
HEMS-enabled transactive flexibility in real-time operation
of three-phase unbalanced distribution systems

Mohammad Nazif FAQIRY1 , Li WANG1, Hongyu WU1

Abstract This paper proposes a coordinated two-stage

real-time market mechanism in an unbalanced distribution

system which can utilize flexibility service from home

energy management system (HEMS) to alleviate line

congestion, voltage violation, and substation-level power

imbalance. At the grid level, the distribution system oper-

ator (DSO) computes the distribution locational marginal

prices (DLMP) and its energy, loss, congestion, and volt-

age violation components through comprehensive sensi-

tivity analyses. By using the DLMP components in a first-

stage optimization problem, the DSO generates two price

signals and sends them to HEMS to seek flexibility service.

In response to the request of DSO, each home-level HEMS

computes a flexibility range by incorporating the prices of

DSO in its own optimization problem. Due to future

uncertainties, the HEMS optimization problem is modeled

as an adaptive dynamic programming (ADP) to minimize

the total expected cost and discomfort of the household

over a forward-looking horizon. The flexibility range of

each HEMS is then used by the DSO in a second-stage

optimization problem to determine new optimal dispatch

points which ensure the efficient, reliable, and congestion-

free operation of the distribution system. Lastly, the sec-

ond-stage dispatch points are used by each HEMS to

constrain its maximum consumption level in a final ADP to

assign consumption level of major appliances such as

energy storage, heating, ventilation and air-conditioning,

and water heater. The proposed method is validated on an

IEEE 69-bus system with a large number of regular and

HEMS-equipped homes in each phase.

Keywords Distribution locational marginal price, Real-

time market, Congestion, Home energy management

system, Unbalanced distribution system, Energy storage,

Adaptive dynamic programming

1 Introduction

In recent years, distribution systems have experienced

an unprecedented growth in the deployment of distributed

energy resources (DERs) including photovoltaic (PV)-

equipped and smart homes. The distribution system market

is anticipated to undergo a fundamental restructuring

towards a transactive energy market due to increasing

availability and active role of economically rational DER

owners [1] and their participation in demand response (DR)

programs. As a consequence of this transformation, new

market pricing mechanisms that can facilitate the efficient

and reliable operation of the grid are being investigated. In

this line of research, pricing based on distribution loca-

tional marginal price (DLMP) has been widely studied and

proposed [2–10]. However, it has been shown in several

studies that adopting such market-based mechanisms in a

distribution system with a high deployment of price-re-

sponsive DERs can adversely affect the distribution system

CrossCheck date: 26 March 2019

Received: 17 November 2018 / Accepted: 26 May 2019 / Published

online: 29 July 2019

� The Author(s) 2019

& Hongyu WU

hongyuwu@ksu.edu

Mohammad Nazif FAQIRY

mnfaqiry@ksu.edu

Li WANG

li5@ksu.edu

1 Department of Electrical and Computer Engineering, Kansas

State University, Manhattan, KS, USA

123

J. Mod. Power Syst. Clean Energy (2019) 7(6):1434–1449

https://doi.org/10.1007/s40565-019-0553-2

https://orcid.org/0000-0003-0199-5161
http://orcid.org/0000-0002-5223-6635
http://crossmark.crossref.org/dialog/?doi=10.1007/s40565-019-0553-2&amp;domain=pdf
https://doi.org/10.1007/s40565-019-0553-2


operation by causing congestions [2, 11]. It is therefore

crucial for a distribution system operator (DSO) to design

congestion mitigation strategies in three-phase unbalanced

distribution systems and coordinate it with the way flexi-

bility service is utilized from price-responsive end users.

Contrary to the transmission system, distribution sys-

tems are highly unbalanced and have higher losses and

voltage drops due to higher r=x (resistance/reactance) ratio

which, in addition to real power, requires power flow

models that account for voltage magnitudes and reactive

power flows and their associated losses. A few studies have

incorporated power flow constraints to obtain losses, volt-

age violations, and line congestion prices using DLMP

decomposition [7, 8, 10]. In these studies, the appearance

of voltage violation and congestion components in a nodal

DLMP signals the occurrence of an operational issue,

partly caused by the marginal contribution of the nodal

demand. Therefore, it is beneficial to both the DSO and a

price-responsive end user, such as a smart home operated

by home energy management system (HEMS) [12–14], to

alleviate any violation or congestion by providing some

flexibility service in real-time. To the best of our knowl-

edge, there is no framework in the literature that can

enhance the real-time market operation of DSO as well as

add operational reliability and value through coordinated

utilization of flexibility service from HEMS.

In this paper, we aim to contribute in this space and

propose a DLMP-based real-time operational framework

for the DSO to operate unbalanced three-phase distribution

systems in a congestion-free manner by procuring a coor-

dinated flexibility service from HEMS. The HEMS is

assumed to interact with the DSO and provide its optimal

flexibility range by minimizing the total expected cost and

discomfort of household considering the current state of

controllable appliances and their uncertain future demand.

Hence, in line with the focus of this paper, we first provide

some related work on DLMP-based DSO market and

congestion management, HEMS decision-making under

uncertainty, and real-time DR provided by HEMS, and

then outline our main contributions.

At the grid level, a number of studies focus on DLMP

pricing. Reference [11] proposes a dynamic tariff method

for the DSO to alleviate congestion that might occur in a

distribution network with high penetration of DERs. The

uncertainty management is to quantify and mitigate the risk

of congestion when employing the dynamic tariff method,

which is achieved by formulating the problem as a chance-

constrained two-level optimization and solving the prob-

lem through an iterative procedure. Reference [2] presents

a method based on DLMP to mitigate grid congestion

introduced by electric vehicles. References [15, 16] pro-

pose a DR-based congestion management in the distribu-

tion system. In [15], a bi-level optimization model for the

day-ahead congestion management is established and a

robust optimization approach is introduced to alleviate

negative impacts introduced by uncertainties in DER gen-

eration and market prices. Reference [16] proposes a

bilevel congestion-price-based approach to alleviate pos-

sible congestion in the distribution system. At the upper-

level, the DSO communicates with the aggregators to seek

flexibility service. At the lower-level, aggregators are

assigned to control and schedule customers’ home-level

appliances. Reference [3] proposes a DLMP-based con-

gestion management through quadratic programming in a

distribution system with high penetration of flexible

demands. Aggregators are considered as intermediate

agents to receive DLMP as dynamic tariffs computed by

the DSO and plan for the optimal energy schedules of

flexible loads. Reference [4] proposes a DLMP-based

approach to congestion-free reserve and energy provision

from buildings in distribution grids. The above studies

assume a symmetric and balanced distribution system.

At the home level, a number of HEMS studies have used

adaptive dynamic programming (ADP) for optimal man-

agement of PVs and energy storages (ESs) [17–20]. Refer-

ence [17] uses ADP with temporal difference learning to

implement a computationally efficient HEMS that optimizes

PV-ES system scheduling to minimize cost and discomfort

to the household. Reference [18] proposes a novel distributed

iterative ADP to solve the multi-ES optimal coordination

control problems. Reference [19] develops a self-learning

scheme based on ADP to optimize residential ES. Reference

[20] compares different methods for home energy resource

scheduling and analyze their performance dependency on the

ES model employed, focusing on ES capacity and charge/

discharge rates. A few other studies use ADP to control the

energy use of building cooling systems to minimize energy

consumption while preserving the comfort of occupant

[21, 22]. In our recent study, we compare dynamic pro-

gramming (DP) and ADP algorithms implemented by

HEMS to optimize forward-looking schedules of heating,

ventilation and air-conditioning (HVAC), water heater

(WH), and electric vehicle charging while considering

uncertainty in outside temperature, hot water usage, and non-

controllable load (NCL) [23].

