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Abstract Boosted by a strong solar power market, the

electricity grid is exposed to risk under an increasing share

of fluctuant solar power. To increase the stability of the

electricity grid, an accurate solar power forecast is needed

to evaluate such fluctuations. In terms of forecast, solar

irradiance is the key factor of solar power generation,

which is affected by atmospheric conditions, including

surface meteorological variables and column integrated

variables. These variables involve multiple numerical time-

series and images. However, few studies have focused on

the processing method of multiple data types in an inter-

hour direct normal irradiance (DNI) forecast. In this study,

a framework for predicting the DNI for a 10-min time

horizon was developed, which included the nondimen-

sionalization of multiple data types and time-series,

development of a forecast model, and transformation of the

outputs. Several atmospheric variables were considered in

the forecast framework, including the historical DNI, wind

speed and direction, relative humidity time-series, and

ground-based cloud images. Experiments were conducted

to evaluate the performance of the forecast framework. The

experimental results demonstrate that the proposed method

performs well with a normalized mean bias error of 0.41%

and a normalized root mean square error (nRMSE) of

20.53%, and outperforms the persistent model with an

improvement of 34% in the nRMSE.

Keywords Inter-hour forecast, Direct normal irradiance,

Ground-based cloud images, Multiple data types, Multiple

time-series

1 Introduction

Solar energy is an important renewable energy resource,

but is intermittent in the short period owing to the fluctu-

ations of solar radiation. Dramatic fluctuations cause the

energy output of a solar power plant to rapidly decrease

from hundreds of megawatts to zero output within a few

minutes, and bring about huge risk to the stability of the

electrical grid [1]. Therefore, an accurate forecast of solar

power is the premise and key technology of the grid-con-

nection for photovoltaic (PV) or concentrated solar thermal

(CST) plants [2, 3]. For various power system operations,

the geographical and temporal requirements differ in a

solar power forecast [4, 5].

CrossCheck date: 4 April 2019

Received: 15 October 2018 / Accepted: 4 April 2019 / Published

online: 13 July 2019

� The Author(s) 2019

& Haikun WEI

hkwei@seu.edu.cn

Tingting ZHU

tingting_zhu2018@163.com

Hai ZHOU

zhouhai@epri.sgcc.com.cn

Xin ZHAO

zhaoxin0504@163.com

Kanjian ZHANG

kjzhang@seu.edu.cn

Jinxia ZHANG

jxzhang@seu.edu.cn

1 Key Laboratory of Measurement and Control of CSE,

Ministry of Education, School of Automation, Southeast

University, Nanjing 210096, China

2 State Key Laboratory of Operation and Control of Renewable

Energy and Storage Systems (China Electric Power Research

Institute), Nanjing 210003, China

123

J. Mod. Power Syst. Clean Energy (2019) 7(5):1319–1327

https://doi.org/10.1007/s40565-019-0551-4

http://orcid.org/0000-0002-6667-3166
http://crossmark.crossref.org/dialog/?doi=10.1007/s40565-019-0551-4&amp;domain=pdf
https://doi.org/10.1007/s40565-019-0551-4


Solar power significantly depends on the solar irradi-

ance, such as the global horizontal irradiance (GHI) for PV

plants and the direct normal irradiance (DNI) for CST

plants [6], and thus the solar power output forecast can be

transformed into a solar irradiance (GHI or DNI) forecast

[7–9]. In this study, we focus on a DNI forecast. The DNI

is mainly affected by surface meteorological variables and

column integrated variables, such as clouds and water

vapor. Except for clouds, these atmospheric variables have

been considered in most clear-sky models for a DNI esti-

mation [10] or numerical weather prediction for a day-

ahead solar irradiance forecast [11, 12] and long-term solar

irradiance estimation [13]. However, for an inter-hour DNI

forecast in all sky conditions, clouds have been the only

factor considered in certain forecast models, and other

atmospheric variables have been ignored [14–19].

Recently, the majority of all-sky DNI forecast models have

employed two main parts: clear-sky DNI forecast and

cloud fraction forecast [20–22]. In this way, except for

clouds, the effectiveness of other atmospheric variables is

considered in a clear-sky DNI estimation. However, the

accuracy of clear-sky forecast is limited by the immea-

surability of most clear-sky atmospheric variables under

all-sky conditions, and thus most clear-sky models applied

in all-sky forecast are empirical with few atmospheric

variables [23–25].

