
Distributionally robust optimization model of active distribution
network considering uncertainties of source and load

Lei DONG1, Jia LI1, Tianjiao PU2, Naishi CHEN2

Abstract To ensure the safety and reliability of the dis-

tribution network and adapt to the uncertain development

of renewable energy sources and loads, a two-stage dis-

tributionally robust optimization model is proposed for the

active distribution network (ADN) optimization problem

considering the uncertainties of the source and load in this

paper. By establishing an ambiguity set to capture the

uncertainties of the photovoltaic (PV) power, wind power

and load, the piecewise-linear function and auxiliary

parameters are introduced to help characterize the proba-

bility distribution of uncertain variables. The optimization

goal of the model is to minimize the total expected cost

under the worst-case distribution in the ambiguity set. The

first-stage expected cost is obtained based on the predicted

value of the uncertainty variable. The second-stage

expected cost is based on the actual value of the uncer-

tainty variable to solve the first-stage decision. The gen-

eralized linear decision rule approximates the two-stage

optimization model, and the affine function is introduced to

provide a closer approximation to the second-stage opti-

mization model. Finally, the improved IEEE 33-node and

IEEE 118-node systems are simulated and analyzed with

deterministic methods, stochastic programming, and robust

optimization methods to verify the feasibility and superi-

ority of the proposed model and algorithm.

Keywords Active distribution network (ADN), Source–

load uncertainty, Two-stage distributionally robust

optimization, Ambiguity set, Generalized linear decision

rule

1 Introduction

As renewable energy, which is based on photovoltaic

(PV) and wind turbine (WT) power, increasingly penetrates

the distribution network [1, 2], its uncertainty and volatility

bring great challenges to the optimal operation of the dis-

tribution network [3, 4]. The traditional deterministic

optimization method is no longer suitable [5], and the

uncertainty optimization method is created. To ensure the

safety and reliability of the distribution network operation

[6, 7] and to adapt to the uncertain development of

renewable energy sources and loads, this study considers

the optimal scheduling problem of the active distribution

network (ADN), considering the uncertainties of the source

and load.

Renewable distributed energy accesses the distribution

network in large quantities, increasing the uncertainty

factor and enriching the schedulable resources of the dis-

tribution network. The optimal dispatching model of an

ADN with a distributed power supply and the optimal

scheduling model of a traditional distribution network have
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changed greatly in optimization methods, optimization

objectives, control variables and selection of grid con-

straints [8]. The traditional deterministic optimization

method is no longer applicable, and the scheduling model

shifts from deterministic to uncertain. The deterministic

optimization method considers the predicted value of PV

and WT power output to be a certain value, and the error

between the actual and predicted values results in insuffi-

cient or excess distribution network power, which is

compensated by the spare capacity in the system [9]. At

present, when solving the problem of optimal scheduling of

distribution networks with uncertainty in existing research,

two kinds of uncertainty optimization methods are usually

used: stochastic programming and robust optimization.

The stochastic programming method optimizes the

confidence level of a given constraint to the target expected

value, which is necessary to obtain accurate probability

distribution data. The method has large scale and high cost

of calculation. Because it is necessary to obtain a deter-

ministic probability distribution, which may lead to inac-

curacy, these models cannot reflect the actual situation

[10, 11]. Reference [12] adopts the Monte Carlo test

method to consider the uncertainty of PV output, WT

output, and load power, generate scenarios and corre-

sponding probabilities, and use the mixed-integer linear

programming method to solve the model. Two-stage

stochastic optimization models are proposed in [13, 14].

Compared to the stochastic programming approach,

robust optimization [15] does not need to explicitly know

the probability distribution of random variables; it only

needs to obtain the range of the random variables. How-

ever, this method does not make full use of the available

probability statistics, and thus, the resulting solution is too

conservative [16, 17]. In recent years, two-stage robust

optimization models and multi-stage robust optimization

models have been introduced and studied, also called

robust or adaptive optimization [18, 19]. Due to the

improved modeling capabilities, the two-stage robust

optimization method has become a popular decision-mak-

ing tool for power system scheduling problems.

