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Abstract Increasingly frequent natural disasters and man-

made malicious attacks threaten the power systems.

Improving the resilience has become an inevitable re-

quirement for the development of power systems. The

importance assessment of components is of significance for

resilience improvement, since it plays a crucial role in

strengthening grid structure, designing restoration strategy,

and improving resource allocation efficiency for disaster

prevention and mitigation. This paper proposes a compo-

nent importance assessment approach of power systems for

improving resilience under wind storms. Firstly, the com-

ponent failure rate model under wind storms is established.

According to the model, system states under wind storms

can be sampled by the non-sequential Monte Carlo simu-

lation method. For each system state, an optimal restoration

model is then figured out by solving a component repair

sequence optimization model considering crew

dispatching. The distribution functions of component repair

moment can be obtained after a sufficient system state

sampling. And Copeland ranking method is adopted to rank

the component importance. Finally, the feasibility of the

proposed approach is validated by extensive case studies.

Keywords Component importance, Resilience, Copeland

score, Non-sequential Monte Carlo simulation

1 Introduction

Reliability is one of the basic requirements on the power

supply. Recently, with the rapid development of theories,

technologies, equipment, etc., the reliability performance

of the power systems has been improved significantly [1].

However, when facing extreme events such as natural

disasters and man-made attacks, power systems do not

always perform well [2]. Lessons learned from some

catastrophic accidents indicate that power outage some-

times is unavoidable [3], and thus the power systems need

to be resilient, namely to be able to quickly restore from

disasters [4].

Generally, extreme events have severe consequence but

very low occurrence probability [5]. However, wind storm

is a kind of natural disasters with relatively high frequency

in coastal areas. For instance, the southeastern coastal areas

of China are prone to wind storm disasters, e.g. in

Guangdong Province, the average annual economic loss

due to the power loss is immense because of the 4300 km

coastline [6–8]. In most countries, the coastal areas tend to

be the economic centers, and the effects of blackouts

caused by wind storms can be more detrimental in these

areas than in inland areas. Therefore, it is of great signifi-

cance to investigate the efficient restoration strategy of
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power systems under wind storms to improve the resilience

of the power systems.

When it comes to the resilience improvement strategy,

there are two kinds of measures: hardening measures and

operational measures [9]. These two are related to infras-

tructure and operational resilience respectively and both

have positive effects on the resilience metrics [10]. The

hardening measures which are efficient but costly include

undergrounding distribution and transmission lines,

upgrading poles and structures with stronger materials, etc.

Reference [11] puts forward three kinds of resilience im-

provement strategies and analyzes which one should be

adopted in different situations. Apparently, the result of the

component importance assessment can provide us efficient

and economic hardening strategies to improve the resi-

lience of the power systems. The operational measures

which are flexible and relatively cheap include advanced

and accurate weather forecast, advanced and adaptive

restoration, etc [11]. For example, extreme disasters such

as wind storms usually cause multiple components fault at

the same time [12]. Due to the limitation of repair crews

and resources, those damaged components cannot be

repaired at the same time. Obviously, the sequence of the

repair will influence the restoration time so that the

importance of the components should be evaluated. The

component importance assessment can provide an efficient

repair scheme.