To achieve a higher accuracy of an inter-hour DNI

forecast, [26] modified a clear sky model by considering the

variation of the atmospheric components. Reference [27]

also developed a forecast method using adaptive clear-sky

models. However, the improvement in accuracy was limited

by adjusting these models. In this study, a framework of an

inter-hour DNI forecast was developed by directly consid-

ering the atmospheric variables, including the historically

measured relative humidity, wind speed and direction, DNI,

and clouds, presented through a numerical time-series or

images. To fuse different types of data and avoid some

inputs overwhelmed by the large magnitude of other vari-

ables, all inputs were transformed into dimensionless vari-

ables. Firstly, a ground-based cloud image was in-painted

and corrected to obtain more accurate all-sky information,

and the cloud covers in six key areas were then extracted

separately, each of which was set as the input of the forecast

model. Secondly, the measured historical DNI was trans-

formed into a clear-sky index using a clear-sky model, and

was set as an input of the forecast model. Finally, a support

vector regression (SVR) model was employed to predict the

DNI for the following 10 minutes, with multiple inputs

including the cloud cover, clear-sky index, wind speed, and

relative humidity (instead of water vapor).

The remainder of this paper is constructed as follows.

The instrument and data collection are introduced in Sec-

tion 2. A forecast framework based on multiple data types

and time-series is described in Section 3. Experiments

carried out to evaluate the performance of the proposed

method, along with the results and a discussion, are

detailed in Section 4. Finally, some concluding remarks are

provided in Section 5.

2 Data collection

All ground-based cloud (GBC) images and measured

data employed were downloaded from the open database of

the Solar Radiation Research Laboratory (39.74�N,
105.18�W, at 1828.8 m above sea level), which was pro-

vided by the National Renewable Energy Laboratory

(NREL) [28].

2.1 GBC images

A Total Sky Imager (TSI-880, Yankee Co.) was used to

automatically capture 24-bit color sky images every 30 s.

Figure 1 shows two raw GBC images in which a valid

circular sky region is distorted by a fisheye lens, and a part

of the sky is obstructed by both the support arm and a

shadow band, which are marked with dashed-line and

solid-line rectangles, respectively.

A total of 73 clear-sky GBC images were selected from

2013 to construct a clear-sky image dataset (CSID). All

clear-sky images correspond to a solar zenith ranging from

89� to 17� (step size of 1�). The CSID set was constructed

for the following preprocessing of the image inpainting to

detect error pixels around the sun, as discussed in

Section 3.1.

2.2 Measured numerical data

Some measured data were employed in the following

proposed forecast framework, including the DNI, related

humidity, wind speed, and wind direction. The DNI was

(a) 12:00 a.m. on 2 January 2013 (b) 11:20 a.m. on 25 May 2014

Fig. 1 Raw GBC images taken by TSI-880
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measured using a pyrheliometer (Kipp & Zonen, CH1),

mounted on a sun-following tracker and pointing precisely

to the sun center within a 5� field of view, with a sampling

interval of 1 min. An average of ten measured 1-min DNI

values, as well as the wind speed and wind direction, were

organized as the experimental data for the forecast model,

contributing to the 10-min resolution dataset applied in this

study. It is worth noting that the wind direction is from the

north and ranges clockwise from 0� to 360�. The average of
two wind directions is not always one-half of their arithmetic

sum, but should be at the angular bisector of the smaller angle

between the two directions. In otherwords, it is the opposite of

their arithmetical average if their bias is greater than 180�.
Considering the wind speed, the vector average method

(VAM) [29] was used, and the average wind direction (Dave)

during a 10-min period was calculated as follows:

Dave ¼

D0
ave Cy [ 0;Cx [ 0

D0
ave þ 180� Cy [ 0;Cx\ 0

D0
ave þ 180� Cy\ 0;Cx\ 0

D0
ave þ 360� Cy \ 0;Cx [ 0

8
>><

>>:

ð1Þ

D0
ave ¼ arctan

Cy

Cx

ð2Þ

where Cy ¼
P10

i¼1

Si sinDi is the sum of y-components, Si is

the wind speed, Di is the wind direction; and Cx ¼

P10

i¼1

Si cosDi is the sum of x-components.

