

ming approaches to solve the problem. For this reason, this

paper adopts the reformulation approach and looks for a

transformation of the bilevel problem (15)–(19) into a

single-level mathematical program. The key to achieve this

is the modeling of the optimality condition of the followers

(19). By exploiting duality for the followers’ LP model it is

noted that the followers’ LP model (5)–(14) contains the

bilinear term Qþ
t x

þ
i;t � Q�

t x
�
i;t in the expression of

giðQþ;Q�Þ, i.e., a multiplication of the leader’s and the

followers’ variables. With this, the model is still linear in

the followers’ variables, and LP duality can be exploited

for reformulating it. By exploiting duality for the follow-

ers’ LP model, primal-dual reformulation of the followers’

problem can be applied: the optimality condition (19) is

translated into the conjunction of followers’ primal con-

straints (6)–(14), dual constraints, and an equality con-

straint between the primal and the dual objectives. By

duality, the ensemble of these constraints is satisfied if and

only if the given instantiation of the variables is an optimal

solution for the follower.

The complete single-level reformulated problem is

shown below. It consists of the leader’s objective (15), the

leader’s constraints (16)–(18), the followers’ primal con-

straints (6)–(14), an equality relation between the follow-

ers’ primal and dual objectives (20) as well as the

followers’ dual constraint corresponding to the primal

variables for the battery charge rate rþi;t (21), discharge rate

r�i;t (22), SoC bi;t for t\T (23) and bi;T (24), electricity

purchase xþi;t (25), electricity feed-in x�i;t (26), and control-

lable load Li;t (27).

max f ¼
XT

t¼1

XN

i¼1

Qþ
t x

þ
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�
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� �
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�
t

 !

s.t.
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þ
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��
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�u6
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7
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u6
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i;t þ u13
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�u7
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i;tþ1 � u10
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i;t � 0 8 i; t\T ð23Þ

�u7
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i;T þ u11
i;T � 0 8 i ð24Þ

u6
i;t � � Qþ

t 8 i; t ð25Þ

�u6
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u9
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i;t ; u11
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The primal-dual reformulation particularly suits the prob-

lem in the scope, since the only occurrence of the leader’s

variables, Qþ
t and Q�

t , in the followers’ problem is in their

primal objective, and consequently, on the right hand side

of the dual constraints. As a result, the only non-linear term

in the single-level reformulation is the payment from the

PGs to the retailer, contained both in the leader’s objective

(15) and in the followers’ optimality constraint (20), which

is a bilinear expression containing the multiplication of the

followers’ and the leader’s variables. All other constraints

are linear.

4.5 SLP solution method

Since the above QCQP is non-convex, no efficient exact

algorithm can be expected for solving it, and accordingly,

(meta-)heuristic approaches are of interest. Therefore, we

propose an SLP heuristic solution approach, which shows

good convergence properties especially on problems where

most of the constraints are linear. SLP solves non-linear

problems by iteratively constructing local LP approxima-

tions of the original problem, and solving each approxi-

mation using standard LP techniques [35, 36]. The
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algorithm departs from an initial solution X0, and in each

iteration k, it builds a local linearization of the original

problem around Xk, denoted as LPk. Then, the optimal

solution of LPk is sought subject to a given step bound,

�s�X � Xk � s. If the optimal LP solution is feasible with

a given tolerance, then it is accepted as the next solution

Xkþ1 (possibly s is increased). Otherwise Xkþ1 ¼ Xk and

s is decreased.

The above SLP algorithm converges to a locally optimal

solution of QCQP, which is potentially different from the

global optimum. In order to reduce the risk of getting stuck

in a local optimum, the SLP algorithm is embedded into a

randomized restart procedure. It executes multiple SLP

runs, using a random perturbation of the previous best

solution as an initial solution in each run (or Q�
t ¼ Qþ

t ¼ Q

in the first run). The implementation reported in this paper

is based on the SLP package of Fico Xpress 7.8 by using its

default SLP algorithm, with the number of SLP runs set to

10 in all computational experiments.