Lastly, a few other related papers that deal with real-

time HEMS-based DR are reported in [24–28]. An opti-

mization-based control of deferrable loads by HEMS in

response to real-time pricing signals with the goal to reduce

consumer’s electricity bill while minimizing the total daily

curtailment, has been proposed in [24]. Another HEMS-

level DR optimization framework under real-time pricing

which uses a convex programming to relax integer vari-

ables to continuous ones for the efficient and flexible

incorporation of multiple deferrable loads has been pro-

posed in [25]. A home-level consumption scheduling
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framework that achieves a desired tradeoff between mini-

mizing electricity payment due to real-time pricing and

minimizing waiting time for the operation of each appli-

ance has been proposed in [26]. Additional literature on

HEMS-enabled DR based on real-time pricing has been

surveyed in [27]. Unfortunately, none of the above papers

and the references therein study a real-time coordinated

mechanism between DSO, which prices customers

according to a state-of-the-art method (DLMP), and HEMS

in an unbalanced distribution system. The closest study to

our work is probably [28], which assesses the benefits of

residential DR in real-time distribution markets based on

DLMP. However, [28] mostly focuses on the benefits of

DR to the grid and assumes a balanced distribution system

without dealing with any coordination mechanism between

the DSO and the residential customers.

While most of the existing literature use ‘‘DC’’ power

flow and a flat voltage profile to compute only real power

DLMPs [2, 3, 8, 11], or consider balanced distribution

systems [4, 29], we propose a real-time DSO optimization

model that can determine real and reactive power DLMPs

in three phases of an unbalanced distribution system, and

utilize a coordinated flexibility service from HEMS to

alleviate operation issues such as voltage violations and

line congestion in different phases. The key contributions

of this paper are summarized in the following three aspects:

1) We provide a three-phase DLMP decomposition for

both real and reactive power in an unbalanced

distribution system.

2) At the grid level, we propose a two-stage real-time

operation framework using which a DSO can imple-

ment a coordinated flexibility service among a large

number of HEMS-equipped homes while alleviating

congestion, voltage violations, and substation-level

power imbalance.

3) At the HEMS level, we propose an ADP-based

approach that can enable HEMS to provide flexibility

range to the DSO while minimizing household’s cost

and discomfort by optimally deciding the schedules of

appliances under future uncertainty in demand and

weather temperature.

The rest of this paper is organized as follows. In Sec-

tion 2 we introduce the proposed two-stage framework. In

Section 3, we provide the system model which explains the

mathematical formulation for the first- and second-stage

optimization problems of DSO and HEMS. We present our

simulation results in Section 4 and conclude in Section 5.

2 Framework

We consider an unbalanced distribution system that

serves different number of homes in each phase of its three-

phase nodes. We assume that homes on every phase are

either regular or smart (HEMS-equipped) type. A smart

home is considered to own PV panels coupled with ES,

HVAC, and WH that are controlled by HEMS.

To determine the occurence of any congestion or voltage

violation in the grid, we model the DSO to implement a

reliability assessment by solving a first-stage optimization

problem based on real-time demand/supply bids at each

three-phase node. The DSO can also solve the first-stage

optimization problem without any need for demand or

supply bids; it can maximize the social welfare by dis-

patching as much power as demanded and allowed by the

grid constraints. The DLMP values that are each composed

of energy, losses, congestion, and voltage violation com-

ponents can then be computed using the first-stage opti-

mization solution and a sensitivity analysis. When

congestion or voltage violation prices are seen, the DSO

can realize the existence of an operational issue and

immediately seek flexibility service from HEMS to alle-

viate these issues while operating within the allowable

power imbalance threshold at the substation node. By using

DLMP components, DSO can send two price signals (lower

and upper) to each HEMS and inquire a flexible demand

range.

In the next step, each HEMS can compute and send back

to the DSO the inquired demand range (flexibility) by

incorporating the prices of DSO in its ADP-based

stochastic optimization problem to find optimal consump-

tion amounts of its controllable appliances. In the second

stage, by aggregating the flexibility ranges of all the par-

ticipating HEMS, the DSO can determine an optimal dis-

patch point without any distribution system congestion or

voltage violation and send it back to each HEMS. In its

second stage, each HEMS can set the dispatch point as the

maximum consumption for its controllable appliances. The

flowchart in Fig. 1 summarizes this procedure.

3 System model

3.1 DSO first-stage optimization problem

The DSO first-stage optimization problem can be for-

mulated as in (1)–(12), which minimizes the objective

function in (1) by dispatching the least cost generation (1st

and 3rd terms, corresponding to wholesale supply and DG

supply), high value loads (4th term), and avoiding curtail-

ment at high value of lost load (VOLL) (2nd term). For
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conciseness and clarity, related fundamental symbols are

shown in Table 1. Other symbols are abstract combinations

of these symbols or explained in the text. For example, L
P;/
j

in (2) shows the real power loss in phase / of line j.

min
p
/
0
;pG;/

i
;pD;/

i
;�pD;/

i

X

i2N N;/2N /

kp0p
/
0 þ mp�pD;/i

� �h

þ c
G;/
i p

G;/
i � c

D;/
i p

D;/
i

� �i ð1Þ

s.t.

p
/
0 þ

X

i2N N

p
/
i �

X

j2N L

L
P;/
j ¼ 0 8/ 2 N / ð2Þ

q
/
0 þ

X

i2N N

q
/
i �

X

j2N L

L
Q;/
j ¼ 0 8/ 2 N / ð3Þ

p
/
i ¼ p

D;/
i � p

G;/
i 8i 2 N N; 8/ 2 N / ð4Þ

q
/
i ¼ q

D;/
i � q

G;/
i 8i 2 N N; 8/ 2 N / ð5Þ

L
P;/
j ¼ rj

ðP/
j Þ

2 þ ðQ/
j Þ

2

ðV/
i Þ

2
8j 2 N L; 8/ 2 N / ð6Þ

L
Q;/
j ¼ xj

ðP/
j Þ

2 þ ðQ/
j Þ

2

ðV/
i Þ

2
8j 2 N L; 8/ 2 N / ð7Þ

1� � 6 V
/
i 6 1þ � 8i 2 N N; 8/ 2 N / ð8Þ

ðP/
j Þ

2 þ ðQ/
i Þ

2
6 ðS/j Þ

2 8j 2 N L; 8/ 2 N / ð9Þ

jp/0 � p
/0

0 j ¼ D/p 8/ 2 N /; 8/0 2 fN / n /g ð10Þ

jq/0 � q
/0

0 j ¼ D/q 8/ 2 N /; 8/0 2 fN / n /g ð11Þ

fp/0 ; p
G;/
i ; pD;/i g 2 X 0;XG;XD

� �
8i 2 N N; 8/ 2 N /

ð12Þ

In the above optimization problem, (2)–(5) pertain to the

system and nodal real and reactive power-balance

constraints in each phase. The line losses are given by

(6), (7) and nodal voltage constraint is enforced by (8). The

megavolt ampere (MVA) limit constraint of each line j in

phase / is given by the quadratic constraint in (9). The

three-phase real and reactive power imbalance is restricted

to a small percentage ðD/p;D/qÞ at the substation level

and imposed by (10), (11) between any two phases.

