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Abstract This paper deals with optimal scheduling of

networked microgrids (NMGs) considering resilience

constraints. The proposed scheme attempts to mitigate the

damaging impacts of electricity interruptions by effectively

exploiting NMG capabilities. A three-stage framework is

proposed. In Stage 1, the optimal scheduling of NMGs is

studied through determining the power transaction between

the NMGs and upstream network, the output power of

distributed energy resources (DERs), commitment status of

conventional DERs as well as demand-side reserves. In

Stage 2, the decisions made at Stage 1 are realized con-

sidering uncertainties pertaining to renewable generation,

market price, power consumption of loads, and uninten-

tional islanding of NMGs from the upstream network and

resynchronization. Stage 3 deals with uncertainties of

unintentional islanding of each MG from the rest of

islanded NMGs and resynchronization. The problem is

formulated as a mixed-integer linear programming problem

and its effectiveness is assured by simulation studies.

Keywords Networked microgrid (NMG), Distributed

energy resource (DER), Power system resilience, Point
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1 Introduction

Recent weather-related events such as severe thunder-

storms, hurricanes, and blizzards have significantly affec-

ted the normal operation of power systems around the

globe [1]. Under extreme circumstances, the power systems

represent vulnerable and non-resilient behavior which

leads to major load interruptions and blackouts [2]. Due to

the climate changes, the frequency and severity of catas-

trophic events might increase in the near future, implying

the significance of power system resilience against such

incidents [3].

Resilience notion is described from various perspectives

which can be clustered into two categories [3–6]. One is

the adaption standpoint defining the resilience attribute as

the ability of power system to tolerate some unexpected

events by accommodating to the dominant condition. The

other one is restoration standpoint where the resilience is

defined as the ability of the power system to retrieve its

normal operation subsequent to certain extreme events.

Despite the differences in viewpoints, low probability and

high impact of the investigated events are highlighted. This

paper considers adaption standpoint to study the

resilience.
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Among the available solutions in the literature, the

deployment of distributed systems such as microgrids

(MGs) is effective to enhance power system resilience and

retain electricity procurement [7, 8]. Through the seamless

islanded operation capability, MGs can ride through the

outages until the restoration of disrupted main grid. In the

islanded mode, the critical loads such as hospitals, police

stations, security buildings, and data centers can be supplied

by the on-site distributed energy resources (DERs) and

managed by local controllers. Reference [9] offers a new

framework for taking advantages of MG capabilities to ride

through the islanding condition and improve resilience

metrics. In [10], a robust optimization-based model is pre-

sented which seeks for minimum load interruption in

islanding operation mode. It is demonstrated that the con-

sideration of resilience issue in MGs scheduling is an

effective measure to reduce the amount of load interruption

in case of islanding. Reference [11] proposes a techno-

economic model to utilizeMG capabilities and surviving the

critical loads during the islanding condition. The detailed

analyses are performed to investigate the impact of demand-

side reserve cost onMG operation. In addition, alterations in

market prices, DER production, and load variations in real-

time operation are taken into account. In [12], the coordi-

nation of demand-side reserves and storage units connected

to an MG is considered with the objective of retraining MG

stability while operating in islanding mode.

Extreme events and resultant MGs islanding are random

phenomena which challenge the effectiveness of scheduling

schemes in improving resilience metrics. To cope with this

issue, stochastic programing-based approaches are presented

in [13, 14]. Here, the expected costs(ECs) pertaining to the

uncertain decision, e.g. renewable generation and islanding

event are added to the cost ofMGscheduling and the total cost

is minimized subject to the suite of technical constraints. The

other scheme to neutralize the effect of uncertainties is

proactive scheduling [15–17]. In proactive methods, the MG

follows its normal schedule right before receiving islanding

alert which declares that the islandingmight happen due to the

approaching extreme event (e.g. windstorm). In this situation,

the MG operator adapts proper precautions to minimize the

effects of the approaching event. In proactive methods, the

uncertainty of MG islanding is only considered.