In practical problems, both risk and ambiguity should be

considered when modeling an optimization problem under

uncertainty. To solve the shortcomings of the stochastic

programming and robust optimization methods, the two

methods are organically combined to obtain a distribu-

tionally robust optimization method [20–22]. Scarf finds

that the precise demand distribution is unknown but is

characterized by its mean and variance. In recent years,

many more studies have been conducted [23, 24]. Unfor-

tunately, such problems are typically computationally

intractable [25, 26]. To circumvent the intractability, an

approach known as the linear decision rule is used.

However, it has rarely been applied and changed in power

system.

This paper establishes an ADN scheduling model that

considers the uncertainties of the source and load based on

a distributionally robust optimization method, and intro-

duces an ambiguity set to capture the uncertainties of

renewable energy outputs and load. It uses the generalized

linear decision rule to approximate the two-stage model

strictly to reduce the conservativeness of the optimal

solution obtained by the robust optimization method.

Finally, the simulations are performed on the improved

IEEE 33-node and IEEE 118-node systems for comparison

with the deterministic, stochastic programming, and robust

optimization methods to verify the validity and superiority

of the proposed model and method.

2 Two-stage distributionally robust optimization
approach

The uncertain random variables involved in this paper

include the PV output, WT output, and fluctuating load.

Because there is a certain error between the predicted value

and actual value, the random variable v is set to represent

the prediction error of PV output, WT output, and load

power at each time t. This paper combines the advantages

of stochastic programming and traditional robust opti-

mization approaches. It also proposes a two-stage distri-

butionally robust optimization approach by introducing the

probability distribution information of uncertain random

variable v into an ambiguity set F to find the optimal

solution under the worst-case distribution conditions to

obtain a min–max problem. The model is as follows.

Equation (1) represents a two-stage distributionally robust

model.

min
x

C1ðx1Þ þmax
P2F

E½Qðx2; vÞ� ð1Þ

Qðx1Þ ¼ minC1ðx1Þ ð2Þ

Ax1 � b x1 2 RN1 ð3Þ
Qðx2; vÞ ¼ minC2ðx2; vÞ ð4Þ

Tx1 þWx2 � hðvÞ x2 2 RN2 ð5Þ

where x1 and x2 are the decision variables of the first stage

and second stage, respectively; E[Q(x2,v)] is the expected

value of the minimum value of the second-stage cost

Q(x2,v); P is the probability distribution of the random

variable v; F is the ambiguity set representing the distri-

bution information of the random variable v. In (2) and (4),

C1(x1) and C2(x2,v) are the cost functions of the first stage

and second stage, respectively. The inequality constraints

of first stage and second stage are represented in (3) and
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(5), respectively. Matrix A 2 RM1�N1 , T 2 RM2�N1 , and

W 2 RM2�N2 where N1 and N2 represent the set of decision

variables of the first stage and second stage, respectively;

and M1 and M2 represent the set of constraints of the first

stage and second stage, respectively.

From (5), it can be seen that the function h(v) changes

with variation in the random variable v and is expressed by

the affine function of (6).

hðvÞ ¼ h0 þ
X

s2S
hvsvs ð6Þ

where S is the set of all random variables v; and hvs 2 RM2

and h0 2 RM2 are constants.

3 Two-stage distributionally robust optimization
model for ADN

3.1 Objective function

The objective function of the two-stage distributionally

robust optimization model of the ADN is used to minimize

the total expected cost and construct the model (1). This

paper does not consider the distribution network reconfig-

uration and assumes local reactive power compensation.

The first-stage optimization model can be seen in (7).

The actual values of the uncertain random variable v (e.g.

WT, PV and load outputs) of ADN are unknown in the

first-stage, they can be obtained by prediction. The decision

variable x1 is represented as the active power of all kinds of

controllable distributed power sources and flexible loads.

Furthermore, the first-stage cost can be expressed as the

sum of operating costs of schedulable distributed energy

resources (DERs), such as microturbines (MTs) CMT,

energy storage systems (ESSs) CESS, and flexible loads

(FLs) CFL; main grid purchase cost CTR; and line loss cost

of the ADN CLoss.

C1ðx1Þ ¼
XNT

t¼1

ðCLoss
t þ CTR

t þ CMT
t þ CESS

t þ CFL
t Þ ð7Þ

where NT is the set of time periods.

The second-stage optimization model can be seen in (8).