There have been some preliminary research results

about the problem. Firstly, probabilistic models such as the

occurrence, intensity and moving speed of wind storms are

established in [13], and then the component failure model

under wind storms is introduced. Reference [14] puts for-

ward a component failure model using quadratic approxi-

mation and exponential fitting. Those studies lay the

foundation for the acquiring system states. When it comes

to component importance assessment, most researches

focus on the reliability fields which consider the typical

outages. However, the component importance assessment

based on resilience is seldom considered. When extreme

events happen, qualitative repair strategies are often

adopted in practice such as the nearest restoration strategy,

the strategy based on the capacity, etc [15]. But the qual-

itative strategy cannot guarantee the best result. Aiming at

the restoration after the disaster, [16] proposes a post-dis-

aster restoration model based on a joint optimization of

repair crew and DG dispatching. The proposed model is

validated to be effective in distribution network. Reference

[17] puts forward a service restoration model with mixed-

integer second-order cone programming. However, these

restoration optimization models may take a long time to

solve, and should be defined as an offline analysis. Based

on the offline optimization, the importance ranking of

components can be obtained and used further to quickly

figure out restoration strategies to improve the resilience of

power system when facing a sudden disaster. Reference

[18] proposes a component importance measure based on

Copeland ranking method for critical infrastructure net-

works. However, the effects of specific disasters such as

wind storms, and restoration optimization considering the

repair crew dispatch are not included in the ranking

process.

Therefore, a component importance assessment

approach of power systems for improving resilience under

wind storms is proposed in this paper. The approach can

provide a component importance ranking method to

improve resilience for power systems in advance, so that an

optimal restoration strategy can be quickly acquired with-

out long-time calculation when the disasters happen.

Extensive case studies are conducted on IEEE standard test

systems to validate the proposed approach, and several

comparisons are carried out to illustrate the feasibility of

the approach. The major contributions of this paper are as

follows.

1) Aiming at improving the resilience, an optimal

restoration model considering the repair crew dispatch

based on the complex network theory is established.

And the calculation results with different locations of

the repair depot can give designers meaningful refer-

ence in the planning perspective.

2) The component importance ranking result can be

obtained with the resilience-based assessment

approach presented in this paper.

3) The model presented in this paper can provide a

quantitative restoration strategy which has a compro-

mise effect between resilience improvement and

calculation efficiency.

This paper is organized as follows: Section 2 describes

the component importance assessment of power systems

based on resilience. The case studies are discussed in

Section 3, and the conclusion is presented in Section 4.

2 Component importance assessment of power
systems based on resilience

As mentioned above, the proposed component impor-

tance assessment approach of power systems for improving

resilience under wind storms can be illustrated in Fig. 1.

The proposed approach includes two stages: ranking

result can be obtained offline at pre-disaster stage, so that

an optimal restoration strategy can be acquired easily and

immediately at restoration stage. The main procedure of

the proposed approach is presented as follows.
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2.1 Power systems resilience

The whole process of a wind storm affecting a power

system is usually divided into 3 stages: pre-disaster stage,

during-disaster stage, and post-disaster stage. A quantifi-

able and time-dependent system performance function F(t)

is used to analyze the whole process [18]. As shown in

Fig. 2, before time te the system is in normal operation, and

at time te the system encounters the disaster so that the

system performance begins to deteriorate. At time td, the

system performance reaches its minimum. The restoration

process starts at time ts and ends at time tf , at which time

the system reaches a new level Fðtf Þ. Fðtf Þ can be the

same, close to or better than the original system perfor-

mance Fðt0Þ. FnðtÞ is a curve which denotes the system

performance if there is no disaster. Due to the outside

disturbance, it is supposed to be time-dependent. In order

to simplify the problem, it is assumed to be constant and

equal to the system performance before the disaster, i.e.,

FnðtÞ � Fðt0Þ.
Fðt0Þ � FðtdÞ denotes the maximum performance loss

when the disaster happens. FðtÞ � FðtdÞ denotes the per-

formance which has been recovered at time t. Their ratio

represents the recovered percentage of the system perfor-

mance at time t. We define RðtÞ as the system resilience at

time t. RðtÞ represents the cumulate percentage of the

restored performance, which equals to the ratio of S1 to

S1 þ S2 as shown in Fig. 3.

RðtÞ ¼ S1

S1 þ S2
¼
Z t

ts

pðtÞdt ¼
Z t

ts

FðtÞ � FðtdÞ
Fðt0Þ � FðtdÞ

dt ð1Þ

Natural disasters and man-made attacks usually impact

on multiple components, and there will be different

restoration schemes. This paper focuses on the effect of

component restoration sequence on the restoration process.