The number of distributed elements is one of the most

significant factors which affects resilience indexes [1]. Due

to uneven propagation of damages, the level of resilience

enhancement can be intensified as the number of distributed

elements increases. This can be realized by increasing the

number of local DERs or connecting adjacent MGs and

establishing networked MGs (NMGs). In this paper, resi-

liency-oriented scheduling of NMGs is studied through a

three-stage framework. The first stage deals with optimal

scheduling of NMGs in normal operation conditions where

the power transaction between the NMGs and upstream

network, output power of DERs, commitment status of

conventional DERs, and demand-side reserves are deter-

mined. In the second and third stages, the effect of prevailing

uncertainties on real-time operation of NMGs is investi-

gated. The second stage highlights unintentional islanding of

NMGs from the upstream network and resynchronization;

whereas, the third stage deals with uncertainties pertaining

to the unintentional islanding of each MG from the rest of

islanded NMGs. The problem is formulated as a mixed-

integer linear programming problem and its effectiveness is

assured by simulation studies.

2 Proposed methodology

2.1 Overview

The proposed three-stage approach is as follows.

Stage 1: Determining power transaction between NMGs

and upstream network, DER output power, commitment

status of conventional DERs, and demand-side reserves.

Stage 2: Realizing the decisions made at Stage 1;

determining trasactions between each MG and the rest of

NMGs; considering uncertainties and pertaining the to

renewable generation, market price, power consumption of

loads, and unintentional islanding of NMGs form the

upstream network and resynchronization.

Stage 3: Realizing the decisions made at Stage 1 and

Stage 2; considering the uncertainties pertaining to unin-

tentional islanding of MG from the rest of NMGs and

resynchronization.

The outline of the proposed three-stage approach for

resilience-constrained scheduling of NMGs is depicted in

Fig. 1. XS2 and XS3 are the set of scenarios at Stage 2 and

Stage 3.

In Fig. 1, the objective is to attain a resilient NMGswhich

is capable of handling both normal operation and contin-

gency-based uncertainties. This approach lies within

stochastic programming-based [18] model as shown in

Fig. 1, where the distribution of input data is first approxi-

mated by a collection of plausible sets (scenario generation).

Then, the problem is formulated in a stochastic optimization

fashion which implicitly weights (with the probabilities of

occurrence) the solution of each input set with the aim of

attaining a single solution. The achieved solution is ade-

quately pre-positioned with respect to all the sets of input

data, but not to any one of them particularly, which is an

approach to the stochastic solution of the problem at

hand.

In this framework, the scheduling of a resilient NMGs is

modeled in Stage 1 (Root) before the realization of any

uncertainty. The decisions made in this stage include power
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transaction between the NMGs and upstream network,

DERs output power, commitment status of conventional

DERs, and demand-side reserves which are independent

from the upcoming scenarios. Afterwards, proper sets of

scenarios are generated for simulating the transitions

between Stage 1 and Stage 2. To generate the scenarios, the

random variables are first described via probability distri-

bution function (PDF). Then the PDFs are fed into the point

estimate procedure [19] to calculate the possible scenarios.

The random variables for Stage 2 are wind generation,

market price, power consumption of loads, and uninten-

tional islanding of NMGs from the upstream network and

resynchronization. Based on the realization of each sce-

nario at Stage 2, unintentional islanding of each MG from

the rest of NMGs and its resynchronization might happen

which is also a random variable. These uncertainties are

tackled by determining proper scenarios corresponding to

transitions between Stage 2 and Stage 3.

The detailed formulations of the proposed three-stage

model are given in the following.

2.2 Objective function

Figure 2 depicts an overview of a typical NMGs, which

is considered for problem formulation. The objective

function for the proposed framework is to minimize total

operation cost of NMGs. The total operation cost includes

the cost of decisions made at Stage 1 (before the realization

of uncertainties) and EC of Stage 2 and Stage 3 which is

influenced by the occurrence of specific scenarios. Math-

ematically, the objective function is:

min OF ¼
X

t2IT
CS1
t þ ECS2;S3

t

� �
ð1Þ

CS1
t ¼ kM;Buy

t P
S1;Buy
t;Nl � kM;Sell

t P
S1;Sell
t;Nl

þ
X

l2Il
kL;Utl LRS1;U

tl þ kL;Dtl LRS1;D
tl þ kDGtl PS1;DG

tl

� � ð2Þ

ECS2;S3
t ¼

X

x2XS2

pxðAtx þ
X

u2XS3

puBtuÞ ð3Þ

Atx ¼ kRT ;Buyþtx DPS2;Buyþ
tx;Nl � kRT ;Buy�tx DPS2;Buy�

tx;Nl

þ kRT;Sell�tx DPS2;Sell�
tx;Nl � kRT ;Sellþtx DPS2;Sellþ

tx;Nl

þ
X

l2Il
ðkSUtl uS2;SUtxl þ kDGtl PS2;DG

txl Þ

þ
X

l2Il
kDeptl ðLRS2;U

txl � LRS2;D
txl Þ

ð4Þ

Btx ¼
X

l2Il
ðkSUtl uS3;SUtul þ kDGtl PS3;DG

tul Þ

þ
X

l2Il
kShedtl PS3;Shed

tul

ð5Þ

where t, IT are index and set of time; l, Il are index and set

of MGs; x is index realized at Stage 2; u, XS3 are index

realized at Stage 2; Buy, Sell are superscript for buying

from and selling to market; Dep, SU are superscript for

deployment and start-up; Shed is superscript for load

shedding; S1, S2, S3 are superscript for Stage 1, Stage 2,

and Stage 3; DG, L are symbol for conventional distributed

generation (DG) and load; M is symbol for market-related

quantities; Nl is symbol for NMGs; RT is symbol for real-

time quantities; U, D are up and down variations; ?, - are

positive and negative deviations; LR is demand-side

reserve; P is active power; u is commitment status; k is

price per megawatt; and p is the probability of scenario.

In (1) and (2), Ct
S1 represents the total cost for normal

operation of the NMGs which encompasses the cost of

Fig. 2 An overview of a typical NMGs

Fig. 1 Framework of the proposed three-stage approach
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power exchange between the NMGs and upstream net-

work, the cost of scheduling demand-side reserves, and the

cost of deploying conventional distributed generations

within the NMGs. The EC of uncertain stages, i.e., Stage 2

and Stage 3, are calculated by (3)-(5). For each scenario

associated with Stage 2, Atx models the cost of realizing

the decisions made at Stage 1 which is the cost of adjusting

power exchange, demand-side reserve deployment cost,

starting up and using DGs within the NMGs. Likewise, for

each scenario associated with Stage 3, Btx describes the

start-up and production costs of DGs as well as possible

load shedding cost within an MG which is islanded from

the rest of NMGs. The devised objective function is min-

imized subject to the following constraints.

2.3 Constraints of Stage 1

The suite of constraints for Stage 1 decisions is:

P
S1;Buy
t;Nl � P

S1;Sell
t;Nl þ

X

l2Il
PS1;Net
tl ¼ 0 ð6Þ

PS1;Net
tl ¼ PS1;DG

tl þ PS1;Wind
tl � PS1;Batþ

tl þ PS1;Bat�
tl � PS1;L

tl

ð7Þ

0�P
S1;Buy
t;Nl � aS1t;NlP

Buy;max
t;Nl ð8Þ

0�P
S1;Sell
t;Nl � 1� aS1t;Nl

� �
P
Sell;max
t;Nl ð9Þ

aS1;DGtl PDG;min
l �PS1;DG

tl � aS1;DGtl PDG;max
l ð10Þ

PWind;min
l �PS1;Wind

l �PWind;max
l ð11Þ

PL;min
tl �PS1;L

tl �PL;max
tl ð12Þ

0� LRS1;U
tl � LRU;max

tl ð13Þ

0� LRS1;D
tl � LRD;max

tl ð14Þ

0�PS1;Batþ
tl � aS1;Battl PBatþ;max

l ð15Þ

0�PS1;Bat�
tl � gBatl 1� aS1;Battl

� �
PBat�;max
l ð16Þ

SoCS1;Bat
tl ¼ SoC

S1;Bat
ðt�1Þl

þ
gBatl Dt

E
Bat;max
l

P
S1;Batþ
ðt�1Þl � ðgBatl Þ�2

P
S1;Bat�
ðt�1Þl

� �

ð17Þ

SoCBat;min
l � SoCS1;Bat

tl � SoCBat;max
l ð18Þ

where Bat is the symbol for storage;Wind is the symbol for

wind generation; min, max are symbols for lower and

upper limits, respectively; E is energy capacity for storage

unit; SoC is state of charge for storage unit; and H is

conversion efficiency coefficient for storage unit.