In the second stage, the actual input values of random

variable v are known, which takes the deviation to the

predicted value. The decision variable x2 is expressed as

the active output of PV, WT, and load reduction. In (8), DG

represents the PV and WT units, and the second-stage cost

is set to the sum of the DG cut-down penalty cost CDG and

load loss cost CL.

C2ðx2Þ ¼
XNT

t¼1

ðCDG
t þ CL

t Þ ð8Þ

3.2 Constraints

1) Equality constraints

The common power flow equations are as follows.

Pj;t ¼
X

k2d jð Þ
Pjk;t �

X

i2p jð Þ
Pij;t � I2ij;trij

� �

Qj;t ¼
X

k2d jð Þ
Qjk;t �

X

i2p jð Þ
Qij;t � I2ij;txij

� �

V2
j;t ¼ V2

i;t � 2 Pij;trij þ Qij;txij
� �

þ I2ij;t r2ij þ x2ij

� �

P2
ij;t þ Q2

ij;t

V2
j;t

¼ I2ij;t

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

8j 2 B; 8ij 2 E

ð9Þ

Pi;t ¼ PMT
i;t þ PTR

i;t þ PPV
i;t þ PWT

i;t þ PBc
i;t � PBd

i;t

� �
� PL

i;t

ð10Þ

where Pj;t and Qj;t are the injecting active power and

reactive power at bus j at time t, respectively; B and E are

the sets of all buses and lines, respectively; d jð Þ and p jð Þ
are the sets of all end and head branch nodes, respectively;

Pij;t and Qij;t are the active power and reactive power from i

to j at time t, respectively; rij and xij are the line resistance

and reactance; Iij,t is the line current at time t; Vj;t is the

node voltage at bus j at time t; PPV
i;t and PWT

i;t are the pre-

dicted active power outputs of the PV and WT units,

respectively; PBc
i;t and PBd

i;t are the charge and discharge

powers of the ESS, respectively; and PL
j;t is the load active

power.

2) Inequality constraints

Pmin
i �Pi;t �Pmax

i ð11Þ

DPdown
i;t �Pi;t � Pi;t�1 �DPup

i;t ð12Þ

where Pmax
i and Pmin

i are the upper and lower active power

constraints of schedulable DERs; and DPup
i;t and DPdown

i;t are

the upper and lower climbing limits of MT in the first

stage.

Equations (13)–(14) represent the PV, WT, and load-

reduction constraints in the second stage:

0�PPV
i;t �P

PV

i 8i 2 BPV

0�PWT
i;t �P

WT

i 8i 2 BWT

8
<

: ð13Þ

DPL
i;t �xcut

i;t P
L
i;t i 2 BL ð14Þ

where �PPV
i and �PWT

i are the upper limit values of PV and

WT generation, respectively; xcut
i;t is the upper limit value

of the active power ratio of the lost load, for which we use

0.1 in this paper.
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3) Other constraints

To reduce the influence of the randomness of the output

uncertain variables on the safe operation of the power grid,

the node-voltage and node-imbalance constraints are set.

Vi �Vi;t �Vi i 2 B ð15Þ

PTR
i �PTR

i;t �P
TR

i

QTR

i
�QTR

i;t �Q
TR

i

8
<

: i 2 BTR ð16Þ

where Vi and Vi are the maximum and minimum values of

voltage, respectively; P
TR

i and PTR
i are the maximum and

minimum values of active power, respectively; and Q
TR

i

and QTR
i

are the maximum and minimum values of reactive

power, respectively.

3.3 Model linearization

It can be seen from the above model that the nonlinear

term is contained in the constraint of (9), which is difficult

to solve effectively. In this section, the constraint is pro-

cessed by the second-order cone-relaxation (SOCR) tech-

nique [27, 28].

By the second-order cone-relaxation convex optimiza-

tion process, (9) is converted into an inequality constraint,

thereby eliminating the non-convexity of the original

equality constraint.

eIij;t ¼ I2ij;t and
~Vij;t ¼ V2

ij;t, thus:

P2
ij;t þ Q2

ij;t

V2
j;t

� I2ij;t 8ij 2 E ð17Þ

2Pij;t

2Qij;t

eIij;t � ~Vij;t

�������

�������
2

�eIij;t þ ~Vij;t 8t; 8ij 2 E ð18Þ

3.4 Model of uncertainty

The uncertainty set U of the distributionally robust

optimization method is the same as the definition of the

traditional robust optimization. The fluctuation range of

each random variable ~v is located in a polyhedral uncer-

tainty set U shown as follows.