3 DNI forecast based on multiple data types
and time-series

A new framework was developed for predicting the

inter-hour DNI by combining GBC images and multiple

numerical time-series. Figure 2 shows the structure of the

forecast framework. To make full use of all inputs, the

GBC images should be pre-processed to obtain more

realistic sky conditions, and the inputs of the forecast

model should be non-dimensionalized to avoid some inputs

with a large magnitude overwhelming the others.

3.1 GBC image processing

As shown in Fig. 3, the valid sky of a GBC image was

first segmented into mathematical coordinates. The loca-

tion of the sun (xs, ys) in the GBC image could then be

calculated as follows:

rs ¼ re cos z ð3Þ
xs ¼ x0 þ rs sin a ð4Þ
ys ¼ y0 þ rs cos a ð5Þ

where (x0, y0) is the center of the GBC image in Fig. 3a; rs
is the amplitude of the sun in a GBC image; re is the

amplitude of the sun at the 90� solar zenith; z is the solar

zenith angle; and a is the solar azimuth angle. The sun was

then recognized as a red point, as shown in Fig. 3d, and the

shadow band was then recognized as a rectangle (white

region) whose symmetry axis uses the line determined

based on the center of the GBC image and the sun point.

Finally, the support arm is fixed in a GBC image such that

it could be artificially designated (green region).

Because of strong sunlight, the pixels around the sun are

whiter and brighter in a clear sky and it is easy to detect

these pixels as clouds without other specific information.

Hence, the clear-sky index (k) is used to determine whether

the sun is obscured by clouds, and is defined as follows:

k ¼ Im

Iclr
ð6Þ

where Im is the measured DNI value; and Iclr is the clear-

sky DNI value calculated using the clear-sky model

developed in [26]. The clear-sky DNI indicates the theo-

retical maximum DNI under cloud-free conditions, and the

clear-sky index (k) describes the attenuation of the DNI

caused by clouds. Therefore, if k is bigger than the

threshold, e.g. Tk = 0.9, the sun is viewed as unobstructed,

and the white pixels around the sun are possible error

pixels caused by an overexposure.

After determining the error pixels, distinguishing them

from the surrounding clouds is the greatest difficulty.

Various cloud detection algorithms have been proposed,

each of which has shown a satisfactory performance under

a specific situation. Among them, the clear-sky background

different (CSBD) algorithm outperforms other methods in a

circumsolar area when the sun is not obstructed by clouds,

but it fails to detect cloud which blocked the sun or is

optically thick and dark [30]. The red-blue ratio (R/B)

algorithm achieves better results when the clouds are

optically thick and dark, but it fails to distinguish clouds

from clear sky when cirrus or stratus clouds are present

[31]. Combining the advantages of the CSBD and R/B

algorithms in cloud detection, the error pixels in a GBC

image (It) are marked using the following steps.

Step 1: search a clear-sky GBC image Ic based on the

closest solar zenith from the constructed CSID introduced

in Section 2.1.

Step 2: rotate the image Ic to make its azimuth angle the

same as the target image It.

Step 3: calculate the green-channel histograms of the

two images (Ic and It).

Step 4: adjust the green channel of the clear-sky image

(Ic) by multiplying a ratio to make its green distribution the

same as that of It.

Inter-hour direct normal irradiance forecast with multiple data types and time-series 1321
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Step 5: mark the pixel whose difference between the two

green channels is greater than threshold Tg as a cloud

(M1).

Step 6: mark the pixel as a cloud (M2) using the R/B

algorithm.

Step 7: remove the error pixels (M2�M1) around the

position of the sun.

The mirror gradient algorithm [32] was used to fill in the

occlusions in a GBC image by combining the symmetry of

the inpainted region and the texture features of the cloud.