4.6 Discussion on possible extensions

While the above presented bilevel model captures the

most important generic features of prosumers (production

and consumption, controllable load, battery storage), it can

be extended and refined in many different ways. The most

relevant directions include the extension of the prosumer

model with features for specific types of equipment that

induce elastic load (e.g., high voltage alternating current

(HVAC) in buildings, or refined battery storage models

capturing state-dependent charging properties and los-

ses [17]) as well as the extension of the retailer model with

the generation or energy storage. The proposed solution

method is directly applicable to the extended models as

long as the prosumer model remains linear. The proposed

reformulation still applies with binary variables in the

retailer model (e.g., due to switchable generators). And

commercial solvers offer algorithms to tackle the resulting

mixed-integer QCQP though the computational efficiency

of the approach which needs to be verified for the given

application.

Below, we review two minor refinements of the baseline

bilevel model (15)–(19) fixing specific issues that might be

undesirable in some application scenarios. Firstly, the

baseline model may trigger inappropriate end-of-horizon

effects, namely, the followers sell all the energy stored in

the batteries to maximize their revenue. This can be avoi-

ded by subtracting a term that valuates the energy stored in

the batteries at the end of the planning horizon from the

followers objective (5) as follows:

Qþ
T þ Q�

T

2
bi;T ð29Þ

Another example of a possible requirement that is not

captured readily by the above model is that, among

different optimal solutions that maximize the retailer’s

profit, a solution with a smooth electricity purchase and/or

sale over time is preferred. Unwanted oscillation of the

energy purchased or sold on the wholesale market can be

smoothed out by adding the following term to the retailer’s

objective:

�e
XT

t¼1

ðyþt � y�t Þ
2 ð30Þ

This quadratic term measures the squared deviation of the

energy traded over time with a constant bias. Accordingly,

adding it to the retailer’s objective with a small multiplier e
smooths unnecessary oscillations without affecting the

payoffs of the players.

4.7 Discussion on KKT reformulation

As an alternative to the proposed solution, KKT refor-

mulation and linearization can be applied to convert the

proposed bilevel model (15)–(19) into a single-level MILP.

This approach is often considered to be the default choice

for transforming bilevel problems into single-level ones.

Moreover, the resulting MILP, in theory, can be solved to

exact optimality by commercial solvers.

Converting the bilevel model into a single-level MILP

requires linearizing the KKT complementary slackness

conditions using big-M constraints over additional binary

variables as well as linearizing the quadratic term in the

objective by expressing and substituting it from (20).

However, as it will be shown in the computational exper-

iments, this approach is computationally challenging due to

the high number of binary variables and big-M constraints.

In particular, linearizing the complementary slackness

conditions requires introducing ca. 22 � N T auxiliary

binary variables into the model (one for each primal and

dual variable, resulting in over 20000 additional binary

variables for N ¼ 20 and T ¼ 48). Moreover, the corre-

sponding big-M constraints are typically difficult to solve

due to their weak LP relaxations. For further details on the

KKT reformulation, the interested reader is referred

to [26, 28]. Finally, even minor modifications in the bilevel

model can hinder the linearization of the KKT reformula-

tion, as is the case with terms for the valuation of the

remaining charge (29) or for smoothing (30).

In this paper, we use the KKT reformulation and the

exact MILP solution approach in computational
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experiments to assess the quality of the solutions found by

the proposed SLP solution on small-size problems.

5 Experimental evaluation

5.1 Illustrative example

In this section, the proposed approach to DRM is

demonstrated on a small-scale illustrative example, with

three PGs and a one-day horizon (from 8:00, using hourly

time units). The PGs correspond to different types of

consumers as follows:

1) PG1 represents an intelligent energy-positive street

lighting microgrid system called E?grid [37, 38].

Since the lighting system is controlled according to

local traffic and environmental conditions, as captured

by motion sensors and a local weather station, its

consumption varies dynamically over time. The grid-

connected system is also equipped with photovoltaic

(PV) power generation and battery storage, which

enables it to perform active energy management using

an optimization approach that corresponds to the PG

model adopted in this paper. Real-life data originates

from a physical prototype with 191 luminaries and

151.2 m2 of active PV surface area, and reflects the

operation of the system on a sunny day in October.

The E?grid PG is a net producer (up to 15 kW) during

the day, and a net consumer (up to 3.5 kW) during the

night.

2) PG2 comprises owners of plug-in electric vehicles.