In order to guarantee the highest restoration efficiency and

the best restoration result during the whole restoration

process, the restoration scheme should maximize the

resilience, that is, to make the area of S1 as large as

possible in the restoration process. This can be achieved by

optimizing the restoration process, which will be

introduced in Section 2.3.

2.2 Component failure rate model and system state

simulation under wind storms

In order to accurately simulate the restoration process,

we need to model the impact of wind storms on the system

state by cooperating the storm speed with the failure rate

[19].

2.2.1 Component failure rate model under wind storms

During a wind storm, as the pressure on trees increases,

trees are more likely to fall on the overhead lines and

damage the lines. Besides, the friction between the tower

and wind, the lines and wind will increase, which will

directly cause the tower and the lines to fall down or to

contact other objects. Therefore, the wind could have large

effect on the transmission line failure rate. The exponential

fitting method to model the component failure rates under

the wind storms is adopted [14]:

kwindðwðtÞÞ ¼ ðc1ec2wðtÞ � c3Þknorm ð2Þ

where wðtÞ is the wind speed at time t; kwindðwðtÞÞ is the

failure rate of components under the wind speed of wðtÞ;

Component failure rate model 
and system state simulation 

under wind storms

Optimal restoration strategy model

Rank the component importance
Repair the broken 

components

Acquire the failure 
configuration

Pre-disaster stage: offline 
optimization and importance 

ranking
Restoration stage according

to component importance

Ranking result

Fig. 1 Whole process of the assessment

Fig. 2 System performance during the disaster

Fig. 3 Resilience at different time
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knorm is the failure rate of components in normal condition;

and c1; c2; c3 are the fitting coefficient.

After the extreme wind storms, we can obtain the failure

information via supervisory control and data acquisition

(SCADA) and climate data via the weather station. With

those data, the curve representing the relationship between

failure rate and wind speed can be drawn. The parameters

in (2) can be obtained by fitting the curve. Figure 4 shows

the relation between the component failure rate and the

wind speed [14]. When the wind speed is under a specific

wind speed, the component failure rate under wind storms

almost equals to the component failure rate in normal

condition, whereas when the wind speed is over that

specific wind speed, the effect of the wind speed on the

component failure rate cannot be ignored. Define that

specific wind speed as critical wind speed and assume that,

when the wind speed is under the critical wind speed, the

component failure rate is immune. According to Fig. 4 and

[14], the critical wind speed wcrit ¼ 8 m/s, c1 ¼ 0:21,

c2 ¼ 0:49, c3 ¼ 9:83. With (2) and the parameters, the

failure rate under certain wind speed can be calculated.

The relation between the failure rate and failure proba-

bility [20] is:

pij ¼ 1� ekijTy ð3Þ

where pij is the failure probability of component ði; jÞ, kij is
the failure rate of component ði; jÞ; and Ty is the time

related to the failure rates.

2.2.2 System state simulation based on Monte Carlo

simulation

Monte Carlo simulation is a mathematical experiment

method based on probability and stochastic theory [21]. It

is widely used in the reliability and resilience research of

the power systems, and the detail information can be found

in [10, 22–24]. In this paper, non-sequential Monte Carlo

simulation method is adopted to sample power system state

under wind storms.

Binary-variable siðtÞ is defined as the state of component

i at time t, siðtÞ ¼ 1 if component i works well at time t,

otherwise siðtÞ ¼ 0. Firstly, for each sample, the state of

each component i at the beginning of restoration process

(for simplicity, the start time of the restoration process is

set to 0) can be determined by:

sið0Þ ¼
1 if randi [ pi
0 if randi � pi

�
ð4Þ

where sið0Þ ¼ 1 means component i works well at the

beginning of restoration process, whereas sið0Þ ¼ 0 means

component i is damaged at the beginning of restoration

process; randi is a random number obeying uniform dis-

tribution generated for each sampling of component i; pi is

the failure probability of component i and it can be derived

according to the failure rate in (2) under a certain wind

speed. Thus, Sð0Þ ¼ s1ð0Þ; s2ð0Þ; . . .; snð0Þð Þ which denotes

a state of a power system with n components at the

beginning of the restoration process can be determined.