Because the width of a shadow band is too large to ignore

the distortion, the polar coordinates were used to interpolate

values from the pixels at the same image zenith angle of the

target pixel [33], which differs from the inpainting algorithm

in [32]. As Fig. 3c shows, the point (x, y) is viewed as the

target to be inpainted, and its symmetrical point (x0, y0) in an
arc with radius r is over the line of point (x0, y0) and the sun;

the symmetric point (x1, y1) is then obtained with respect to

the right border, and the point (x2, y2) symmetric to point (x0,
y0) is obtained with respect to the left border. The polar

angle (c) is changed from 0� to 120� to search the inpainted

pixels and their symmetric pixels, and the range of radius (r)

is changed from 0 to re. Hence, the mirror gradient algo-

rithm was modified as follows:
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Pðx; yÞ ¼ k1ðPðx1; y1Þ þ DPðx1; y1ÞÞ
þ ð1� k1ÞðPðx2; y2Þ � DPðx2; y2ÞÞ

ð7Þ

Pðx0; y0Þ ¼ k1ðPðx2; y2Þ � DPðx2; y2ÞÞ
þ ð1� k1ÞðPðx1; y1ÞþDPðx1; y1ÞÞ

ð8Þ

where k1 is the weight and DP is the gradient of the pixel

P along the arc determined by the four pixels. For the

support arm shown in Fig. 3b, a horizontal line was used

instead of an arc because its width is narrow. If the point (x,

y) is the target to be inpainted, then we obtain its symmetric

point (x1, y1) with respect to the left border, point (x0, y0)
with respect to the y-axis, and point (x2, y2) symmetric to

point (x0, y0) with respect to the right border. The horizontal

range was from x = x0 - b1 to x = x0, and the vertical

range was from y = y0 to y = y0 - re.

Finally, the distortion of the inpainted GBC image was

corrected using the spherical orthogonal distortion correc-

tion method [34], and the pre-processing of the GBC image

was completed.

3.2 Input nondimensionalization

The key point in predicting the inter-hour DNI is to

predict the cloud motion, including the speed and direction.

Because GBC images were sampled every 10 min, it is

difficult to accurately identify the direction and speed of

the cloud from two consecutive images. Considering the

relationship between the cloud motion and wind, the wind

speed and direction were used to estimate the cloud

motion.

First, 30 groups of two consecutive GBC images were

selected from January 2013, in which the cloud motion was

very clear by the human eye. Then, the R/B algorithm was

used to detect a cloud from the GBC image, and image

enhancement and morphological methods were then used

to find all cloud masses and their centroids. Finally, the

cloud motion was calculated from two consecutive images

comparing their centroids. It was found that a linear

regression can be used to describe the relationship between

the wind and cloud directions, as shown in Fig. 4 where the

red line has a slope of 1, the blue points are the values of

cloud direction calculated from the images and the corre-

sponding wind direction, and their correlation coefficient is

up to 0.74. Thus, the wind direction was defined as the

cloud direction.

However, the cloud speed does not have a clear rela-

tionship with the wind speed owing to the difficulty of

cloud boundary detection and the lack of information

regarding the cloud base height. Therefore, six cloud cover

features were extracted from 20 9 20 pixel areas along the

opposite direction of the wind (cloud), as shown in Fig. 2,

to address the cloud effect on the DNI. The wind speed was

set as one of the model inputs to adjust the weight of the

cloud cover in the forecast model. Therefore, the GBC

image was transformed to six cloud covers in 20 9 20

pixel areas dimensionlessly.

According to (6), the measured DNI can be transformed

into clear-sky index k, thereby removing the influence of

the sun’s position on the DNI. Here, k is a dimensionless

variable with a scale of [0, 1]. The relative humidity is the

ratio of the partial pressure of water vapor to the equilib-

rium vapor pressure of water at a given temperature, and

thus the relative humidity was selected as one input vari-

able instead of the water vapor, and ranges from 0 to 1

instead of a percentage. To allow the wind speed (S) to be

within the same scale, it was transformed as follows:

S0 ¼ S� Smin

Smax � Smin

ð9Þ

where Smin and Smax are the minimum and maximum wind

speeds in the training set, respectively. Thus far, all inputs

including the image and numerical time-series were

transformed into dimensionless variables within the range

of [0, 1].