Additional substation, DG, and load constraints, including

integer constraints from utility-scale ES units [30, 31], if

any, can also be accommodated as summarized in (12).

Note that (1)–(12) is a nonlinear optimization problem

due to constraints (6), (7), (8), and (9), which respectively

relate to line losses, node voltages, and line MVA limits.

With further derivation provided in Appendix A and details

in our previous work [5], these constraints are

Start

End

Second stage

First stage

Each HEMS uses these prices to run an ADP-based stochastic
optimization problem and return its flexible demand range

DSO solves a first-stage reliability assessment optimization
problem and propagates the lower and upper DLMP prices 

to each HEMS i at phase    ϕ

Each HEMS receives its second-stage DLMP price and
dispatch point and decides its final real-time appliance

operation set points

DSO solves a second-stage optimization and determines
new DLMP prices and dispatch points by setting the 

aggregate demand range as new constraints

on node

Fig. 1 Flowchart of proposed two-stage framework

Table 1 Nomenclature

Symbol Description

i; j;/; 0 Index of node, line, phase, and substation

h, a, t Index of home, appliance, and timeslot

N N;N L;N / Set of nodes, lines, and phases

N Fþ ;N F� Set of nodes with, without flexibility service

N H;N A;N T Set of homes, appliances, timeslots

X0;XG;XD Set of substation, generation and load constraints

/1;/2;/3 Phases 1, 2, and 3

D/p;D/q Allowed real, reactive power imbalance

E, L, V, C Scripts for energy, loss, voltage and congestion

V, p, q Voltage, real, reactive power injections

P, Q Real, reactive line power flows

LP;LQ Real, reactive line losses

cG; cD Generation cost, demand value

r; x Resistance, reactance of lines

k;p Substation node price (LMP), DLMP

l; q Voltage, flow constraint Lagrange multipliers

m; d Value of lost load, congestion penalty

w; g Penalty factor, scalar in the range [0,1]

j; f Line overload coefficient, slack variable

Gp;Gq Grid matrices related to p and q

U;D Upstream, downstream grid matrices

PC;PD Household cost, discomfort functions

aC; aD Cost, discomfort function coefficients

s, x, u State, decision, and stochastic variables

b; c; f Unit adjustment coefficients for appliances

e�; �� Stochastic variable, curtailment

�; � Lower, upper bounds
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appropriately linearized and given in (13)–(16). In (13) and

(14), a Taylor series approximation around center points,

p
/H
i and q

/H
i showing an optimal power flow solution that

is obtained exogenously, has been used. In (15) and (16), a

modified linearized power flow and an outer approximation

are used.

L
P;/
j � L

P;/
j ðp/Hi ; q/Hi Þ

þ
X

i

oL
P;/
j

op
/
i

ðp/i � p
/H
i Þ þ

X

i

oL
P;/
j

oq
/
i

ðq/i � q
/H
i Þ

ð13Þ

L
Q;/
j � L

Q;/
j ðp/Hi ; q/Hi Þ

þ
X

i

oL
Q;/
j

p
/
i

ðp/i � p
/H
i Þ þ

X

i

oL
Q;/
j

oq
/
i

ðq/i � q
/H
i Þ

ð14Þ

V
/
i ¼ V

/
0 �

X

k2N N

Gpði; kÞðp/k þ L
P;/
k Þ

þ
X

k2N N

Gqði; kÞðq/k þ L
Q;/
k Þ

ð15Þ

jP/
j ðxÞj þ jQ/

j ðxÞj 6
ffiffiffi
2

p
S
/
j

ð16Þ

By using the above approximations and replacing (6),

(7) and (9) with (13), (14) and (16), respectively, and

substituting V
/
i in (8) with the RHS of (15), the DSO can

solve a linear programming to determine its first-stage

optimal dispatches. The first-stage dispatch solution can

then be used by the DSO to compute the DLMPs using a

sensitivity analysis.

3.2 DLMP computation using sensitivity analysis

The real power DLMP p/p;i in phase / of each three-

phase distribution node i is defined as the sum of the energy

price, pE;/p;0 , the price of losses, pL;/p;i , the price of voltage

violations, pV ;/p;i , and the price of line congestions, pC;/p;i .

The reactive power DLMP, p/q;i is similarly defined as the

sum of its corresponding components in phase / of node i.

The real and reactive power DLMPs and their respective

components are defined below.

p/p;i ¼ pE;/p;0 þ pL;/p;i þ pV ;/p;i þ pC;/p;i

¼ k0;/p þ k0;/p

X

j

oL
P;/
j

op
/
i

þ k0;/q

X

j

oL
Q;/
j

op
/
i

 !

þ
X

i0
lmin;/
i0 � lmax;/

i0

� � oV/
i0

op
/
i

þ
X

j

q/j
oS

/
j

op
/
i

ð17Þ

p/q;i ¼ pE;/q;0 þ pL;/q;i þ pV ;/q;i þ pC;/q;i

¼ k0;/q þ k0;/q

X

j

oL
Q;/
j

oq
/
i

þ k0;/p

X

j

oL
P;/
j

oq
/
i

 !

þ
X

i0
lmin;/
i0 � lmax;/

i0

� � oV/
i0

oq
/
i

þ
X

j

q/j
oS

/
j

oq
/
i

ð18Þ

The first term in (17) shows the energy price of real power in

phase / at the substation node ‘‘0’’, which is typically the

wholesale LMP. The second term in the bracket in (17) shows

the price of real power loss caused in the grid by inject-

ing p
/
i . It is defined as the sum of marginal contributions of

dispatch p
/
i in change in real and reactive power losses, L

P;/
j

and L
Q;/
j , of all the lines j, multiplied by their respective energy

prices, k0;/p and k0;/q . The third term in (17) is asso-

ciated with the voltage violation price. The voltage violation

price is activated when a node i0 hits an upper or lower voltage
limit given by constraints in (8). Since the dispatch of node i can

cause a change in voltage of i0 and can potentially make its

constraint active, the voltage violation price of node i is defined

as the sumof itsmarginal contributions to the change in voltage

of i0 multiplied by the difference of its respective Lagrangian

multipliers associated with the lower and upper bound voltage

constraints in (8). Lastly, the congestion price (the fourth term

in (17)) is defined as the marginal contribution of p
/
i in the

change in MVA flow of line j, S
/
j , multiplied by its Lagrange

multiplier given by constraint in (16). Similar definitions hold

for the reactive power DLMP components in (18). The

sensitivities oL
P;/
j =op/i , oL

Q;/
j =op/i , oV

/
i0 =op

/
i , oS

/
j =op

/
i , and

those with respect to q
/
i are provided in Appendix A.