In (6), the power balance between the NMGs and the

upstream network is evaluated. Here, P
S1;Net
tl represents the

power transaction of eachMGwith the rest of NMGs and the

upstream network. As can be seen from Fig. 2, each MG is

represented as an equivalent conventional DG, wind gen-

eration, storage system, and load which can play the role of

net load or generation for the rest of system. Equations (8)-

(12) ensure that the decision variables in this stage, i.e.

power to be traded with the upstream network, DG and wind

generations, load consumption, demand-side reserves, and

storage charged or discharged power, lie within associated

upper and lower limits. In (8) and (9), the binary variable

aS1t;Nl is used to avoid enabling both selling and buying

options at the same time. Likewise, the binary variable

aS1;Battl averts simultaneous enabling of charging or dis-

charging options associated with the storage unit in each

MG. Finally, the binary variable aS1;DGtl identifies the com-

mitment status of DG at Stage 1. The state of charge (SoC)

for the storage system is calculated in (17) which is also

required to reside within a predefined boundaries (18).

Once the decisions at Stage 1 are made, optimal oper-

ation of NMGs within the permissible range is assured.

However, such decisions are not subjected to the uncer-

tainties. The uncertainties are taken into account by the

proper constraints tailored at Stages 2 and 3.

2.4 Constraints of Stage 2

In this stage, the real-time operation of NMGs is studied

by realizing the decisions made at Stage 1. Note that all

variables in this stage depend on the envisioned scenario.

The first step is to check the power balance which is:

P
S2;Buy
tx;Nl � P

S2;Sell
tx;Nl þ

X

l2Il
PS2;Net
txl ¼ 0 ð19Þ

In (19), the first two terms express the power trade of

NMGs with the upstream network, i.e., P
S2;Buy
tx;Nl and P

S2;Sell
tx;Nl ,

which are calculated as:

P
S2;Buy
tx;Nl ¼ P

S1;Buy
t;Nl þ DPS2;Buyþ

tx;Nl � DPS2;Buy�
tx;Nl ð20Þ

P
S2;Sell
tx;Nl ¼ P

S1;Sell
t;Nl þ DPS2;Sellþ

tx;Nl � DPS2;Sell�
tx;Nl ð21Þ

Equations (20) and (21) state that the realized power

transaction between the NMGs might deviate from the

scheduled value, P
S1;Buy
t;Nl and P

S2;Sell
tx;Nl , which can be adjusted

by positive and negative deviation variables, that is

DPS2Buyþ
tx;Nl , DPS2Buy�

tx;Nl , DPS2;Sellþ
tx;Nl , and DPS2;Sell�

tx;Nl . The set of

constraints involve in the process of calculating (20) and

(21) is:

0�P
S2;Buy
tx;Nl � stxa

S2
tx;NlP

Buy;max
t;Nl ð22Þ
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0�P
S2;Sell
tx;Nl � stx 1� aS2tx;Nl

� �
P
Sell;max
t;Nl ð23Þ

0�DPS2;Buyþ
tx;Nl �BMð1� bBuytx Þ ð24Þ

0�DPS2;Buy�
tx;Nl �BMbBuytx ð25Þ

0�DPS2;Sellþ
tx;Nl �BMð1� bSelltx Þ ð26Þ

0�DPS2;Sell�
tx;Nl �BMbSelltx ð27Þ

The objective behind (22) and (23) is similar to that of

(8) and (9) where for each scenario, the binary variable

aS2tx;Nl determines the direction of power flow between the

NMGs and the upstream network. Here, the binary

parameter stx is also used as an indicator for islanding

and resynchronization events:

stx ¼ 0 TIsland
x;Nl � t� T

Rsynch
x;Nl

1 Otherwise

�
ð28Þ

where TIsland
x;Nl and T

Rsynch
x;Nl are islanding and resynchroniza-

tion time for the NMGs. Hence during islanded operation,

the power transaction between the NMGs and upstream

network is fixed on zero and the DERs within the islanded

NMGs supplying the loads.

Constraints (24)-(27) determine the boundaries of

deviations for the variables in (20) and (21). The binary

variables bBuytx and bSelltx identify the direction of deviations

pertaining to buy the power from the market and sell to the

market scenarios, respectively. In (24)-(27), BM is a rela-

tively large positive scalar.