U ¼ ~v :
~v ¼ ð~vPVr;t ; ~vWT

r;t ; ~v
L
r;tÞ 2 RjSj t 2 T

Vmin
r;t � ~vr;t �Vmax

r;t

8
<

:

9
=

;

~Pr;t ¼ �Pr;t þ ~vr;t

8
>>><

>>>:
ð19Þ

where ~Pr;t, �Pr;t, ~vr;t are the actually value, predicted value

and random variable, respectively; Vmin
r;t and Vmax

r;t are the

lower and upper bounds of each random variable ~v,

respectively; R is a set of all nodes of PV, WT units, and

volatility loads; S denotes all possible sets of scenarios; and

T is a set of all time periods within the operating range.

Unlike the traditional robust optimization (RO) method,

the distributionally robust optimization (DRO) method

introduces some probability distribution information (such

as covariance and moment [26–28]), which is easily

obtained. Nonlinear functions are usually used to charac-

terize the probability distribution information of the ran-

dom variable ~v. However, due to the large scale and high

cost of the nonlinear function calculation [29], we consider

using piecewise linear functions gk, defined as:

EPfgkð~vÞg ¼ EPfgj;r;tð~vÞg¼EPðmaxf~vr;t � Cj;r;t; 0gÞ� rj;r;t
K ¼ JRT 8r 2 R; 8j 2 J; 8t 2 T

(

ð20Þ

where the probability distribution information of each

random variable ~v is divided into j segments; J is a set of

segmentation marks that describe all probability distribu-

tions; K is a set of functions describing the distribution of

random variables; Cj,r,t is the cut-off constant of each

segment, and the expected value of the positive part of vr,t-

Cj,r,t is limited to below the constant rj;r;t. The value of

max
~v2U

gkð~vÞ under the worst-case distribution with the cor-

responding random variable v for each segment j can be

obtained by (18), which is a constant value.

F represents a set of distributions that contain the dis-

tribution P determined by the uncertainty variable v. Vari-

ous forms of distribution sets have been proposed. Bental

and Nemirovski [30] used the set P as a set containing a

single-point distribution on the ambiguity set. Shapiro [31]

considered the inclusion of a distribution set that satisfies

the given support constraints. Scarf [32] and Prekopa [33]

used some linear constraints on the properties of random

variables that are satisfied when constructing P.

In this paper, the following standardized framework has

been used. It is computationally attractive and may be able

to characterize the dispersion of ~v. The location of ~v can be

specified using the affine expectation constraint, whereas

the dispersion can be characterized by bounding the

expectation of convex functions over ~v.

Using the piecewise linear function to integrate the

probability distribution information P of each random

variable ~v into the ambiguity set F, the standardized

framework of the ambiguity set F that represents the dis-

tribution family is as follows:

F ¼ P 2 q0ðRSÞ :

~v 2 RS

EPf~vg ¼ 0

EPfgkð~vÞg� rk
Pf~v 2 Ug ¼ 1

8
>>><

>>>:

9
>>>=

>>>;
ð21Þ
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where q0ðRSÞ is the set of all probability distributions on

RS; EPf~vg ¼ 0 denotes the expected value of the random

variable ~v is zero, and the function is used to characterize

the probability distribution information of the random

variable v. Pf~v 2 Ug ¼ 1 indicates that all random vari-

ables v are in uncertainty set U.

Because the expected value EPfgkð~vÞg is difficult to

estimate directly in the ambiguity set F. In this section, we

introduce an auxiliary variable ~u (~u 2 RK) to limit the

upper bound of each piecewise function gk, and ~u is limited

by the worst-case max
~v2U

gkð~vÞ. Then, the original uncertainty

set U is expanded to set �U as follows.