At the end of its first-stage optimization, when the DSO

determines the occurence of a congestion or voltage vio-

lation, it seeks flexibility by sending the lower and upper

DLMPs, p/p;i and p
/
p;i, where p/p;i is the sum of energy and

loss components (p/p;i ¼ pE;/p;0 þ pL;/p;i ) and p/p;i is the sum of

all DLMP components (p/p;i ¼ pE;/p;0 þ pL;/p;i þ pV ;/p;i þ pC;/p;i ),

to each HEMS-equipped home h served by phase /.

3.3 HEMS first-stage optimization problem

Using the upper and lower DLMPs, each HEMS can find

an optimal tradeoff between cost and discomfort by opti-

mally determining consumption levels of its controllable

appliances. In this study, each HEMS has been assumed to

own PV-panels coupledwith ES andNCL. Additionally, two

major controllable loads, namely HVAC andWH, have been

considered. A schematic of such a HEMS-equipped home is

depicted in Fig. 2. The HEMS stochastic optimization
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problem can be modeled in terms of a DP with states, deci-

sions, and stochastic variables. At every time step, the

HVAC,WH, and ES states are respectively considered as the

room temperature, water temperature, and ES state-of-

charge (SOC). The decision set captureswhether or not to run

the HVAC system, whether or not to heat water in the WH,

and how much energy to inject into the ES. To model future

uncertainties, the stochastic variables in this study has been

considered as the outside temperature, hot water demand,

and NCL of the household. The net NCL is modeled as the

difference of the NCL and PV generation, and has been

assumed to be entirely served by the ES. In addition, the

following timing assumptions are made:

1) The controllable appliance a in each home h is in state

sha;t when HEMS makes a decision dha;t for that

appliance at the beginning of the time step t.

2) The decision dha;t is immediately applied which

impacts the remainder of the time step t.

3) The stochastic variable euha;t associated with the appli-

ance a is realized after the decision is applied and lasts

for the remainder of the time step t.

As an example, Fig. 3 illustrates a decision tree, which

can best explain a DP, for the case of HVAC cooling. Here,

squares represent decision nodes, circles represent uncer-

tainty nodes, and triangles show terminal nodes. The

decisions are STAY (no action), COOL, or H.COOL

(highly cool). The outside temperature effect is shown by

uncertainty changes (UNC� i; i 2 f0;�1;�2g) degrees,

where UNC represents uncertainty. The outside tempera-

ture is drawn from historical data, but its forecast is esti-

mated as a generalized random walk that may go up or

down a few degrees or remain unchanged. The optimal DP

solution, shown by the bold black line, can be found using

backward induction [23, 32] as follows:

Step 1: Compute the thermal discomfort at the terminal

nodes.

Step 2: Compute the expected cost and discomfort of

each preceding uncertainty node.

Step 3: For each decision node, pick the decision with

the lowest sum of weighted decision cost (energy and

discomfort) and expected future value.

Step 4: Repeat Step 2 and Step 3, working backward in

time, until the optimal first period decision is found.

With t 2 N T showing the timeslots in forward-looking

horizon jN Tj, theHEMSobjective can be achieved asmodeled

in (19)–(24) using a form of Bellman’s equation [33].

min
dht

E
X

t2N T

aD;h
t PD;h

t sht ; d
h
t ; eu

h
t

� �
þ aC;ht PC;h

t sht ; d
h
t ; eu

h
t

� �� � !

ð19Þ

where

PD;h
t

�
sht ; d

h
t ; eu

h
t Þ ¼

X

t2N A

bha;tjshad ;t � sha;tj ð20Þ

PC;h
t

�
sht ; d

h
t ; eu

h
t Þ ¼ php;t

X

a2N A

fhad
h
a;t

 !
Dt ð21Þ

s.t.

20366

Weather 
forecast

Utility grid

WH

HVAC

HEMS

P

NCL

ES

Fig. 2 HEMS illustration for a PV-equipped home with major

controllable loads (ES, HVAC, WH) and NCL
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Fig. 3 Decision tree for HVAC with highlighted route that minimizes

weighted sum of expected cost and discomfort
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sha;t ¼cha;ss
h
a;t�1 � cha;dd

h
a;t þ cha;ueuha;t

8a 2 N A; 8t 2 N T

ð22Þ

sha;t 6sha;t 6 sha;t 8a 2 N A; 8t 2 N T ð23Þ

dha;t 6dha;t 6 d
h

a;t 8a 2 N A; 8t 2 N T ð24Þ

The objective function in (19) shows the expected

weighted sum of household’s cost and discomfort over the

forward-looking horizon. The symbols sht ; d
h
t ; eu

h
t show the

state, decision, and stochastic variable vectors for each

house h whose ath entry corresponds to its controllable

appliance a at timeslot t. In (20), the discomfort function,

PD;h
t , of each home h due to a controllable appliance a

(e.g., HVAC, WH) is modeled as the absolute value of the

difference of the appliance state sha;t from the desired state

shad ;t at each timeslot t. In (21), the energy cost function,

PC;h
t , of each home h at timeslot t is modeled as the price of

electricity during that time multiplied by the sum of

demand (in kW) in making the decision dha;t for each

appliance a and the timeslot resolution Dt. Lastly, the

weighted sum coefficients, aD;h
t and aC;ht , show the tradeoff

coefficients between cost and discomfort for each

household h at time t.

Constraint in (22) shows the temporal state transition

equation of the controllable appliance a from timeslot t to

timeslot t � 1. Here, the state transition equation has been

generalized to include adjustment coefficients and capture

appliance efficiency, unit conversion, and other properties.

For instance, for HVAC, cha;s (s for state) captures the

HVAC efficiency in changing the room temperature from

time t to t � 1, cha;d (d for decision) is the unit adjustment

coefficient from decision (in kW) consumed to units of

temperature reduced, and cha;u (u for uncertainty) is an

outside air temperature driven coefficient that captures

building thermal features according to building insulation

properties. When applicable, the constraints in (23) and

(24) enforces lower and upper state and decision bounds of

each appliance a in home h at timeslot t.

By dropping the subscript t in the current timeslot

appliance decision, dha;t, of each HEMS-equipped home h

and summing it over all appliances, the net consumption in

kW, p
/
h , of each HEMS-equipped home h located in phase

/ of node i can be computed as follows:

p
/
h ¼

X

a2N A

fhad
h
a ð25Þ

In (25), fha is used to convert the decision units of each

appliance to kW. By using the DSO’s upper and lower

price range ½p/p;i; p
/
p;i� and solving (19)–(24) twice, the

lower and upper flexibility range, ½p/
h
; p/h �, of each home

h can be determined, respectively.

With N i;/
Hþ and N i;/

H� showing the sets of homes with and

without HEMS in phase / of node i, the total net demand,

p
D;/
i , in phase / of the three-phase node i can be computed

by summing p
/
h obtained from (25) over h,

8h 2 fN i;/
Hþ [ N i;/

H�g. For regular homes, p
/
h represents the

real-time fixed demand of home h. For HEMS-equipped

homes p
/
h is replaced with p/

h
or p

/
h depending on whether

p/p;i or p
/
p;i is employed in (19)–(24).

p
D;/
i ¼

X

h2N i;/

Hþ

p
/
h þ

X

h2N i;/
H�

p
/
h ð26Þ

Hence, the flexibility range ½pD;/
i

; pD;/i � can be

determined using ½p/
h
; p/h � in the first term of (26).