2.3 Optimal restoration strategy model based

on maximum resilience

In this section, optimal restoration strategy model based

on complex network theory will be introduced [25].

Complex network theory is an effective tool to study

topological and kinetic properties of network [25]. Power

systems and the net of the complex network theory have

many things in common: � the buses and connecting

components of a power system correspond to the vertex

and the arcs of the network, respectively; ` the power

flows correspond to the flow in the network, and the

transmission limitation of each component in power sys-

tems corresponds to the capacity limitation in the network.

Therefore, in this paper, power systems are abstracted into

a network in complex network theory.

In this paper, a network GðV ;EÞ is considered, where V
is the set of vertex and E is the set of components. The

vertex in the network are divided into three kinds: gener-

ator node VS, transmission node VT and demand node VD.

PC
ij is the transmission capacity of the component ði; jÞ 2 E,

PS
i is the maximum power generated by the generator node

i 2 VS, P
D
j is the demand of demand node j 2 VD. The

power is transmitted from the generator nodes to all the

demand nodes and the power flow has to obey the physical

constraints of the network.

Fig. 4 Failure rate as a function of maximum mean wind speed

(maximum value among mean wind speed of different periods)
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2.3.1 Objective function

When the disaster happens, the damaged components

form a set E0 � E. In this paper, these components in E0 are
assumed to be damaged immediately after the disaster

happens. The system performance reaches its minimum

Fmin at this time. The restoration process will start at t ¼ ts
(for simplification set ts ¼ 0, so Fð0Þ ¼ Fmin). We define

the sum of the power flows to the demand nodes as the

system performance:

FðtÞ ¼
X
j2VD

fjðtÞ ð5Þ

where fjðtÞ is the power flow received by the demand node j

at time t.

The objective of this model is to find out the repair

sequence of fault components which can enable the system

to obtain the maximum resilience during the restoration

process. Assuming that the whole restoration process is a

time-discrete process (t ¼ 1; 2; . . .; T), and the value of

time unit is determined by the practical demand. At each

time unit, the repair crew can only repair a component or

travel from one component to another. According to (1)

and (5), we have:

RðtÞ ¼

PT
t¼1

P
j2VD

fjðtÞ � Fmin

 !

T
P
j2VD

PD
j � Fmin

 ! ð6Þ

where
P
j2VD

PD
j is the normal system performance.

In order to obtain the maximum resilience, the objective

function is determined as:

max

PT
t¼1

P
j2VD

fjðtÞ � FðtdÞ
 !

T
P
j2VD

PD
j � FðtdÞ

 ! ð7Þ

2.3.2 Constraints

In this model, constraints include component state,

network capacity and crew travel distance.

1) Component state constraint

A two-state component model is adopted in this paper:

sijðtÞ 2 ½0; 1�, t ¼ 1; 2; . . .; T . It shows the state of the

component ði; jÞ 2 E at time t. The constraint conditions

related to the state in [17] are:

sijðtÞ 2 f0; 1g 8ði; jÞ 2 E ð8Þ

sijðtÞ� sijðt þ 1Þ 8ði; jÞ 2 E ð9Þ

sijð0Þ ¼ 0 8ði; jÞ 2 E
0 ð10Þ

Equation (8) shows that sijðtÞ is a binary variable; (9)

shows that the component will remain in operation once it

is repaired; (10) shows that every component in E0 is

damaged at the beginning of the restoration process.