�U ¼

ð~v; ~uÞ 2 RS � RK

v 2 U

gkðvÞ� uk

uk � max
v2U

gkðvÞ

8
>>>><

>>>>:

9
>>>>=

>>>>;

ð22Þ

From (22) above, we can see that the original

uncertainty set U is a set of second-order cone

polyhedrons in which a piecewise linear function gk is

introduced. Therefore, the extended uncertainty set �U can

be represented by a series of linear constraints, and its

matrix form is as follows:

�U ¼ fðv;uÞ 2 RS � RK : Cvþ Du� dg ð23Þ

At the same time, the original ambiguity set F is

expanded to G, where Q represents the joint probability

distribution of the random variable v and auxiliary variable

u. When the third constraint of the extended set G of (24) is

satisfied, the third constraint of the original ambiguity set F

corresponding to (19) also holds.

G ¼ Q 2 q0ðRS � RIÞ :

ð~v; ~uÞ 2 RS � RK

EQf~vg ¼ 0

EQf~ukg� rk
Qfð~v; ~uÞ 2 �Ug ¼ 1

8
>>><

>>>:

9
>>>=

>>>;
ð24Þ

This section constructs an ambiguity set F that

incorporates the probability distribution information of

random variables v. The auxiliary variable u is introduced

into the original ambiguity set F, which imposes a tighter

upper bound on the piecewise linear function gk; this not

only increases the flexibility of the linear decision rules,

but also helps to reduce the conservative degree of the

optimization solution.

3.5 Model transformation using generalized linear

decision rule

Based on the model of two-stage distributionally robust

optimization (1), we can find that the solution is an NP-

hard problem and the current solutions mainly use the

linear decision rule methods [24, 34]. In this section, a

generalized linear decision rule is used to approximate the

model and transform it into a tractable robust counterpart.

Compared with the traditional linear decision rule, it can

approximate the two-stage robust optimization problem

well and strictly obtain a slightly conservative and

tractable solution.

Replacing the affine function x2(v) based on random

variables v in the traditional linear decision rules. In this

section, using the extended ambiguity G and the general-

ized linear decision rule, we propose an affine function

x2(v, u) to encompass the random variables v and auxiliary

variables u as well. An upper bound of the affine functions

is as follows:

x2nðvÞ ¼ x02n þ
X

s2Sn
xv2nsvs 8n 2 N2 ð25Þ

x2nðv; uÞ ¼ x02n þ
X

s2Sn
xv2nsvsþ

X

k2Kn

xu2nkuk 8n 2 N2 ð26Þ

where Sn is a subset of random variables ~v; and Kn is a

subset of auxiliary variables ~u.

We can observe any function, x2 2 RM1�N2 satisfying (5)

would be an upper bound of QðxÞ, which is equivalent to

the following function:

x2ðvÞ 2 argmin dTx2 : Tx1 þWx2 � hðvÞg
�

ð27Þ

Equation (4) shows the set of all decision variables x2
and random variable v when the total expected cost of the

second stage is the minimum value.

For the new affine function x2(v, u), the original non-

linear model (1) is equivalent, and the approximate trans-

formation of Q(x) is obtained as follows:

�QðxÞ ¼ minmax
Q2G

EQfdTx2ðv; uÞg ð28Þ

s.t.

Tx1 þWx2ðv; uÞ� hðvÞ 8ðv; uÞ 2 �U ð29Þ

We use the principle of Lagrange duality to convert the

min–max problem of (30) into a min-problem [26, 35].

The dual variables p0 and pm are introduced to convert

the uncertainty constraints (3) and (5) into their robust

counterparts. After conversion, (28) is equivalent to the

following robust counterpart problem, as shown in (30)–

(32).

min r þ rTk

k� 0

r þ vTqþ uTk� dTx2ðv; uÞ 8ðv; uÞ 2 �U

8
><

>:
ð30Þ
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p0 � 0

r� dTx02 � pT0q

pT0Cs ¼
X

n2Nv
s

dnx
v
2n;s � qs 8s 2 S

pT0Dk ¼
X

n2Nu
i

dnx
u
2n;k � kk 8k 2 K

8
>>>>>>>><

>>>>>>>>:

ð31Þ

pm � 0 8m 2 M2

TT
mx1 þWT

mx
0
2 � h0m þ qTpm � 0

pTmCs ¼
X

n2Nv
s

Wmnx
v
2n;s � hvms 8m 2 M2

pTmDk ¼
X

n2Nu
k

Wmnx
u
2n;k 8k 2 K; 8m 2 M2

8
>>>>>>>><

>>>>>>>>:

ð32Þ

where Cs is the s
th column of matrix C; Dk is the k

th column

of matrix D; TT
m and WT

m are the mth row of matrix T and

W, respectively; hms is the m
th element of vector hs; and Nv

s

and Nu
k are the sets of decision variables that depend on

random variable v and auxiliary variable u in the second

stage, respectively.