3.4 DSO second-stage optimization problem

In this stage, the DSO can use the flexibility range,

½pD;/
i

; pD;/i �, provided by nodes with HEMS-equipped

homes to alleviate congestion and voltage violation issues

in a social welfare maximizing manner. To do so, let N Fþ ,

N F� show the set of nodes with, and without HEMS

flexibility, respectively. With the dispatches p
D;/
i ,

8i 2 N F� , considered fixed and equal to p
D1;/
i , 8i 2 N F� ,

where superscript ‘‘1’’ pertains to the first-stage optimiza-

tion solution, the DSO can implement the second-stage

optimization problem as follows.

min
p
/
0
;pD;/

i
;�pD;/

i

X

i2N N;/2N /

kp0p
/
0 þ mp�pD;/i

� �
2

4

þ
X

i2N N;/2N /

c
G;/
i p

G;/
i � c

D;/
i p

D;/
i

� �
þ

X

j2N LC
;/2N /

wf /j

3
5

ð27Þ

s.t. (2)–(5), (8), (13)–(16)

fpD;/i ; qD;/i g ¼ fpD
1;/

i ; qD
1;/

i g 8i 2 N F� ; 8/ 2 N /

ð28Þ

fpG;/i ; qG;/i g ¼ fpG
1;/

i ; qG
1;/

i g 8i 2 N F� ; 8/ 2 N /

ð29Þ

pD;/
i

6 p
D;/
i 6 p

D;/
i 8i 2 N Fþ ; 8/ 2 N / ð30Þ
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qD;/
i

6 q
D;/
i 6 q

D;/
i 8i 2 N Fþ ; 8/ 2 N / ð31Þ

jðjP/
j ðxÞj þ jQ/

j ðxÞjÞ þ f
/
j 6

ffiffiffi
2

p
S
/
j

8j 2 N LC
; 8/ 2 N /

ð32Þ

In (27), the objective function (1) from the first stage has

been modified to include a penalty term
P

wf /j , where w

shows a large number to highly penalize congested lines.

Here, N LC
shows the set of congested lines in the first stage.

By using a slack variable, f
/
j , constraint (16) is also modified

to allow up to a certain overload coefficient (j) of the line

capacity, e.g. j ¼ 0:9, limiting the line flow to a maximum of

90% of the line capacity. By modeling the second-stage

optimization of the DSO in this way, it can be clearly seen

that, the flexibility provided in (30), (31) will enforce the

constraint in (32) to end up binding, removing the congestion

in the system. Since lower line flows are enforced, which,

compared to the first stage, causes lower voltage drops, an

additional merit of the second-stage optimization problem is

that it can also remove voltage violations in the system. By

finding an optimal solution, p
D�;/
i in the range ½pD;/

i
; pD;/i �

and p/�p;i in the range ½p
/
p;i; p

/
p;i�, the second-stage optimization

problem can completely remove the congestion and voltage

violation components of the DLMP.

The DSO’s second-stage solution, p
D�;/
i , is the optimal

dispatch in phase / of the three-phase node i which serves

a large number of HEMS-equipped (h 2 N i;/
Hþ ) and regular

(h 2 N i;/
H�) homes in each phase. As the last step of the

proposed method, the question now is how to redistribute

the optimal dispatch point, p
D�;/
i , among HEMS-equipped

homes in each phase. Here, we use a convex combination

to redistribute the three-phase dispatches to each HEMS-

equipped home. Without loss of generality, we first assume

that the flexible portion of p
D�;/
i coming from HEMS-

equipped homes is the convex combination of their flexi-

bility range endpoints at the three-phase node level, and

compute a scalar value g 2 ½0; 1� according to the following
linear combination.

p
D�;/
i �

X

h2N i;/
H�

p
/
h ¼ g p

D;/
i �

X

h2N i;/
H�

p
/
h

0
@

1
A

þ ð1� gÞ pD;/
i

�
X

h2N i;/
H�

p
/
h

0
@

1
A

ð33Þ

Note that, if all homes in phase / of node i are HEMS-

equipped, then
P

h2N i;/
H�

p
/
h ¼ 0.

Next, we use the computed g from (33) and the lower

and upper flexibility range of each HEMS-equipped home

to find its maximum consumption amount p
/�
h , given by

(34) below. Note that, this technique proportionally redis-

tributes power allocations according to the flexibility pro-

vided by each HEMS.

p
/�
h ¼ gp/

h
þ ð1� gÞp/h ð34Þ

3.5 HEMS second-stage optimization problem

Finally, the consumption amount p
/�
h from (34) is used

as the upper limit constraint in the second-stage opti-

mization problem of HEMS to find the optimal real-time

decisions for its appliances as follows.

min
dht

E
X

t2N T

aD;h
t PD;h

t sht ; d
h
t ; eu

h
t

� �
þ aC;ht PC;h

t sht ; d
h
t ; eu

h
t

� �� � !

ð35Þ

s.t.

(22)–(24)
X

a2N A

fha � dha 6 p
/�
h 8h 2 N i;/

Hþ ; 8a 2 N A ð36Þ

By denoting the optimal solution of the above

optimization problem with dh�t , and replacing it in (25),

the final HEMS dispatch point, denoted by ph�t at current

time t, is determined.

With the flowchart shown in Fig. 1, the following

algorithm provides an organized summary of the overall

two-stage mechanism.

Algorithm

1. Solve (1)–(12) according to Section 3.1, compute (17), (18) and

determine ½p/p;i; p
/
p;i� according to Section 3.2 at the DSO-level and

send it to each HEMS (the first-stage DSO optimization).

2. According to Section 3.3, use ½p/p;i; p
/
p;i� to solve (19)–(24) twice

and compute ½p/
h
; p/h � using (25) for each HEMS and send it to DSO

(the first-stage HEMS optimization).

3. Use (26) to compute the flexibility range, ½pD;/
i

; pD;/i �, of each
three-phase node. According to Section 3.4, solve the problem

defined by (27), (2)–(5), (8), (13)–(16), (28)–(32), and use (17),

(18) to determine each three-phase node’s dispatch point and price,

ðpD
� ;/

i ; p/�p;i Þ. Then use (33), (34) to determine HEMS-level dispatch

point, p
/�
h . Send p

/�
h and p/�p;i to each HEMS (the second-stage DSO

optimization).

4. According to Section 3.5, optimize (19)–(24), (36) using p
/�
h and

p/�p;i at each HEMS to determine final applicance decisions and

HEMS-level dispatch points, dh�t and ph�t (the second-stage HEMS

optimization).
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4 Simulation results

The proposed two-stage mechanism was implemented

on a modified IEEE 69-bus system, as shown in Fig. 4,

using CPLEX and the ADP functionality in dynamic pro-

gramming for adaptive modeling and optimization

(DYNAMO) toolkit developed by the National Renewable

Energy Laboratory (NREL). In Fig. 4, the unbalanced

three-phase loads shown by arrows and their corresponding

real-time bids were set in a way to create line congestions

and voltage violations in the first stage. Each node’s three-

phase load was assumed to be the aggregate load of the

homes connected to the respective phase. Two types of

homes, regular homes (without HEMS) and smart homes

(HEMS-equipped), were considered. A regular home was

assumed passive whose real-time demand has to be served

under any circumstance. A HEMS-equipped home was

assumed to have the willingness to respond to the pricing

signals from the DSO, provide a flexibility range, and

adjust its controllable load (HVAC, WH and ES)

consumption.