2) Network capacity constraint

The constraints related to the capacities of nodes and

components are:X
j2Vi

fijðtÞ �
X
j2Vi

fjiðtÞ�PS
i 8i 2 VS ð11Þ

X
j2Vi

fijðtÞ �
X
j2Vi

fjiðtÞ ¼ 0 8i 2 VT ð12Þ

X
j2Vi

fijðtÞ �
X
j2Vi

fjiðtÞ ¼ �fjðtÞ 8i 2 VD ð13Þ

0� fjðtÞ�PD
j 8i 2 VD ð14Þ

0� fijðtÞ� sijðtÞPC
ij 8ði; jÞ 2 E ð15Þ

where continuous variable fjðtÞ 2 Rþ is the power flow

received by demand node j at time t; continuous variable

fijðtÞ 2 Rþ is the power flow transmitted from node i to j at

time t; and Vi denotes the node connected to the node i.

Equations (11)–(13) are the typical constraints of gen-

erator nodes, transmission nodes, and demand nodes: (11)

shows the power generated by the generator nodes cannot

exceed the maximum capacities; (12) and (13) are the

energy balance constraints; (14) shows that the real sup-

plied power to the demand node cannot exceed its demand;

(15) limits the power flow transmitted through a

component.

3) Crew travel distance constraint

After the disaster, the repair crew from depots will come

to repair the broken components [16]. To make the com-

ponent importance assessment result more convincing, we

take the repair crew travel distance into consideration. The

resilience in this paper is related to the whole restoration

process so that we can not only consider the contribution of

the component. If we first repair the component which has

large contributions to the system but is far away from the

depot, we may obtain less resilience in the whole process.

Therefore, the time that it takes the repair crew to travel

between two broken components in the restoration process

is considered. Assume that the repair crew start from a

depot. The constraints related to the distance and travel

time are:
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X
n2E0;m2E0

xm;n ¼ 1 ð16Þ

X
n2E0;m2E0

xn;m ¼ 1 ð17Þ

tarrm þ trem þ ttrm;n � tarrn ¼ ð1� xm;nÞM
8m 2 E0 [ fdepg; 8n 2 E0 ð18Þ

tarrdep ¼ 0 ð19Þ

XT
t¼1

fm;t ¼ 1 8m 2 E0 ð20Þ

XT
t¼1

tfm;t ¼ tarrm þ trem 8m 2 E0 ð21Þ

smðtÞ ¼
Xt
s¼1

fm;s 8 2 E0 ð22Þ

where the binary variable xm;n 2 ½0; 1� denotes whether the
repair crew travel from component m to component n. If

the repair crew travel from m to n, xm;n ¼ 1 or 0; M is a

large number; dep denotes the depot; tarrdep denotes the

moment when the repair crew arrive at depot; discrete

variable tarrm 2 ½1; 2; . . .; T � denotes the moment the repair

crew arrive at the component m; binary variable smðtÞ
denotes the state of component m at time t; binary variable

fm;t 2 ½0; 1� denotes whether component m is repaired or not

at time t; trem represents how long it takes when the repair

crew repair the component; and ttrm;n denotes how long it

takes when the repair crew travel from m to n.

Equations (16) and (17) show that the repair crew can

only arrive at one component once and leave from it once.

Equation (18) makes sure the route for the repair crew is

successive. The repair crew will spend trem repairing the

component after they arrive at m, and then they will also

spend ttrm;n arriving at n. Big-M method guarantees that the

route is successive because if the route is not successive,

there must be at least xm;n ¼ 0 which will lead to huge tarrn .

When tarrn is huge, the solution cannot be the optimal

solution. Equation (19) shows that repair crew leave from

depot at the beginning of the process. Equation (20) shows

that every broken component can only be repaired once.

Equation (21) establishes the relation between fm;t and tarrm .

Equation (22) shows that the component works well after it

is repaired.

The moment when the broken component m is repaired

is denoted as Tm and it can be calculated by:

Tm ¼ tarrm þ trem ¼
XT
t¼0

ð1� sijðtÞÞ m 2 E0 ð23Þ

The model presented above is a mixed integer linear

programming (MILP) problem, and the Gurobi

optimization solver is employed in this paper to solve it.