As the generalized linear decision rule incorporates

random variables and auxiliary variables, the quality of the

bound improves, albeit at the expense of increased model

size [36]. In the section, we can obtain the cost of the

second stage and combine the two stages to obtain the

optimal decision. The whole process of the optimization

model solution is shown in Fig. 1.

4 Case studies

This paper uses the improved IEEE 33-bus and IEEE

118-bus systems to verify the feasibility and effectiveness

of the proposed model and method. Figure 2 shows the

prediction of total load, PV power and WT power. In

Appendix A, the extended configuration in the system is

shown in Table A1; Tables A2, A3 and A4 show the

parameter settings of each unit; and the average outputs of

load, PV, and WT with their maximum and minimum

fluctuation range curves of ADN are shown in Appendix A

Figs. A1, A2 and A3. We set the penalty cost coefficients

for discarded light, abandoned wind power, and lost load as

0.8 $/kWh, 0.6 $/kWh, and 0.5 $/kWh, respectively, and

set the network loss cost factor as 0.3 $/kWh. The trans-

action between the ADN and power grid use the electrical

mechanism, for which the specific data is shown in Table 1

below.

All algorithm programs are modeled in the MATLAB

R2014b-YALMIP environment and solved using the

commercial solver CPLEX12.6.0. Simulation environment

is a computer of Intel (R) Core (TM) i5-3337U CPU @

1.80 GHz, 8 GB, operating system Win7 64-bit.

4.1 Related settings of model

The piecewise linear function is set according to the

DRO method mentioned above. The corresponding piece-

wise linear function is used to characterize the prediction

error v of PV, WT, and fluctuating load outputs, and is

divided into three sections. The cut-off value of each sec-

tion is set to 0, Vmin
r;t =3, and 2Vmin

r;t =3. The constant value

Vr;t is the lower bound of random variable v. The constant

rj;r;t represents the distribution information of the uncertain

random variables; we assume that the prediction error v

complies with the b distribution based on historical data.Read file data of ADN

Initialize and set i=0

i>Nmax?

End

Y

N

Use linear decision 
rule

First-stage: unkown 
uncertainty

Second-stage: kown 
uncertainty

Calculate the 
operation cost

Determine the 
optimal value

Update value of 
input variable

i= i+1

Start 

Calculate the cost of
second-stage

Calculate objective 
function

Fig. 1 Model solution of two-stage distributionally robust optimiza-

tion problem Fig. 2 Prediction of total load, PV power and WT power
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gkð~vÞ ¼ gj;r;tð~vÞ
¼ maxf~vr;t � Cj;r;t; 0gÞ� rj;r;t

ð33Þ

EPfgkð~vÞg ¼ EPfgj;r;tð~vÞg� rj;r;t
8j ¼ 1; 2; 3; 8r 2 R; 8t 2 T

ð34Þ

The uncertainty fluctuation range a of the uncertain

variable is changed from 0.1 to 0.5. For the traditional RO

method, we weigh the accuracy and calculation time using

the Monte Carlo simulation test, and set the number of

samples to 5000 times and the confidence level to 0.95. The

Benders decomposition method is used to solve the

problem.

4.2 Analysis of effects of different optimization

models on operation results

In this section, D-model represents the deterministic

model, SP-model represents the stochastic programming

model, RO-model represents the robust optimization

model, and DRO-model represents the proposed distribu-

tionally robust optimization model.

The cost of each item in the Table 2 is the maximum

cost of each one in all scenarios. The maximum value of

the total cost is not the sum of the individual costs in the

worst-case scenarios. By analyzing the data in Table 2, the

following conclusions can be drawn:

1) In combination with the maximum fluctuation sce-

narios of PV, WT, and load shown in Fig. 1 and Figs. A1,

A2 and A3 in Appendix A, it is found that under the RO-

model, there are also some cases that abandon PV, WT,

and loss of load, indicating that the RO-model and DRO-

model can obtain a better degree of conservation in

scheduling.