The simulation setup was designed in a way to first

specify the most vulnerable lines and nodes that are prone

to congestion and voltage violations. Then HEMS-equip-

ped homes were considered for the nodes with the highest

demand along the specified congested lines. In our case

study, the real-time demand and bids of the three-phase

nodes in the system created line congestions in lines 2 (the

line connecting node 1 to node 2), 35, 46, and 52, and

voltage violation in nodes 26, and 60-64. With the highest

three-phase loads located at nodes 45, 49, and 60, different

number of HEMS-equipped homes were considered at

these nodes.

Furthermore, with everything else kept identical, and

HVAC composing the major portion of its load, each

HEMS-equipped home were classified into types I, II, and

III according to their initial (real-time) room temperatures.

Without loss of generality in specifying the types of homes,

those with initial room temperatures of 24:5 	C, 26:1 	C,
and 27:8 	C were considered to denote types I, II, and III,

respectively. Our goal in the simulations were twofold.

First, we wanted to observe how each sample HEMS type

provides flexibility by taking the price of DSO and dis-

comfort of occupants into consideration while being at

different discomfort levels due to differing initial room

temperatures. This aspect of our work is quite novel in the

sense that it provides a way for an active consumer

(HEMS-equipped home) to respond to the price signal of

DSO and provide DR under real-time circumstances while

accounting for the discomfort of household. Second, we

wanted to see the impact of the flexibility provided by

HEMS in bringing operational benefits to the grid.

Table 2 summarizes the number of sample HEMS types

placed at nodes 45, 49, and 60. Here, the number of regular

homes has been considered zero to provide high flexibility.

Also, for each phase, the same number of each HEMS type

has been considered.

For the three types of homes, all HEMS related

parameters used in simulating the ADP-based stochastic

optimization problem has been respectively tabulated for

HVAC, WH, and ES in Tables 3, 4, and 5. The first col-

umns in these tables show the name of parameters with its

unit in parenthesis. The second columns show the corre-

sponding values of these parameters. The first two rows in

these tables show the operation range of state of appliances

and their corresponding desired/minimum states. Note that,

while room and water temperatures have been modeled as

states for HVAC and WH, SOC has been considered as the

state for the ES where only a state close to its minimum

SOC is penalized. The third and fourth rows show the

decision and uncertainty ranges of the stochastic variables

affecting their corresponding appliance states. For instance,

for HVAC in Table 3, the decision range shows how many

increments of 	C can be reduced. The uncertainty range

shows the range in which the outside temperature varies,

and as a result changes the room temperature state of

HVAC over the forward-looking horizon according to the

state transition equation in (22). The amount of energy

needed to increase one unit (e.g., 	C) in the state space and

the state resolution is listed in the fifth and sixth rows of

Tables 3, 4, and 5. Each appliance discomfort coefficient

used in (19) to compute its total discomfort at any state is

given by the seventh row. Finally, the initial (current

timeslot) state of each HEMS type is shown in the last three

rows. Notice in the last three rows that we have kept the

initial water temperature of WH and the initial SOC of the

ES constant across HEMS types while altering that of

HVAC to see HEMS behavior clearly.

Next, for conciseness and better illustration, we first

present the simulation results of the first-stage and second-

stage optimization problems of DSO. Then, we present the

Three-phase load; PV-equipped or regular home with HEMS
Nodes with HEMS; Regular home without HEMS

1
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Fig. 4 Oneline diagram of IEEE 69-bus system with HEMS-

equipped homes at nodes 45, 49, 60, and regular homes elsewhere
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first- and second-stage HEMS-level results for the three

HEMS types, especially for HVAC. As a sample case for

HEMS type III, we also show its scheduling results for WH

and ES.

The simulation results of first-stage and second-stage

optimization problems of DSO are shown in Figs. 5 and 6.

Figure 5 shows the DLMP values, whereas Fig. 6 shows

physical grid quantities. In Fig. 5, the DLMP values and

their components are stacked and shown for both (before

and after HEMS flexibility) stages. We firstly focus on the

first stage.

As seen, the three-phase DLMP values of the first stage

are very high. The first-stage DLMPs are composed of

energy price, loss price, nonzero voltage violation price,

and nonzero line congestion price. It can be observed, for

instance in phase B, that as a result of flow congestion in

lines 2, 35, 46, and 52, and voltage violation in node 26,

their corresponding DLMP components are activated in

Fig. 5. Note that a congestion/voltage violation in one line/

node adds the corresponding DLMP component not only to

that line/node but also to the lines and nodes that are

affected by it, or share a line in its route to the substation

node. For instance, again in phase B, node 26 has a voltage

violation (Fig. 6e), but the price is reflected mainly on

nodes 1–26; other nodes are also affected. Or, due to

congestion of line 2 in this phase, all nodes see a conges-

tion price.

In the second stage, when HEMS-equipped homes in

nodes 45, 49, and 60 provide flexibility, it is seen in both

Figs. 5 and 6, that the congestion and voltage violation

components of the DLMPs have completely vanished,

reducing it to mere energy and loss prices. The obvious

reason is that none of the second-stage line graphs in Fig. 6

hits a limit. Note that this is due to the penalty term in the

second-stage objective function of DSO and constraint (32)

to relax the congested line loading to within j (0.95 in our

simulation) times of its capacity. Note further that, while

Table 3 Parameters of HVAC used in ADP-based HEMS stochastic

optimization

Parameter Value

State range (	C) [21.1, 26.7]

Desired temperature (	C) 23.9

Decision range (	C) [0, 2.2]

Uncertainty range (	C) [15.6, 43.3]

Energy needed (kWh=	C) 9.5

State resolution (	C) 0.055

Discomfort coefficient (b) 1.05

HEMS type I initial state (	C) 24.5

HEMS type II initial state (	C) 26.1

HEMS type III initial state (	C) 27.8

Table 4 Parameters of WH used in ADP-based HEMS stochastic

optimization

Parameter Value

State range (	C) [42.2, 51.7]

Desired temperature (	C) 45

Decision range (	C) [0, 3.3]

Uncertainty range (L) [0, 37.8]

Energy needed (kWh=	C) 1.3

State resolution (	C) 0.55

Discomfort coefficients (b) 0.4

HEMS type I initial state (	C) 45

HEMS type II initial state (	C) 45

HEMS type III initial state (	C) 45

Table 5 Parameters of ES used in ADP-based HEMS stochastic

optimization

Parameter Value

State range (%) [20, 100]

Minimum SOC (%) 20

Decision range (%) [0, 12]

Uncertainty range (%) [0, 12]

Energy needed (kWh=%) 0.5

State resolution (%) 2

Discomfort coefficients (b) 2

HEMS type I initial state (%) 36

HEMS type II initial state (%) 36

HEMS type III initial state (%) 36

Table 2 Number of HEMS-equipped homes of types I, II, and III in each phase of nodes 45, 49, and 60

Node number Number of type I HEMS Number of type II HEMS Number of type III HEMS Total number of HEMS

45 20 6 4 30

49 18 1 1 20

60 40 5 5 50
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keeping the dispatch of the nodes without HEMS fixed, as

imposed by constraints (28) and (29), the improvement in

removing the violations has only been caused by the flex-

ibility provided at nodes 45, 49, and 60.