2.4 Copeland ranking

The cumulative distribution function (CDF) of the repair

moment of each component can be obtained by solving the

MILP problem for each sampled failure configuration. In

order to rank the importance of the components, the

Copeland ranking method is introduced. Copeland ranking

is a non-parametric Condorcet method which is usually

used in politics field. This method does not require much

information about the data, and operates on a candidate

pool in which every object has X characteristics. By doing

pair-wise comparisons between objects in different X
characteristics in the candidate pool, the scores of all the

candidates can be calculated, and the candidates can be

ranked based on this score. A modified Copeland method

which can be used to rank the CDFs presented in [26] is

adopted in this paper. Define the percentiles of the CDF as

the X characteristics, so the Copeland scores (Sm) of

component m can be obtained:

Sm;n;k ¼
Sm;n;k�1 þ 1 if qkðmÞ � qkðnÞ
Sm;n;k�1 þ 0:5 if qkðmÞ ¼ qkðnÞ
Sm;n;k�1 if qkðmÞ � qkðnÞ

8<
: ð24Þ

Sm ¼
X

n2E0;m2E0
Sm;n;X ð25Þ

where qkðmÞ is the kth percentile of the CDF of the repair

moment of component m; Sm;n;k is the Copeland score after

the kth comparison between m and n,

8m; n 2 E0; k ¼ 1; 2; . . .;X; and Sm is the Copeland score

of the component m. The symbol ‘‘�’’ represents ‘‘better

than’’ and in this case, ‘‘better than’’ means ‘‘earlier than’’;

and the symbol ‘‘�’’ represents ‘‘later than’’ in this case.

2.5 Detailed procedures of the approach

To sum up, the detailed procedure of the component

importance assessment approach is shown in Fig. 5.

1) Initialize the parameters of network GðV ;EÞ: the

demand of the demand nodes PD
j , the maximum

generating power of the generator nodes PS
i , the

transmission capacity of the components PC
ij , the repair

time of the component ði; jÞ 2 E (treij ), the travel time

trm;n between m and n, and the location of the depot.

2) Use Monte Carlo simulation method to sample the

failure configuration. When disaster scenarios are

considered, too many damaged components will make

the ranking meaningless, whereas too few damaged

components cannot give us a creditable ranking result.
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Therefore, in this paper, we consider the scenario

where 8–10 components fail at the same time. Once an

appropriate disaster scenario is generated, set the states

of the damaged components to zero.

3) Solve the MILP problem by Gurobi to obtain the best

restoration sequence, and record the repair moment of

each component.

4) Repeat the above process N times, and obtain the CDF

of the repair moment of each component.

5) Use Copeland ranking method to rank the importance

of the component. According to the result of the

Copeland ranking, the component importance ranking

result is obtained.

3 Case studies

The proposed resilience-based component importance

assessment approach is conducted on two test systems:

IEEE 14-bus system and IEEE RTS 24-bus system.

3.1 IEEE 14-bus system

The IEEE 14-bus system, which contains 14 nodes and

20 lines, is converted into a topological network consisting

of nodes and edges, as shown in Fig. 6. Nodes are divided

into three types: generator nodes, demand nodes, and

transmission nodes. The strategy and time of the repair

crew travel are affected by the distance between compo-

nents. As shown in Fig. 6, the entire IEEE 14-bus network

is divided into six regions. The distance between two

adjacent areas is defined as one distance unit. Here, the

travel time of the repair crew between two components is

defined as follows:

1) Moving within the same region does not take time.

2) Moving between areas with one distance unit (e.g.

region 1 and region 2) costs one time unit.

3) Moving between regions with two distance units (e.g.

region 1 and region 5) or
ffiffiffi
2

p
distance units (e.g. region

1 and region 4) costs 2 time units.

4) Moving between regions with
ffiffiffi
5

p
distances units (e.g.

region 1 and region 6) costs 3 time units.

Assuming the system is operating normally, its param-

eters are shown in Table 1. The value of power unit is

determined by the practical demand. The location of the

depot is set at region 2. The failure rate data come from

[14]. The resilience-based component importance assess-

ment approach proposed in the Section 2 is applied in this

system.