2) The D-model does not consider the fluctuation char-

acteristics of PV, WT, and load outputs. Therefore, the

optimization results in the worst-case scenario are inferior

to the DRO methods and traditional RO methods.

3) RO can reduce the purchase of power from grid, and

can further reduce the line loss cost. More schedulable

DERs inputs can play a certain role in smoothing the

equivalent load and provide a better reactive support

effect.

Table 1 Time parameters of electricity price

Period

(hour)

Period type Price ($/kWh)

1–7 Off-peak time 0.49

8–17, 23–24 Shoulder time 0.74

18–22 Peak time 0.98

Table 2 Comparison of expected costs of the worst-case scenario

with different a

Model a First-stage cost ($) Second-stage cost ($)

CTR CLoss CDG CL

SP-model 0.1 4720.81 314.48 0 0

0.2 5083.97 318.82 0 0

0.3 5348.38 327.49 240.52 0

0.4 5693.29 338.22 326.33 120.15

0.5 6041.30 353.76 331.02 220.86

RO-model 0.1 4712.22 320.32 0 0

0.2 5070.01 326.00 0 0

0.3 5334.90 330.31 132.10 0

0.4 5678.60 330.49 256.36 0

0.5 6023.43 346.81 263.15 51.21

DRO-model 0.1 4719.85 314.24 0 0

0.2 5081.01 317.45 0 0

0.3 5335.71 321.06 127.04 0

0.4 5682.09 332.53 244.33 0

0.5 6029.27 346.41 248.28 23.78

Table 3 Comparison of average expected costs of different opti-

mization models with different a

a Cost ($)

D-model SP-model RO-model DRO-model

0.1 5941.4 6046.1 6256.5 6091.6

0.2 6059.5 6115.2 6288.4 6156.3

0.3 6323.7 6211.8 6302.8 6232.1

0.4 6416.8 6332.6 6383.7 6341.9

0.5 6527.1 6502.8 6497.2 6492.4

Fig. 3 Comparison of DRO method with RO method
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4) In comparison of the two-stage cost of each model

with increasing fluctuation range a, it is found that the

operating cost of every model is continuously increasing.

Based on comparing the total cost of each model, the DRO-

model proposed in this paper can not only reduce the

amount of abandoned PV, WT, and loss of load, but also

reduce the expected cost to improve the economy.

4.3 Analysis of results of optimization methods

under different fluctuation ranges a

We compare the expected total cost of the four models

with different a.
1) DRO-model and D-model

Because the DRO-model considers the randomness of

extreme scenes, it can effectively reduce the operating cost

of the ADN, as seen from Table 3: with the increase in the

fluctuation range a, the operating cost of the D-model is

greater than that of the DRO-model; in terms of security, the

DRO-model can guarantee the security of system operation

better than the D-model; and the DRO-model considers the

penalty cost of abandoning PV, abandoning WT, and losing

load, which is superior to the D-model in economy.

2) DRO-model and SP-model

The operating cost of SP-model is less than the DRO-

model, but it is assumed that the probability distribution

parameter estimation of uncertain variables (PV and WT

predicted output) is inaccurate, and the scheduling result

obtained by the SP-model will cause the security condition

constraint to be unsatisfied, resulting in serious conse-

quences. Therefore, for the possible extreme bad situation,

the dispatcher adopts the DRO method, although it

increases the operating cost of the system, as it can ensure

the security of the system.

3) DRO-model and RO-model

By the expected cost of DRO-model and RO-model in

Table 3 and Fig. 3, the operating cost of the DRO-model is

always less than that of the RO-model as the fluctuation

range a increases. When the minimum fluctuation range a
= 0.1, the DRO-model is the most cost effective and the

most meaningful.

There are two reasons for this. The first is that the

scheduling decision from the RO method is based on some

worst-case uncertainties, so it cannot effectively simulate

changes in the distribution information, making the method

too conservative and giving up too much optimality to

ensure its robustness. The second reason is that the ambi-

guity set constructed in the DRO method is able to capture

the distribution information of PV, WT, and load output

changes. As the power variation of the uncertain variable

decreases, it is less conservative based on the distribution

information contained in the ambiguity set. Thus, the total

solution cost of ADN scheduling decisions is reduced.