The last term in (19), P
S2;Net
txl is the real-time value of

active power consumed or generated by each MG, which

can be calculated as:

PS2;Net
txl ¼ PS2;DG

txl þ PS2;Wind
txl � PS2;Batþ

txl þ PS2;Bat�
txl � PS2;L

txl

ð29Þ

In (29), the DG generation should be within the

predefined limits if already committed, i.e., aS2;DGtxl ¼ 1:

aS2;DGtxl PDG;min
l �PS2;DG

txl � aS2;DGtxl PDG;max
l ð30Þ

Otherwise, if starting a DG unit is necessary, associated

start-up cost is calculated as (31) and reflected in the

objective function using the linking binary variable as

u
S2;SU
txl :

u
S2;SU
txl � aS2;DGtxl � aS2;DGðt�1Þxl

u
S2;SU
txl � 0

(
ð31Þ

The wind generation P
S2;Wind
txl in (29) is derived from the

scenarios under study; whereas, the active power taken

from or stored in the storage P
S2;Bat�
txl and P

S2;Batþ
txl should

satisfy the following constraints:

0�PS2;Batþ
txl � aS2;Battxl PBatþ;max

l ð32Þ

0�PS2;Bat�
txl � gBatl 1� aS2;Battxl

� �
PBat�;max
l ð33Þ

SoCS2;Bat
txl ¼ SoC

S2;Bat
ðt�1Þxl

þ
gBatl Dt

E
Bat;max
l

P
S2;Batþ
ðt�1Þxl � ðgBatl Þ�2

P
S2;Bat�
ðt�1Þxl

� �

ð34Þ

SoCBat;min
l � SoCS2;Bat

txl � SoCBat;max
l ð35Þ

The last term P
S2;L
txl in (29) is the real-time value of the

load at each MG which is calculated based on the

scheduled load at Stage 1, i.e. P
S1;L
tl , and the realized

demand-side contributions LR
S2;D
txl and LR

S2;U
txl :

PS2;L
txl ¼ cLtxlP

S1;L
tl � LRS2;D

txl þ LRS2;U
txl ð36Þ

0� LRS2;D
txl � LRS1;D

tl ð37Þ

0� LRS2;U
txl � LRS1;U

tl ð38Þ

In (36), the coefficient cLtxl is the load realization factor

which models the load uncertainties in real-time operation.

For a given deterministic load, cLtxl is 1; however, for a

probabilistic load, cLtxl varies based on the associated PDF.

Finally, (37) and (38) determine the upper and lower

boundaries for the deployment of demand-side reserves.

2.5 Constraints of Stage 3

This stage deals with the islanding and resynchroniza-

tion events of an MG from the islanded NMGs. To offer

more details, Stage 2 studies the real-time operation of

NMGs along with its islanding and resynchronization from

the upstream network; however, Stage 3 covers the

islanding and resynchronization events for the MGs within

an islanded NMGs. Similar to Stage 1 and Stage 2, power

balance is the main constraint:

PS3;Net
tul þ PS3;DG

tul þ PS3;Wind
tul � PS3;Batþ

tul

þ PS3;Bat�
tul � PS3;L

tul þ PShed
tul ¼ 0

ð39Þ

In (39), the power transaction of each MG with the rest

of the islanded NMGs P
S3;Net
tul is calculated as:

PS3;Net
tul ¼ wtulP

S2;Net
txl ð40Þ

wtul ¼
0 TIsland

ul � t� TRsynch
ul

1 Otherwise

�
ð41Þ

where TIsland
ul , TRsynch

ul are islanding and resynchronization

time for each MG. In case of islanding, i.e. wtul ¼ 0, the

power transaction between the MG and the rest of the
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NMGs P
S3;Net
tul would be zero which might end in violations

in (39). During such situation, the model can take

advantages of storage system, use local DG at MG level,

and finally shed some loads. This approach can be adopted

until the resynchronization time and then, proper decisions

after resynchronization can be realized. Such decisions

should be made subject to technical constraints of the DG,

storage system, and load availability within the MG:

aS3;DGtul PDG;min
l �PS3;DG

tul � aS3;DGtul PDG;max
l ð42Þ

u
S3;SU
tul � aS3;DGtul � aS3;DGðt�1Þul

u
S3;SU
tul � 0

u
S3;SU
tul � 1� u

S2;SU
txl

8
><

>:
ð43Þ

0�PS3;Batþ
tul � aS3;Battul PBatþ;max

l ð44Þ

0�PS3;Bat�
tul � gBatl 1� aS3;Battul

� �
PBat�;max
l ð45Þ

SoCS3;Bat
tul ¼ SoC

S3;Bat
ðt�1Þul

þ
gBatl Dt

E
Bat;max
l

P
S3;Batþ
ðt�1Þul � ðgBatl Þ�2

P
S3;Bat�
ðt�1Þul

� �

ð46Þ

SoCBat;min
l � SoCS3;Bat

tul � SoCBat;max
l ð47Þ

Constraint (42) represents the permissible upper and

lower limits for conventional DG. Here, (43) determines

the operation status of DG implying that if the DG has

already started at Stage 2, i.e., u
S2;SU
txl ¼ 0, associated start-

up cost should not be reflected in the objective function. In

addition, the charging and discharging level of the storage

unit as well as associated SoC should remain within a

permissible limit which is modeled by (44)-(45) and (46)-

(47), respectively.

In case of any inadequacy in power generation, load

shedding is inevitable which should not exceed the MG

load:

0�PShed
tul �PS3;L

tul ð48Þ

where the load at this stage is equal to that of Stage 2:

PS3;L
tul ¼ PS2;L

txl ð49Þ

Once the formulation for each step is devised, the

resilience-constrained scheduling of NMGs can be

achieved by minimizing (1) subject to (6)-(49), which is

solved monolithically. Therefore, all the decision variables

including the decisions made at Stage 1, Stage 2, and Stage

3 mutually impact each other. The main ties between

different stages are as follows:

Link 1: (20) and (21) are the first link which connects the

purchase decisions in Stage 2 to the decision made at

Stage 1.

Link 2: (36) connects the load at Stage 2 to the load

determined in Stage 1, i.e., (11).

Link 3: (37) and (38) provide the link between demand-

side reserve deployments in Stage 2 and the scheduled

one at Stage 1 which is also reflected in the objective

function.

Link 4: (40) and (49) are the link between Stages 2 and

3.

To offer more details, Link 3 is discussed as an instance.

At first glance, Stage 1 might schedule zero demand-side

reserve as the objective is cost minimization. Therefore, the

upper and lower bound associated with the load reserve

deployment in (37) and (38) would be zero, which might

end in violations in (29), i.e., real-time load at Stage 2. To

meet (29), the scheduled demand-side reserve at Stage 1,

i.e., (13) and (14), should be revisited. In other words, the

constraints at Stage 2 steer the decision in Stage 1. The

similar discussion is valid for the other links implying the

mutual effect of stages. The tailored problem includes

binary variables and linear constraints which lies within the

mixed-integer linear programming model.

2.6 Scenario generation

In order to solve the proposed stochastic programming-

based model, a proper suite of scenarios should be gener-

ated and fed into the model. To cover all possible events, a

great number of scenarios should be generated which

challenges the tractability of the problem. In this paper, the

three-point estimate method [20] is used which offers

limited, but representative number of points to be evaluated

while covering most of plausible circumstances.

Given the arrays of random variables at Stages 2 and 3

as (50) and (51):

xS2 ¼ kRT;Buy kRT ;Sell cL PWind TIsland
Nl T

Rsynch
Nl

h i

¼ x1 x2 x3 x4 x5 x6½ �
ð50Þ

yS3 ¼ TIsland
l TRsynch

l

� �
¼ y1 y2½ � ð51Þ

Three points are estimated for each random variable

which are denoted by index k in this paper. The set of

scenarios for each stage are:

XS2 ¼ ð�x1; . . .; xl;k; . . .�x6Þ
	 


l ¼ 1; 2; . . .; 6 k ¼ 1; 2; 3

ð52Þ
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XS3 ¼ ðy1;k; �y2Þ; ð�y1; y2;kÞ
	 


k ¼ 1; 2; 3 ð53Þ

where �denotes the expected value of associated random

variable and:

xl;k ¼ �xl þ fl;k~xl
yl;k ¼ �yl þ fl;k~yl

�
ð54Þ

fl;k ¼

tl
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jl �

3

4
t2l

r
k ¼ 1

tl
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jl �

3

4
t2l

r
k ¼ 2

0 k ¼ 3

8
>>>><

>>>>:

ð55Þ

In (54) and (55), ð~�Þ, tl, jl symbolizes the standard

deviation, Skewness and Kurtosis of associated random

variable, respectively. Once the scenarios are attained, the

probability for realization of each scenario is calculated as:

p ¼
�1ð Þ3�k

fk f1 � f2ð Þ k ¼ 1; 2

1� 1

j� t2
k ¼ 3

8
>><

>>:
ð56Þ

Note that trimming the scenario numbers down is a

common practice to render the stochastic programming-

based problems more tractable. In other words, scenario

reduction approach is essential in cases of dealing with

great number of scenarios such as outputs of Monte-Carlo-

based scenario generation approach. However, the point

estimate method used in this paper offers limited, but

representative number of scenarios. Here, the number of

representative scenarios is twice of the number of uncertain

parameters plus one. Note that for the proposed approach,

the scenarios are considered as the input and the tailored

model can be evaluated apart from the scenario generation

and reeducation approach. The point estimate method is

used due to the associated advantages and replacing this

approach with any scenario generation and reduction

approach would not affect the performance of the

proposed method.

3 Simulation study

This section examines the proposed three-stage

scheme on the system depicted in Fig. 2. For the simulation

studies, two MGs are considered which represent NMGs.

The data associated with the DG units and storage systems

are reported in Tables 1 and 2, respectively. The maximum

wind generation for each MG is considered 1 MW while

considering 5 MW as the total load of each MG.

A statistical analysis is made on the Turkish Energy

Exchange Platform (EXIST) [21] to attain realistic PDFs

for market price, load profile, and wind generation. The

timespan July 1-29, 2018 is considered and the calculated

PDFs are depicted in Fig. 3. Finally, the probability dis-

tribution parameters for the islanding and resynchroniza-

tion events are given in Table 3 [4].

By the proposed scenario generation scheme in place,

the real-time value of market price, load amount, and wind

Fig. 3 Calculated PDFs for market price, load, and wind generation

Table 1 Technical data for DG units

Unit Pmax (MW) Pmin (MW) kDG ($/MW) kSU ($)

DG1 3 0.21 37 55

DG2 2 0.19 37 55

Table 2 Technical data for storage units

Unit Emax (MW) P?(-)max (MW) SoCmax

Battery1 1.5 0.5 0.90

Battery2 1.0 0.3 0.95
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generation corresponding with each scenario is depicted in

Figs. 4, 5, and 6, respectively. Note that the same load

profile and wind pattern are assumed for each MG.

In this study, the following case studies are

conducted.

Case 1: The scheduling of NMGs and taking the

uncertainties of market price, load amount, and wind

generation into account

Case 2: Case 1 plus uncertainties pertaining to unin-

tentional islanding of NMGs from the upstream network

and resynchronization

Case 3: Case 2 plus uncertainties pertaining to unin-

tentional islanding of the MGs from the rest NMGs and

resynchronization

The corresponding cases are simulated in GAMS� IDE

environment and solved with CPLEX� 12.4 using a per-

sonal computer with Intel CoreTM i7 CPU @3 GHz and 12

GB RAM.

Table 4 summarizes the results of simulation studies for

Case 1. The total cost is $857.75. The overall computation

time associated with this case is around 0.06 s. Referring to

Table 4, the EC associated with Stage 2 and Stage 3 is

relatively lower than that of Stage 1. The reason is that the

cost at Stage 1 is the cost of serving total load; whereas, the

EC of Stage 2 and Stage 3 is the cost of handling minor

operational uncertainties.

Figure 7 depicts the contribution of market, DG, and

wind generation in supplying the load (scenario #6). As can

be seen from Fig. 7, the role of the market is dominant at

Fig. 4 Real-time market price at each scenario

Fig. 5 Real-time load amount at each scenario

Fig. 6 Real-time wind generation at each scenario

Table 4 Result of Case 1

Time (hour) Cost of Stage 1 ($) EC of Stage 2 and Stage 3 ($)

1 273.45 150.18

2 258.54 34.55

3 244.97 31.21

4 248.55 27.63

5 246.20 25.74

6 236.23 25.87

7 233.33 25.74

8 252.39 25.40

9 334.51 27.09

10 368.67 31.26

11 376.85 31.60

12 378.74 29.05

13 351.74 33.97

14 359.36 40.49

15 370.92 45.38

16 362.71 50.30

17 353.84 55.26

18 346.93 64.99

19 314.83 67.86

20 307.84 70.88

21 320.04 75.42

22 329.91 67.51

23 298.12 68.77

24 248.03 48.87

Table 3 Probability distribution parameters for islanding and

resynchronization

Parameter PDF Mean Standard deviation Range

TIsland
Nl Normal 15 1 [12–18]