Data used in the example corresponds to three Nissan

Leaf electric vehicles, with a 24 kWh battery pack in

each vehicle, which has to be charged from a 50%

state to 100% state during the night. Individual

vehicles are connected to the grid between 17:00 and

20:00 and disconnected between 6:00 and 8:00 in the

morning. With the vehicle-to-grid (V2G) option

ignored, this can be modeled as a controllable load

of 36 kWh. It is assumed that the owners have a slight

preference for charging the electric vehicles as early as

possible, which is captured by utility values U2;t

linearly decreasing over time.

3) Finally, PG3 contains households with uncontrollable

consumption only. This case study uses the data of 15

average Hungarian homes, with a peak consumption of

5.7 kW during the day, and a minimum consumption

of 3.8 kW during the night. Since this PG has no

controllable load or battery storage, it cannot partic-

ipate actively in DRM, and its consumption appears

only as a time-varying bias in the grid-level

consumption.

The retailer aims to maximize its profit by offering an

appropriate time-of-use electricity tariff to the PGs,

respecting a priori contract that sets Q ¼ 1 c/kWh, Q ¼
100 c/kWh, and ~Q ¼ 10 c/kWh. For the sake of simplicity,

the wholesale market prices are assumed to vary in two

steps: 12 c/kWh during the day (between 8:00 and 21:00)

and 6 c/kWh during the night. The feed-in price on the

wholesale market is a constant 3 c/kWh.

The system-level optimum for this example is deter-

mined by the following characteristics: the overall grid is a

net producer until 17:00 due to PV generation in the E?-

grid microgrid, whereas it is a net consumer afterwards. In

order to avoid losses stemming from dual pricing on the

wholesale market, the retailer should motivate the PGs to

anticipate load and charge batteries before 17:00. On the

contrary, in the period after 17:00, it should encourage PGs

to defer their load from the peak period lasting until 21:00

to the valley period afterwards.

This sample instance was solved using the proposed

approach, applying formula (30) to eliminate the oscilla-

tions of the energy flow that are visually disturbing.

Otherwise, it does not affect the payoffs of the players. The

results displayed in Figs. 2, 3, 4, and 5 show that the

proposed approach could indeed reach the above described

system-level optimum. The diagrams compare the opti-

mized consumption profile (red curve) to the baseline

consumption (green curve) for the overall grid and for the

individual PGs, where the baseline consumption is com-

puted by scheduling the controllable loads to maximize

utility (ignoring the electricity tariff) without using the

batteries. The characteristic time periods are separated by

dashed lines at 17:00 and 21:00. Finally, the optimized

purchase tariff is also shown in the diagram of the overall

grid: constant low prices (1 cent/kWh) are applied while

the system is a net producer until 17:00, whereas high,
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Fig. 2 Solution with optimized tariff: energy purchase price and

overall consumption over time
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slightly decreasing prices are used afterwards (15.74 cent/

kWh at 18:00, decreasing by 0.05 cent/kWh per hour).

On the level of individual PGs, the applied tariff moti-

vated the E?grid PG to charge its battery while it is a net

producer, to reach a fully charged state during

14:00–17:00, and to gradually discharge the battery in the

rest of the peak period between 17:00 and 21:00. The

controllable load of the EV PG was fully deferred to the

valley period after 21:00. In that period, the slight decrease

of the purchase prices over time compensated the PG for its

linearly decreasing utility function, Therefore, an arbitrary

scheduling of the controllable load became optimal for this

PG. There were no controllable variables for the household

PG. This tariff and consumption profile are globally opti-

mal for the retailer, since no further load can be moved

outside the peak period between 17:00 and 21:00.

With 10 SLP runs within the randomized restart

heuristic, the implementation of the proposed solution

approach in Fico Xpress 7.8 could solve the above problem

instance in 9.8 seconds on a computer with Intel i7 2.70

GHz CPU and 16 GB RAM.

5.2 Computational experiments

The evaluation of the proposed approach in computa-

tional experiments focuses on two questions: � the com-

putational effort required by the proposed SLP solution; `

the quality of the solutions found. Large problem instances

are generated by the multiplication and random perturba-

tion of the data used in the above illustrative example.