The aggregate amounts of three-phase flexibility in kW

provided by nodes 45, 49, and 60, as well as their total, and

the resulting reduction in system losses are reported in

Table 6. Notice here that, despite our assumption of the

same type and number of HEMS in each phase of these

nodes, the flexibility used across their phases are different.

The reason for this difference is noted as the variation

across three-phase aggregate bid values of these nodes in

the second-stage objective function of DSO in (27). In

other words, less flexibility has been utilized from nodes

with higher demand bid values, hence maximizing the

resulting social welfare. This distinction makes our study

interesting in the sense that it is realistically applicable to a

transactive unbalanced DSO market with random real-time

demand variation and bids across phases.

The ADP-based HEMS-level results of the first-stage

and second-stage optimization is shown in Figs. 7 and 8.

Here, we assume that HEMS minimizes its expected cost

and discomfort by looking forward into the future uncer-

tainty space in order to make an optimal real-time decision

in response to the price signals of DSO. Figure 7a shows a

rolling-window scheduling of the HVAC for each HEMS

type for 6 consecutive timeslots while looking 6 hours into

the future at each individual timeslot. We note here that,

although most of our focus will be on the first timeslot, we

have also plotted the next five hours schedules to show the

effectiveness of HEMS decision-making under future

uncertainty. The horizontal dotted line shows the desired

room temperature state and the blue stairs graph shows the

price of energy; the first hour is the second-stage DLMP,

p/
�

p;i , and the following hours are forecasted prices by

HEMS. The height of the red shade at the end of the first

timeslot shows the appliance-level flexibility range pro-

vided by HVAC in response to the DSO’s upper and lower

price range, ½p/p;i; p
/
p;i�, in the first stage. Notice that the

shaded flexibility range in each HEMS type is different—

narrower when the initial temperature is far from its desired

state (e.g., HEMS type III) and wider when it is closer (e.g.,

HEMS type I). This observation can be explained as the

direct artifact of the initial room temperature and the way

cost and discomfort are weighted in the objective function

in (19). The HVAC of HEMS type III which is at an initial

high temperature of 27:8 	C (farthest from the desired

temperature of 23:9 	C), does not provide much flexibility

in response to the price signals of DSO as the discomfort

term PD;h
t in (19) weighs more. As an intermediate case,

HEMS type II shows some amount of flexibility in its

DLMP energy; DLMP loss; DLMP voltage violation
DLMP congestion; First-stage DLMP; Second-stage DLMP

100 20 30 40
Node index

50 60 70

100 20 30 40
Node index

50 60 70

100 20 30 40
Node index

50 60 70

20

25

30

35

40

45

50

55

20

25

30

35

40

45

50

55

20

25

30

35

40

45

50

55

(a) Real power DLMP in Phase A

(b) Real power DLMP in Phase B

(c) Real power DLMP in Phase C

D
LM

P 
(c

en
t/k

W
h)

D
LM

P 
(c

en
t/k

W
h)

D
LM

P 
(c

en
t/k

W
h)

Fig. 5 Real power DLMPs and their components at the end of first-

stage and second-stage optimizations of DSO
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tradeoff between discomfort and cost as it is closer to the

desired temperature.

The graphs with markers show the room temperature

state set by HEMS at the end of its second-stage opti-

mization. Here, during each timeslot 0–1, HEMS makes a

decision whether to set the room for cooling or not. The

temperature state transits from time ‘‘0’’ to ‘‘1’’ (the pre-

decision state of next timeslot) by readily implementing the

decision and applying the effect of stochastic variable

(outside temperature) over the duration of the timeslot

according to (22). Notice that, because of high discomfort

at 27:8 	C, HEMS III decides to cool the room at a maxi-

mum rate (i.e., hits the lower bound of its tiny flexibility

range with a highly negative slope) in order to get closer to

the desired temperature state of 23:9 	C. In contrast to

HEMS type III, HEMS type I decides to cool the room

slightly. The net effect of this slight cooling decision and

the stochastic outside temperature is seen as a small tem-

perature increase above 24:5 	C at time ‘‘1’’ (slight positve

slope). HEMS type II, which is at an initial room temper-

ature of 26:1 	C, decides to cool the room at an interme-

diate rate compared to HEMS types I and III. In this case,

the net effect of cooling decision and the outside temper-

ature is seen as a cooling temperature amount added

(negative slope). The reduction in the demand coming from

HVAC can be seen as the gap between the lower range of

the shaded flexibility region and the marker point at time

‘‘1’’. In other words, due to high initial room temperature

(high discomfort), only HEMS type III denies to provide

any flexibility in its HVAC.

For each HEMS type, the total flexibility limits in the

first stage as well as the total HEMS and DSO’s second-
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Fig. 6 Line MVA flow and node voltages as a result of the first-stage and second-stage DSO optimizations

Table 6 Flexibility in kW used by DSO in each phase of nodes 45, 49, and 60

Phase Flexibility (kW) Total (kW) Loss avoided (kW)

Node 45 Node 49 Node 60

A 47.7 31.6 120.9 200.2 12.1

B 47.7 42.7 110.7 201.1 11.2

C 47.7 42.7 57.4 147.8 6.3
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stage dispatches are shown in Fig. 7b. From the solid lines,

it can be seen that the demand of HEMS type I is signifi-

cantly less compared to types II and III. While HEMS types

I and III almost hit the dispatch of DSO, HEMS type II

decides differently and picks a point lower than the DSO

dispatch. The reason for this decision depends on the initial

room temperature state and the tradeoff between the total

expected cost and discomfort over the forward-looking

horizon. Note that, the second-stage HEMS dispatch, ph�t ,

also depends on the dispatch points of its HVAC, WH and

ES.

Figure 8 shows the identical WH and ES results in

HEMS types I, II, and III. In Fig. 8a, while the graph with

markers shows water temperature state transition, green

bars show the equivalent water temperature in increments

of 	C (HEMS decision). Blue bars show the equivalent

water temperature removed due to hot water usage

(stochastice variable). The values corresponding to the bars

are shown in the right vertical axis. In Fig. 8b, the decision

and effect of net NCL (stochastic variable) is shown in

equivalent percentage of SOC added and removed, respe-

cively. The state transition, as the difference of the two bars

plots, are shown by the graph with markers.

In HEMS type III, while the HVAC does not provide

any flexibility, its ES is set to provide full flexibility (hits

the lower limit of its shaded region) by drawing zero power

and serving the NCL through discharging the battery.

Similarly, the WH in HEMS type III (as well as in types I

and II) shows full flexibility as it happens to have no water

usage demand—hence no shaded flexibility region—at the

first timeslot due to zero water usage. In other words, the

total flexibility provided by HEMS type III is merely

coming from ES. The kW amount of this flexibility can be

readily seen as the difference between HEMS dispatch and

the upper flexibility limit in Fig. 7b. Notice that this gap is

relatively large for HEMS I and II compared to III. The

reason is clearly the additional flexibility amount provided

by the HVACs of HEMS types I and II.
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5 Conclusion

Validated by the simulation results presented in the

previous section, this paper presents a two-stage real-time

and social-welfare-maximizing operation of three-phase

unbalanced distribution systems through HEMS-enabled

flexibility. The proposed two-stage mechanism mitigates

distribution system operation issues such as line conges-

tions and voltage violations by enabling a coordinated

mechanism between DSO and HEMS. While achieving

both DSO and HEMS-level objectives, it is shown that by

implementing the proposed framework, flexibility service

from HEMS-level appliances can be acquired efficiently.