T
Rsynch
Nl

Normal 20 1 [17–23]

TIsland
l Normal 15 1 [13–17]

TRsynch
l Normal 18 1 [17–19]
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each time slot and a great share of load is supplied by the

market. In spite of being a low-cost solution, such

scheduling is not resilient since considerable amount of

load should be shed in case of unintentional islanding. For

instance, around 7.8 MW load shedding at each hour

(62 MWh) is inevitable if an unintentional islanding hap-

pens at the time slot between 14 and 21.

Table 5 reports the results of simulation studies for Case

2, where the uncertainties pertaining to unintentional

islanding of NMGs from the upstream network are also

considered. The total cost is $9938.55. In addition, the

contribution of market, DG, and wind generation in sup-

plying the load is depicted in Fig. 8 (scenario #6).

As can be seen, the share of market is reduced to min-

imize the load shedding in case of unintentional islanding.

The total cost is slightly increased in comparison to Case 1

which is the cost of resilience. Comparing Tables 4 and 5,

we can find that the EC at the time slot between 14 and 19

is increased, which is the most probable period for

islanding is shown in Table 3. If an unintentional islanding

happens at the time slot between 14 and 21, the amount of

load shedding would be 22.43 MWh which is much less

than Case 1. The overall computation time associated with

Case 2 is around 0.06 s.

The simulation results for Case 3 are summarized in

Table 6 where the islanding of individual MGs from the

rest of NMGs is also taken into account. The total cost is

$11934.4. According to (40), the islanding is envisioned

for all MGs within the NMGs, which is realized based on

the designed scenarios. As the simulated NMGs include

two MGs, the islanding of one MG from NMGs results in

the islanding of the other MG. The conducted study takes

the islanding of both MGs into the account.

Referring to Table 6, the cost increment comparing to

Table 5 is occurred at the time slot between 15 and 18. The

reason is that referring to Table 3, the islanding of an MG

from the rest of NMGs is most likely to happen in this

period. In this case, around 14 MWh load shedding might

happen in case of islanding at the time slot between 14 and

21. Figure 9 depicts the total cost and load shedding

amount versus the envisioned stages of islanding.

As can be seen from Fig. 9, by increasing the stages of

islanding, the total cost increases; on the contrary, the

amount of load shedding decreases. In other words, the

resilience of distribution system enhances as we increase

the number of distributed elements. The overall computa-

tion time associated with this case is also around 0.06 s.

Fig. 8 Share of market, DG, and wind generation in supplying the

load (Case 2, scenario #6)

Table 5 Result of Case 2

Time (hour) Cost of Stage 1 ($) EC of Stage 2 and Stage 3 ($)

1 273.45 150.18

2 258.54 34.55

3 244.97 31.21

4 248.55 27.63

5 246.20 25.74

6 236.23 25.87

7 233.33 25.74

8 252.39 25.40

9 334.51 27.09

10 368.67 31.26

11 376.85 31.60

12 378.74 29.05

13 351.74 33.97

14 359.36 40.49

15 370.92 377.51

16 362.71 361.64

17 353.84 353.00

18 336.49 333.20

19 308.24 297.50

20 303.43 72.78

21 317.28 77.32

22 322.21 69.48

23 298.12 62.12

24 248.03 48.87

Fig. 7 Share of market, DG, and wind generation in supplying the

load (Case 1, scenario #6)
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4 Conclusion

In this paper, a new model for resiliency-oriented

scheduling of NMGs is presented. A three-stage stochastic

programming-based approach is devised in which uncer-

tainties pertaining to the renewable generation, market

price, power consumption of loads, unintentional islanding

of NMGs from the upstream network, and unintentional

islanding of an MG from the rest of NMGs are embedded.

The effectiveness of the proposed scheme is verified by

several simulation studies which concluded that: � dam-

aging impacts of electricity interruptions can be mitigated

by effectively exploiting the NMG capabilities; ` prog-

nosis of the plausible uncertainties and considering of

associated effects in the scheduling stage can enhance the

security and economy of power systems; ´ the resilience

of power system improves by increasing the number of

distributed elements such as those offered by NMGs.
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