3.3 DNI inter-hour forecast model

In view of the advantage of handling non-linear prob-

lems, SVR was applied as the DNI forecast model. The

structure of the SVR model was introduced in detail in

[35]. In this study, the kernel function of the SVR is the

radial basis function. There are three model parameters:

cost C, the tolerance of termination criterion e and atten-

uation parameter m. The three model parameters are

adjusted using the cross-validation method [36] with the

training and validation sets. The extensive grid search

method was used to determine the three hyperparameters,
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Fig. 4 Relationship between wind and cloud directions
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where C was set in [1, 5] at a step size of 0.5, e was set in
[0.001, 0.1] at a step size of 0.001, and m was set in [1, 3] at

a step size of 0.2, respectively. The range of these hyper-

parameters was set based on the experimental results and

previous experience.

To determine the input order of the clear-sky index, the

Bayesian information criterion (BIC) was used and the

results are as shown in Fig. 5 where p is the number of

inputs. Thus, it is reasonable to select k(t - 3Dt), k(t - 2

Dt), k(t - Dt) and k(t) as the forecast model inputs, where

Dt is the forecast interval of 10 min. The same dimensions

of relative humidity were selected during the same period.

For the wind speed and GBC image, only S(t) and the cloud

cover were selected concurrently. Finally, there were 15

inputs of the forecast model. The output of the SVR model

was the next 10-min clear-sky index (k(t?Dt)), and the

clear-sky index was then transformed into the DNI

according to (6).

4 Results and discussion

80% of coupled data randomly selected from 2013 were

set as the training set, and the remaining data (20%) were

set as the validation set. Data from 2014 were set as the

testing set. The accuracy of the forecast was assessed using

three statistics, namely, the normalized mean bias error

(nMBE), normalized mean absolute error (nMAE), and

normalized root mean square error (nRMSE), which are

defined as follows:

nMBE ¼ 1
�ImN

XN

i¼1

ðIfi � ImiÞ
" #

� 100% ð10Þ

nMAE ¼ 1
�ImN

XN

i¼1

Ifi � Imi
�
�

�
�

" #

� 100% ð11Þ

nRMSE ¼ 1
�Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN

i¼1

ðIfi � ImiÞ2
v
u
u
t � 100% ð12Þ

where N is the number of samples; Ifi is the predicted value

of the forecast model; Imi is the measured value; and �Im is

the average of all measured DNIs.

To evaluate the performance of the proposed forecast

framework at predicting the DNI in the next 10 min, two

groups of experiments were carried out: 1) using only the

historical DNI time-series as inputs; 2) using both the

numerical time-series and ground-based cloud images.

Table 1 lists the four forecast models using only DNI time-

series as inputs, including the persistent model (measured

DNI as the presently predicted value), autoregressive (AR)

model (with historical measured DNIs linearly fit as the

predicted DNI), and artificial neural network (ANN) model

(multilayer perceptron, with historical measured DNIs non-

linearly fitted as the predicted DNI), which are introduced

in Appendix A. Compared to the linear models (persistent

and AR), the non-linear models (ANN and SVR) achieved

better results in predicting the inter-hour DNI, and the SVR

model performed slightly better than the ANN model,

especially on nMAE.

Table 2 lists the test results of different forecast models

considering GBC images in predicting the DNI, where the

AR-I, ANN-I and SVR-I models maintained the same

structure as the AR, ANN and SVR models in Table 1,

while adding six cloud covers (CCs) extracted from a GBC

image as inputs. The ANN-I model was introduced in [19],

and the forecast model based on digital image processing

(FM-DIP) was developed in [15]. The forecast skill (Fs) is

a criterion used to assess the performance of a forecast

model over the persistent model, which is defined as

follows:

Fs ¼ nRMSEper � nRMSEf

nRMSEper

� 100% ð13Þ

where nRMSEper is the nRMSE of the persistent model;

and nRMSEf is the nRMSE of the forecast model. Figure 6

shows the forecast skills of all models listed in Tables 1

and 2. Among these forecast models, the non-linear models

1 2 3 4 5 6 7 8 9 10
-1980
-1960

-1940
-1920

p

B
IC

Fig. 5 Results of BIC using clear-sky index in training set

Table 1 Performance of different models using only numerical DNI

time-series as inputs for 10-min DNI forecast

Model nMBE (%) nMAE (%) nRMSE (%)

