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Abstract A hierarchical approach for the energy man-

agement of geographically close microgrids connected

through a dedicated AC power network is proposed in this

paper. The proposed approach consists of a two-layer

energy management system (EMS) for networked micro-

grids. In the lower layer, each microgrid solves its own

economic dispatch problem through a distributed model

predictive control approach that respects capacity limits

and ramp-rate constraints of distributed generation. In the

upper layer, the energy trading in the network of micro-

grids decides how to optimally trade the energy based on

the marginal cost information from the lower layer in order

to improve global optimization objectives, e.g., social

welfare. In order to solve the trading problem, a consensus-

based algorithm and a replicator dynamics algorithm are

proposed assuming that the marginal cost function of the

microgrid is known and linear. It is shown that both

algorithms converge to the same solution, which is

equivalent to the minimization of operation costs. The

consensus-based algorithm is extended in order to tackle

more general marginal cost functions and trading network

constraints. Moreover, the effect of ramp constraints and

network limits is studied. Simulations show the effective-

ness of the proposed algorithms for three interconnected

microgrids with different characteristics.

Keywords Consensus, Economic dispatch, Hierarchical

control, Networked microgrids, Ramp limits, Replicator

dynamics

1 Introduction

The growing development of more efficient renewable

generation technologies and storage systems, has shifted

the energy generation paradigm towards decentralization.

Although a large portion of the energy is still being gen-

erated from centralized power plants (some of which are

also using renewable technologies), distributed generation

has become a reliable and efficient alternative of supply. In

this framework, microgrids (MGs) have been recognized as

an efficient solution to integrate different kinds of dis-

tributed energy resources (DERs) into a single controllable

entity that is able to operate in interconnected or islanded

mode. Because of those features, MGs are considered as

the building block of the smart grid concept. The recent

success of such architectures has increased their deploy-

ment around the globe. Subsequently, researchers are cur-

rently proposing the interconnection of multiple MGs at a

cyber-physical level in order to create smart grids. This

new scheme is known as networked MGs (NMGs)

[1, 2].

Interconnecting multiple MGs leads to several benefits

such as reliability and resiliency enhancement, indepen-

dence of the utility grid, and reduction of global costs. In
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oi.torres135@uniandes.edu.co

Nicanor QUIJANO

nquijano@uniandes.edu.co
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order to achieve these objectives, control strategies for the

energy trading among MGs have been proposed through

the past few years at different layers. From a high layer

perspective, the problem of NMGs is understood as the

combination of two problems: optimal management of

energy resources among MGs and encouragement of

trading in the network. The first problem is solved through

strategies of resource allocation that seek to optimize local

and global objectives e.g. operation costs, while the second

is addressed through the design of incentive mechanisms.

In the existing literature, several strategies have been

proposed for solving these problems separately or to inte-

grate them under different contexts. Most of the works deal

with a network of MGs interconnected with the utility

grid.

Regarding the energy management of NMGs, several

authors have presented solutions from different points of

view. Some authors propose optimization models under

several architectures such as centralized, decentralized,

distributed, and hierarchical, which seek to take advantage

of interconnection benefits. In a centralized approach, the

dispatch and power exchange are handled by the energy

management system (EMS). Based on local information

from each MG, the EMS solves a single global optimiza-

tion problem that provides not only the power interaction

among MGs, but also the dispatch of each generator for

every MG. In [3], the problem of NMGs is solved through a

nonlinear optimization problem that minimizes generation

cost. The authors solve this problem by using particle

swarm optimization (PSO). In [4], the authors propose a

real-time MG economic dispatch scheme with network

constraints by applying conic-programming and model

predictive control (MPC). In [5], the NMG has been

modeled as a linear optimization problem. The objective is

to maximize the benefits through an MPC approach, which

outputs the power exchange scheduling and the optimal

behavior of energy storage systems (ESSs) in each MG.

Few works have addressed the operation of NMGs in a

distributed manner although the number of that kind of

methods increases lately. In [6], a distributed MPC

approach is used for the day-ahead dispatch problem in a

smart grid context. Here, there is not an explicit mention of

MGs. Instead, a smart grid composed of multiple centers of

generation and consumption is partitioned into multiple

subgrids called hubs. This work provides a model for each

hub in terms of the ESSs where an economic dispatch

algorithm is solved. In [7], the authors propose a hierar-

chical method that comprises distributed control for mul-

tiple MGs and a central controller for each MG. Economic

dispatch can be solved while MGs are plugged-in or

plugged-out through flexible communication. In [8], a

distributed management system is proposed for a network

of MGs with a dedicated DC power exchange network. In

that work, the distribution system operator (DSO) is in

charge of managing the distribution network where the

MGs are interconnected. The MGs seek to minimize their

own operational cost and take into account power flow

constraints by incorporating a relaxed optimal power flow

(OPF) method into the optimization problem. This

approach results into a second-order cone programming

problem. Both DSO and MGs cooperate with each other

through the EMS to minimize the global operation costs.