Table 2 displays the average computation time in seconds

over 10 instances for different combinations of N (number

of PGs) and T (number of time periods), which are

achieved with the proposed model (15)–(19) and the

algorithm using 10 SLP runs. The results show that the

computation time increases moderately with problem size,

and practically relevant problem sizes, e.g., with N ¼ 20

and T ¼ 48, are tractable in a reasonable amount of time.

In applications where a different tradeoff between solution

quality and computation time is looked for, the algorithm

can be tuned by modifying the number of SLP runs.

In order to evaluate the quality of the solutions found by

the proposed approach, they are compared to the exact

optimal solutions of the MILP model received by applying

KKT reformulation and linearization as discussed in Sec-

tion 4.7. The results of the comparison are displayed in

Table 3, which displays aggregated results over 10

instances for each problem size. The column of Opt. (short

for optimality) contains the ratio of instances that could be

solved to prove the optimality using KKT, and the column

of Time shows the average computation time required for
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Table 2 Average computation time in seconds by problem size for

proposed SLP solution

N T ¼ 12 T ¼ 24 T ¼ 36 T ¼ 48

5 0.55 1.46 2.22 16.04

10 1.10 73.38 57.97 228.37

15 1.67 155.74 51.59 283.56

20 3.63 257.31 98.82 345.06
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this. The branch and bound search are aborted when the

time limit of 600 s is hit, and the best integer solution found

is recorded. The columns of Min., Avg., and Max display

the minimum, the average, and the maximum gap between

the SLP and the KKT solutions for the given problem size.

Finally, the column of Time contains the average compu-

tation time for the SLP solution. The results show that the

smallest instances, with N ¼ 3, could be solved to prove

the optimality using KKT with a single exception.

Although SLP is not an exact solution approach, in practice

it also builds close-to-optimal solutions with an average

gap of only 0.01%–0.1%. For larger instances N ¼ 5,

where KKT failes to find the optimal solution, SLP often

constructs significantly better solutions, as indicated by

negative gap values. Namely, SLP finds up to 40% better

solutions than KKT with one or two orders of magnitude

lower computation times.

Hence, it can be concluded that although KKT is an

exact solution in theory, its applicability is limited to small

problems, e.g., with N ¼ 3. In contrast, the proposed pri-

mal-dual reformulation couples with SLP scales much

more favorably, and it computes high-quality solutions

efficiently even for practically relevant problem sizes.

6 Conclusion

This paper introduces a bilevel programming approach to

energy tariff optimization for DRM in smart grids. In the

Stackelberg game model, the leader is a profit maximizing

retailer, who sets the energy tariff offered to its prosumers and

purchases electricity for them from thewholesalemarket. The

prosumers, who act as multiple independent followers, opti-

mize their controllable load and their battery charging

schedule to maximize their utility and minimize their cost of

energy. A new solution is introduced, which exploits the pri-

mal-dual reformulation of the followers’ problem to arrive at a

single-level QCQP equivalent of the bilevel problem. It has

been shown that the resulting QCQP can be solved efficiently

using an SLP algorithm. In particular, it is illustrated in

computational experiments that the proposed approach out-

performs the technique based on the KKT reformulation,

which is the dominant approach for solving similar problems

in the literature.Hence, themain contributions of the paper are

a bilevel programming formulation of the tariff optimization

problem, formal proofs of some basic properties, and the

application of new and efficient mathematical programming

techniques to solve this problem.

The proposed model can be trivially extended to some

more complex problems, e.g., with various types of con-

trollable loads and storage devices for each PG, or

switchable generators and energy storage at the retailer. A

more important and challenging direction for future

research is the investigation of richer, non-linear prosumer

models that can capture more realistically, e.g., thermal

processes of HVAC in buildings or charging properties of

batteries. The extension to a stochastic variant, accounting

for uncertainties in consumption, production, and spot

market prices is also of interest.

Finally, it must be observed that while Stackelberg game

models are becoming ubiquitous in the literature of DRM,

a critical pre-condition of their practical applicability is

that the leader should be able to identify the decision

models and parameters. This is a challenging problem in

application scenarios characterized by information asym-

metry. A promising solution can be the application of

inverse optimization, analogously to a case in inventory

control [39]. With historical pairs of a follower’s input

(i.e., energy tariff) and response (consumption), the inverse

optimization approach looks for parameters which ensure

that each response is optimal for the corresponding input.
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