An important attribute of this research is its detailed

appliance-level modeling of cost and discomfort of

household in the HEMS objective function. We believe this

is an interesting feature of this work that has not been

previously scrutinized.

Although our simulation results focus on real power

pricing and flexibility, the mathematical formulation pre-

sented is generalized enough to include three-phase reac-

tive power pricing and flexibility. This is an additional

aspect of the proposed model that can be crucial for real-

time transactive energy market in distribution systems. An

interesting aspect of the proposed two-stage mechanism is

to conduct a detailed cost-benefit analysis of the DSO and

HEMS optimization problems.
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Appendix A

1) Loss, voltage, and line flow approximations

In (13) and (14), a Taylor series approximation by

neglecting the second and higher terms has been used to

linearize the line loss constraints in (6), (7) and obtain it in

terms of nodal power dispatches in each phase. The sym-

bols p
/H
i and q

/H
i , show the center-point of the Taylor

series approximation which can be computed using a fea-

sible alternating current (AC) optimal power flow solution

using any off-the-shelf software [34]. More details on this

approximation can be found in [29].

The power flow approximation technique in [29] has

been adopted and modified to obtain a linear relation

between voltages and power dispatches. With detailed

derivation provided in our previous work [5], the grid-

related matrices, Gp 2 RN
N , Gq 2 RN
N , associated with

real and reactive power dispatches and losses are given by:

½Gp Gq� ¼ U ZV

D 0

0 D

� 	
ðA1Þ

where U 2 RN
N , D 2 RN
N are upstream node-to-line

and downstream node-to-node incidence matrices, whose

elements are given by (A2) and (A3), respectively.

Uði; jÞ ¼
1 j 2 UðiÞ
0 otherwise



ðA2Þ

Dði; jÞ ¼
1 j 2 DðiÞ or i ¼ j

0 otherwise



ðA3Þ

The impedance matrix, ZV , is composed of line

impedances constructed as follows. Let Zr
j ¼ rj=ðr2j þ x2j Þ,

Zx
j ¼ xj=ðr2j þ x2j Þ, 8j 2 N L and Z ¼ Zr Zx

Zx � Zr

� 	
where

Zr ¼
Zr
1 . . . 0

..

. . .
. ..

.

0 . . . Zr
N

2

64

3

75 and Zx ¼
Zx
1 . . . 0

..

. . .
. ..

.

0 . . . Zx
N

2

64

3

75 are

diagonal matrices. Then, ZV is given as the first N

(where N ¼ jN Lj) rows of the inverse of Z as follows:

ZV ¼ Z�1ð1 : N; 1 : 2NÞ ðA4Þ

The quadratic line MVA flow constraint in (9) is

linearized as in (16) using an outer approximation [35].

2) Loss, voltage, and line flow sensitivities

Assuming constant voltage in phase / of node i in (7),

(8), the sensitivity of real and reactive power losses in

phase / of line j with respect to real and reactive power

injections at phase / of node i can be given by:

oL
P;/
j

op
/
i

¼ 2P
/
j

oP
/
j

op
/
i

þ 2Q
/
j

oQ
/
j

op
/
i

 !
rj

ðV/
i Þ

2
ðA5Þ

oL
P;/
j

oq
/
i

¼ 2P
/
j

oP
/
j

oq
/
i

þ 2Q
/
j

oQ
/
j

oq
/
i

 !
rj

ðV/
i Þ

2
ðA6Þ

oL
Q;/
j

op
/
i

¼ 2P
/
j

oP
/
j

op
/
i

þ 2Q
/
j

oQ
/
j

op
/
i

 !
xj

ðV/
i Þ

2
ðA7Þ

oL
Q;/
j

oq
/
i

¼ 2P
/
j

oP
/
j

oq
/
i

þ 2Q
/
j

oQ
/
j

oq
/
i

 !
xj

ðV/
i Þ

2
ðA8Þ

By writing the real and reactive power flows, P
/
j and Q

/
j

as the sum of the downstream dispatches, i.e.,
P

k2DðjÞ
p
/
k , and

losses, i.e.,
P

k2DðjÞ
L
P;/
k (see Fig. A1), the line power flow

sensitivities in (A5)–(A8) can be derived as:
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oP
/
j

op
/
i

¼Dðj; iÞ þ
X

k2N L

Dðj; kÞ oL
P;/
k

op
/
i

ðA9Þ

oP
/
j

oq
/
i

¼
X

k2N L

Dðj; kÞ oL
P;/
k

oq
/
i

ðA10Þ

oQ
/
j

op
/
i

¼
X

k2N L

Dðj; kÞ oL
Q;/
k

op
/
i

ðA11Þ

oQ
/
j

oq
/
i

¼Dðj; iÞ þ
X

k2N L

Dðj; kÞ oL
Q;/
k

oq
/
i

ðA12Þ

By replacing (A9)–(A12) in (A5)–(A8) and solving

recursively, the loss sensitivities in (A5)–(A8) can be

computed.

Similarly, for a node i0, by taking the derivative of V
/
i0 in

(15) with regard to real and reactive power dispatches, p
/
i

and q
/
i , in phase / of node i , the sensitivities oV

/
i0 =op

/
i and

oV
/
i =oq

/
i can be derived as follows.

oV
/
i0

op
/
i

¼� Gpði0; iÞ �
X

k2N L

Gpði0; kÞ
oL

P;/
k

op
/
i

�
X

k2N L

Gqði0; kÞ
oL

Q;/
k

op
/
i

ðA13Þ

oV
/
i0

oq
/
i

¼� Gqði0; iÞ �
X

k2N L

Gqði0; kÞ
oL

Q;/
k

oq
/
i

�
X

k2N L

Gpði0; kÞ
oL

P;/
k

oq
/
i

ðA14Þ

In (A13) and (A14), the line loss sensitivities are

obtained using (A5)–(A8).

By expanding (16) into four constraints, the line flow

sensitivities in the congestion components, pC;/p;i and pC;/q;i ,

of the DLMPs in (17), (18) are obtained as follows.

X

j2ufig
q/j

oS
/
j

opi
¼
XN

j¼1

Uði; jÞq/p;1ðjÞ
oP

/
j

opi

þ
XN

j¼1

Uði; jÞq/p;2ðjÞ
oQ

/
j

opi

ðA15Þ

X

j2ufig
q/j

oS
/
j

oqi
¼
XN

j¼1

Uði; jÞq/q;2ðjÞ
oQ

/
j

oqi

þ
XN

j¼1

Uði; jÞq/p;1ðjÞ
oP

/
j

oqi

ðA16Þ

Here, q/p;1 ¼ q/þþ � q/�� þ q/þ� � q/�þ, and

q/p;2 ¼ q/þþ � q/�� � q/þ� þ q/�þ. The Lagrange

multipliers q/þþ; q
/
��; q

/
þ�; q

/
�þ correspond to the four

constraints expanded from the absolute values in (16).
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