Most of these works assume that MGs in the network reach

a cooperation agreement and participate in the trading if an

improvement in the global optimization costs is attainable.

However, there are scenarios where selfish MGs would

trade energy only in the presence of additional incentives.

Therefore, research efforts have focused on integrating the

resource management with mechanisms of incentives in

order to obtain a full trading mechanism for MGs.

Several works about trading in NMGs have focused

their efforts on MGs that are interconnected through a

dedicated AC distribution power network and are con-

nected with the utility grid. Under this framework, MGs

decide if they will buy or sell energy according to eco-

nomic and technical characteristics. Thereby, MGs decide

how to distribute resources from the sellers to the buyers,

and what will be the energy price. Therefore, these

approaches integrate the energy management and incentive

problems. Approaches in this topic are usually iterative,

where the response from one kind of agents depends on the

response of the others and vice-versa. Stackelberg games,

double auction, and Nash bargaining are the most common

approaches. In [9], the authors have proposed a non-co-

operative game based on the multileader-follower structure

of Stackelberg games. This approach contemplates two

interactive games. In the buyer level, a player decides the

amount of energy to be imported. In the seller level, a

player submits energy price based on its willing to sell. The

two games interact with each other until convergence to the

Nash equilibrium is achieved. The energy allocation is

done through the proportional sharing principle. A two-

layer approach for the energy trading in MGs is proposed

in [10], where the lower layer comprises the trading among

prosumers and the upper layer comprises the trading

among MGs. On one hand, the upper layer is implemented

through a multi-leader multi-follower Stackelberg game.

On the other hand, the lower layer determines the energy

capacity of each MG and its respective role in the game

(buyer or seller). There are two levels in the Stackelberg

game proposed by the authors: a buyer level where the

players submit and update energy prices for importing

electricity; a seller level where the players adjust the

energy to be exported by controlling states of energy

storage. In [11], a non-cooperative game theoretic

approach for the trading in NMGs is proposed. Similarly to

1574 Miguel A. VELASQUEZ et al.

123



previous works, the authors propose two interactive games.

The seller strategy is to adjust its energy consumption,

which translates into a portion of the total energy excess.

For the buyer layer, the authors define a priority index

which measures the contributions of each MG to the

trading. In this approach, there is an aggregator for buyers

and sellers. The role of the buyers’ aggregator is to define a

unique energy price that minimizes the costs for all buyers,

while for sellers its role is to define the allocation energy

excess in order to maximize social welfare. In [12], the

authors have provided a distributed peer-to-peer solution

for the trading among prosumers in a MG. The authors

consider the interaction among buyers through an evolu-

tionary game approach where they cooperatively select

sellers and the proportion of energy to be acquired. The

core of these works is to show that efficient trading in MGs

consist of the two problems mentioned before, i.e, man-

agement and incentives. Additionally, the authors discuss

about integration with the local operation of MGs. Hence,

the concept of high-level hierarchical control in the net-

work of MGs is highlighted.

Hierarchical approaches have been proposed for the

trading in NMGs where the local EMS is integrated with

the high-level trading approach. The authors in [13] pro-

pose a bi-level hierarchical structure where the lower level

solves the EMS by using stochastic programming, and

determines possible deviations between the day-ahead and

real-time market biddings from each MG. Trading among

MGs is developed at the higher level by using a secondary

market based on a distributed double auction (DDA)

scheme, where the MGs seek to alleviate deviations. The

DDA is coordinated by a central agent who is able to

optimally allocate resources in the network by considering

social welfare. In [14], the authors propose a trading

mechanism based on bargaining theory in order to mini-

mize operation costs of the network. Locally, each MG

solves its economic dispatch problem (EDP) and decides if

it is possible to contribute with the global objective. Next,

MGs choose a fee for the energy to be distributed with their

peers based on the Nash bargaining problem. In [15], the

authors propose a three-layer hierarchical market

scheme for the operation of multiple MGs. The first and

secondary levels (day-ahead, hour-ahead) of the market

solve the energy management problem from a game-theo-

retic framework through a double auction scheme, where

the resource dispatch is determined after market clearing.