Persistent 0.58 15.74 31.10

AR 0.39 17.29 30.12

ANN 0.48 17.48 29.23

SVR 0.02 16.47 29.04

Table 2 Performance of different models with different inputs for

10-min DNI forecast

Model nMBE (%) nMAE (%) nRMSE (%)

AR-I - 0.04 17.85 29.73

ANN-I 0.43 18.04 28.47

SVR-I 0.98 16.03 23.66

FM-DIP - 3.78 20.01 29.85

Proposed 0.41 14.13 20.53

1324 Tingting ZHU et al.

123



performed better than the linear ones; in terms of input, the

model with images used as inputs achieved better results

with the same structure. For the three SVR models with

different inputs, the proposed model achieved an optimal

performance, with 34% improvement over the persistent

model in terms of the nRMSE, which is mainly owing to

the supplementary consideration of the water vapor effects,

in addition to the historical DNI and cloud. It is therefore

reasonable that the consideration of various atmospheric

variables (including clouds and water vapor) in the DNI

forecast model can improve the accuracy.

To investigate the performance and fluctuations of the

proposed method, the ramp rate (RR) was used to evaluate

the fluctuations of the DNI time-series, and is defined as

follows:

RR ¼ Nramp

Ntotal

� 100% ð14Þ

Nramp ¼
XNtotal

t¼1

sgn

�
ImðtÞ � Imðt � 1Þj j

maxðImðtÞ; Imðt � 1ÞÞ [ 0:5

�

ð15Þ

where Ntotal is the number of total testing sample couples

and Nramp is the number of fluctuations defined as the bias

between two consecutive DNIs greater than half of the

larger DNI. In addition, Fig. 7a shows the nRMSE of the

proposed method and the ramp rate of the predicted DNI

for each month. The nRMSE agrees well with the ramp rate

of the predicted DNI time-series, with a constantly

increasing or decreasing trend. The nRMSE reached up to

31% in July, whereas the ramp rate was 35%. Throughout

the year of the testing data (2014), the proposed method

reached a steady improvement in the nRMSE of 34% on

average over the persistent model, as shown in Fig. 7b.

5 Conclusion

A framework for predicting the inter-hour DNI was

proposed, including the nondimensionalization of the input

variables, employment of a forecast model based on the

SVR, and transformation of outputs. Multiple input vari-

ables, involving the historical measured DNI, relative

humidity, ground-based cloud image, and wind speed, were

employed in the developed forecast model. The data from

the NREL dataset for the entire year of 2013 were used to

train the forecast model using a cross-validation method.

The experimental results demonstrated that the proposed

model was comparable to other models in terms of the

forecast accuracy, and achieved a 34% improvement in the

nRMSE over the persistent model.

The performance of the proposed forecast model is

affected by the ramp rate of the DNI time-series, with a

higher accuracy when the monthly DNI changes more

gently, and vice versa. Therefore, considering the ramp rate

and thereby constructing different forecast models will

further improve the forecast accuracy, and should be

investigated in the future studies.
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Appendix A

For the persistent model, the predicted value If is

expressed as follows:

If ðt þ DtÞ ¼ ImðtÞ ðA1Þ

where Dt is the forecast step (set to 10 min in this study).

For the AR model, the target If is expressed as follows:

If ¼ a0 þ a1x1 þ � � � þ apxp ðA2Þ

where ai (i = 0, 1, …, p) are the model parameters; xi
(i = 0, 1, …, p) are the inputs (historical DNIs); and p is

the number of inputs (p = 4).

For the ANN model, the target If is expressed as follows:

gj ¼
Xn1

i¼1

wijxi þ bj ðA3Þ

uj ¼
2

1þ e�2gj
� 1 ðA4Þ

If ¼
Xn2

j¼1

wjuj þ c ðA5Þ

where wij, bj, wj and c are the model parameters, and are

determined using a learning algorithm with the training set;

and n1 and n2 are the number of input nodes and hidden

nodes in an ANN model, respectively.
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