Start

Initialize the parameters of the given network

Use Monte Carlo simulation to sample 
the failure configuration

If the number of 
failure is available?

Initialize the state of the components

Solve the MILP problem via Gorubi

Does the iteration 
terminate? 

Rank the components via Copeland ranking method

End

N

Y

N

Y

Fig. 5 Algorithm flow chart

Fig. 6 Abstract topological network of IEEE 14-bus system

Table 1 Initial parameters for IEEE 14-bus system

Parameter Symbol Value (units)

Capacity of generator node PS
i

16

Demand of demand node PD
j

10

Capacity of transmission node PC
ij

16
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After a number of simulations (1000 times in this

paper), CDF of the repair moment of 20 components can be

obtained. Figure 7 shows the CDF of the repair moments of

five representative components. It can be seen that the

repair time of component\6, 11[(the line between node 6

and node 11) is always smaller than 8, and the repair time

of component \4, 7[ will always be greater than 12.

Obviously, the component\6, 11[ can be considered as

more important than the component\4, 7[, because with

component\6, 11[being repaired earlier than component

\4, 7[, the system will obtain a larger resilience value.

However, not all the relative importance of the com-

ponents can be judged so intuitively. For example, the

importance relationship between the components\6, 12[
and the components\6, 13[is difficult to judge since their

distribution functions intersect. Therefore, Copland ranking

method can be adopted to rank the importance of these

kinds of components. Figure 8 shows the Copland score of

each component in the IEEE 14-bus system.

It can be seen from Fig. 8 that element\3, 4[ has the

highest Copland score, while element \4, 7[ has the

lowest Copland score. There are two types of components

with higher scores: � components connecting two areas

e.g. \4, 9[, \5, 6[, \7, 9[; ` demand nodes and

generator nodes that are close to the depots e.g.\3, 4[,\6,

11[. There are two types of components that have lower

scores: � components between generator nodes e.g. \1,

2[,\2, 3[; ` there are multiple components between two

nodes. Then these components have lower scores e.g.\2,

4[,\2, 5[. Components with high Copland score should

have a higher priority in the restoration process, which can

make the entire restoration process more efficient.

3.2 IEEE RTS 24-bus system

The IEEE RTS 24-bus system, which includes 24 nodes

and 34 lines, is used as a test example at this section to

illustrate the superiority of the proposed method. Similarly,

the test system is converted into a topological network

consisting of nodes and edges, as shown in Fig. 9.

Assuming that the system is operating normally, its

parameters are shown in Table 2. The location of the depot

is set in region 4.

3.2.1 Effect of different locations of the depot

To illustrate the effect of different locations of the depot

on the component importance assessment result, we com-

pare the component importance ranking results when depot

is set in region 4 and region 2.

This paper concentrates on the resilience improvement

and component importance assessment in the operational

perspective while the location of the crew depot is more

Fig. 7 CDF of repair moment of five representative components

Fig. 8 Results of Copeland ranking method in IEEE 14-bus system Fig. 9 Abstract topological network of IEEE RTS 24-bus system
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related to the planning perspective. As shown in Figs. 10

and 11, the most important component is\11, 14[when

the depot is in region 4 while it is\19, 20[when the depot

is in region 2. Almost all components’ importance change

when the location of the depot change. Conclusions can

still be drawn that: � different depot locations will have

effect on the component importance ranking result; ` with

the approach proposed in this paper, a meaningful planning

reference can be provided for the designers because dif-

ferent repair sequence will lead to different load shedding.

3.2.2 Optimal restoration strategy, nearest restoration

strategy and offline optimization strategy

In the optimal restoration strategy, we can obtain the

strategy which can make the resilience of the power

systems maximal. But this strategy may take long time to

solve, which may lead to a long-time blackout. In the

offline optimization strategy, we use the strategy which is

obtained with the offline component importance assess-

ment. Although the resilience of the power systems may

cannot reach its maximum, we can save much time and

start the restoration process in time. In the nearest

restoration strategy, the faulty component closest to the

depot is repaired first, but this repair strategy does not

consider the load shedding and the repair time in the entire

restoration process. To illustrate the feasibility of offline

optimization strategy, the load shedding and repair time for

the three strategies are compared.