Because of its conservatism, the RO-model ensures the

security of the system, but reduces the economy of oper-

ation. Therefore, from the economic perspective, the DRO-

model is superior to the RO-model. Therefore, the distri-

butionally robust optimization dispatch method is superior

to the other three methods in the study of renewable energy

consumption in ADNs.

Table 4 shows the optimization time comparison of

IEEE 33-bus and IEEE 118-bus systems in different fluc-

tuation ranges. It can be seen that the calculation time of

the DRO method is slightly higher than that of the RO

method because the DRO method can model the change in

uncertainty distributions to generate less conservative

solutions that increase the solution scale. In the same

worst-case scenario, the calculation time of IEEE 118-bus

system is always higher than that of the IEEE 33-bus

system. In the same system and model, with increasing

fluctuation range a, the cost grows continuously.

5 Conclusion

In this paper, a two-stage distributionally robust opti-

mization model is established to minimize the total

expected cost of the ADN under the worst-case distribution

of the uncertainty variables. Because a part of the distri-

bution information of the uncertainty variables is reason-

ably included in the distributionally robust optimization

model, the conservativeness of the obtained solution is

Table 4 Comparison of computation time of algorithm

a Computation time of IEEE 33-bus system (s) Computation time of IEEE 118-bus system (s)

RO-model DRO-model RO-model DRO-model

0.1 102.51 121.01 427.64 447.15

0.2 116.74 134.13 578.91 596.32

0.3 122.36 140.96 669.73 689.27

0.4 157.02 167.93 976.54 965.63

0.5 181.33 192.51 1052.67 1063.85
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reduced compared with the traditional robust optimization

model. The generalized linear decision rule is used to

approximate the second-stage optimization problem, and

the original model is transformed into a tractable mixed-

integer linear model. The two-stage optimization model is

a better and stricter approach that improves the perfor-

mance of the solution.

The linear decision rules currently studied are only

conservative approximations to the second-stage optimal

decision making. In addition to using the piecewise linear

functions introduced in an ambiguity set to better approx-

imate the original two-stage problem, it is also possible to

apply the proposed ambiguity set and reformulation tech-

niques to evaluate scheduling risk [37]. Furthermore, it is

also possible to study how different linear decision models

can be used to approximate the two-stage optimization

model and improve them.
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Appendix A

See Tables A1, A2, A3 and A4 and Figs. A1, A2 and

A3.
Fig. A1 Expected total load and its upper/lower bounds

Table A1 Parameters of units in the network

Controllable unit IEEE 33-bus system IEEE 118-bus system

MT 7 63

ESS 18 16

FL 24 15

PV 22, 24 10, 22

WT 28, 30 36, 49

Load 20 46

Table A2 Parameters of MT

System Power (kW)

IEEE 33-bus system 2000

IEEE 118-bus system 3000

Table A3 Parameters of ESS

Parameters IEEE 33-bus system IEEE 118-bus system

Power (kW) 500 500

Rated capacity (kW/h) 1500 2500

gch 0.9 0.9

gdisch 1.1 1.1

Note: gch and gdisch are the charged and discharged efficiencies of

ESS, respectively

Table A4 Parameters of FL

System Power (kW)

IEEE 33-bus system [500, 1000]

IEEE 118-bus system [600, 1000]

Fig. A2 Expected photovoltaic power and its upper/lower bounds
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Appendix B

This appendix provides a derivation of the robust

counterpart problem of function (28) into (30)–(32) using

the duality theory.

Proof: The uncertain linear constraint (30) can be

changed into the following formulation under the worst

case:

min
ðv;uÞ2 �U

fr þ vTqþ uTk� dTx2ðv; uÞg

¼ min
ðv;uÞ2 �U

fr þ
X

s2S
vsqs þ

X

k2K
ukkk �

X

n2N2

dnx
0
2n

�
X

n2N2

X

s2S
dnx

v
2n;svs �

X

n2N2

X

k2K
dnx

u
2n;kukg

ðB1Þ

The dual of the minimization formulation is used to

derive the equivalent constraints of (B1). Constraints (31)

and (32) correspond to vectors v and u, respectively.
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