In this case study, the Monte Carlo simulation method is

used to generate another set of fault scenarios where the

three restoration strategies are adopted.

The CDFs of the load shedding and the time of repair

process are shown in Fig. 12. The expected value of load

shed and the expected time of repair time for the three

strategies are shown in Table 3. From Table 3, we can see

that using the optimal restoration strategy and offline

optimization strategy for restoration can significantly

reduce the load shedding and time of restoration process.

Compared with the offline optimization strategy, optimal

restoration strategy can slightly reduce the load shedding

and the repair time but take much more time. So, using the

offline optimization strategy can significantly reduce the

load shedding and the repair time while taking much less

time, which can be adopted in the practical restoration

process.

Fig. 10 Results of Copeland ranking method when depot is in region

4

Fig. 11 Results of Copeland ranking method when depot is in region

2

Fig. 12 CDFs of load shedding in whole restoration process and

CDFs of restoration time for three strategies

Table 2 Initial parameters for IEEE RTS 24-bus system

Node Symbol Value (units)

Capacity of the generator node PS
i

9

Demand of the demand node PD
j

11

Capacity of the transmission node PC
ij

18
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3.2.3 Expectation ranking and Copland ranking

Once the ranking of the components is obtained, if a

disaster happens, the system operators can schedule the

repair crew to the damaged components according to the

ranking sequence. Those components with a higher ranking

score will be repaired earlier. These strategies can be

implemented in an online fashion.

In this section, we would like to test another ranking

method. After obtaining the CDF of the restoration moment

of each component, the expected moment of each com-

ponent being repaired can be obtained, and then the com-

ponents can be ranked according to the expected repair

moments.

The differences between the two ranking methods are

compared in this section. The importance ranking results of

the two ranking methods are shown in Fig. 13. Then the

Monte Carlo simulation method is used for sampling a new

set of disasters, the system is restored according to the two

ranking sequences respectively, and the load shedding and

repair time are calculated. The CDFs of load shedding are

shown in Fig. 14. The expected value of load shedding is

244.2700 units when the Copland ranking sequence is used.

The expected value of load shedding is 263.9300 units

when the expectation ranking sequence is used. The results

show that the load shedding using Copeland ranking

sequence is less than the load shedding using the expec-

tation ranking method (not by a significant order). This

indicates that both two methods can be adopted, but the

Copeland ranking method promises better performance.

4 Conclusion

This paper puts forward a component importance

assessment approach of power systems based on resilience

under wind storms. Its advantage is that both the resilience

and the repair crew dispatch are considered. At every

simulation process, we solve a MILP and after a number of

times simulation processes, the cumulative distribution

function of repair moment of each component is obtained.

Then the Copeland ranking method is used to rank the

components.

Several conclusions can be drawn: � the proposed off-

line optimization strategy based on the component impor-

tance assessment has a compromise effect between

resilience improvement and calculation efficiency; ` the

result of Copeland ranking method is slightly better than

expectation ranking method; ´ the component importance

Fig. 13 Ranking results using different ranking methods

Table 3 Expected value of load shedding and restoration time

Strategy Expected value of load shedding

(units)

Expected value of restoration time (units)

Nearest restoration strategy 194.8940 10.9860

Optimal restoration strategy 102.9700 6.8600

Offline optimization strategy 120.6760 8.4880

Fig. 14 CDFs of load shedding in the whole restoration time using

different ranking methods
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assessment approach under wind storms can give a prac-

tical and effective restoration strategy reference and a

meaningful planning reference. In the future, more actual

factors such as the start–stop of generators and specific

time dimension should be considered when assessing

component importance.
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