MGs interact in the third layer, where they compete in

order to meet possible energy mismatches from the lower

two layers. The competition among MGs is done through a

reverse auction mechanism.

The current literature explores the operations of NMGs

that are not only interconnected among them, but also with

the utility grid. To the best of our knowledge, there is a

lack of consideration of ramp constraint of conventional

generation and very few works consider the underlying

capacity constraints from the network. In this paper, we

propose a hierarchical approach for the energy trading in

NMGs that combines a hybrid high-level layer with a

distributed low-level layer. The high-level layer looks for

maximizing social welfare in terms of achieving nodal

prices agreement. The low-level layer uses a distributed

economic dispatch that manages resources in the MG by

complying with technical constraints. The main contribu-

tions of this paper can be listed as follows:

1) Maximization of social welfare through the agreement

of nodal prices.

2) Use of consensus and replicator dynamics for the

agreement of nodal prices.

3) Integration of local MG dispatch with a high-level

coordination of MGs. The low-level EMS satisfies

technical constraints such as generator limits and

ramp-rate constraints.

4) Integration of network limits and analysis of impacts

in the nodal price.

The remainder of this paper is organized as follows.

Section 2 describes the formulation of different approaches

applied to the problem of NMGs and presents the back-

ground of consensus-based algorithm and replicator

dynamics algorithm. Case studies and their results are

presented in Section 3. Finally, conclusions are drawn in

Section 4.

2 Model of NMGs

In the power systems that operate under a single com-

petitive market, there is a unique price related to marginal

costs of generators. Usually, the objective of the system

operator is to deliver electricity by minimizing operation

costs or maximizing social welfare while complying with

security and technical constraints. From this perspective,

the system operator decides the optimal output of genera-

tors such that loads are satisfied and network constraints

are not violated. Power flow limits may increase the energy

price since cheaper generators can be curtailed for

achieving security. In such case, the cost of congestion is

socialized to the demand. A more advanced pricing of

power systems is the nodal approach, where every zone or

node has a different price related to the locational value of

energy. The locational value of electricity is the result of

congestion in the network and power losses. In the absence

of congestion and neglecting power losses, nodal prices

will converge to a unique price. That is, social welfare is

maximized [16].
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From an ideal perspective, centralized operation with

full information is the benchmark, as it achieves social

welfare maximization (or costs minimization). In this

paper, the ideal scenario would be to have all the resources

from different MGs operating under the same competitive

market, obtaining a unique price. However, this configu-

ration requires a large communication infrastructure,

especially if there are several power plants. Under a dis-

tributed approach, the communication infrastructure is less

demanding as local microgrid operators (MGOs) can

communicate with the networked microgrid operator

(NMGO), who manages information sharing between

MGs. In that case, the unique price is achieved with the

algorithms proposed in this paper. For this reason, nodal

prices must be the same in order to maximize social wel-

fare when there are no congestion limits, i.e., the dis-

tributed approach emulates a centralized market that

maximizes social welfare. If there are active power flow

constraints, then nodal prices will be different, especially

for the nodes that import energy.

Consider the network of multiple MGs interconnected

through an independent AC power network and that as a

whole can be isolated from the utility grid, as shown in

Fig. 1. Each MG might be able to supply its inner demand

during the day by using its own DERs, which comprise

conventional generation, renewable generation, and stand-

alone ESSs. At a local level, these resources are delivered

to the loads by using the local competitive market, i.e. the

EMS of MG (red dotted line in Fig. 1). The local EMS

collects information from both DERs and loads, and solves

an EDP in order to guarantee a reliable energy supply to

loads while keeping energy balance in the MG.

Once the EDP is solved by eachMG in the network, nodal

prices appear. Note that in this case nodal prices are not the

result of congestion, but they arise because of clearing local

competitive markets that have different resources and loads.

Having different nodal prices is not optimal (when there is no

congestion) as other MGs could import or export energy to

other systems, thus decreasing global operation costs.

Thereby, MGs should share information with one another

through the NMGO in order to seek a global economic

benefit related to their operation costs. This procedure will

lead to a unique electricity price. For the first case, interac-

tion among MGs will be coordinated through: � a consen-

sus-based algorithm where the objective is to reach same

nodal prices; ` a replicator dynamics algorithm that mini-

mizes operation cost in the network.

Asmentioned before,MGs have a diverse kind ofDERs in

order to supply their local loads at any period of time. The

EDP is solved through a distributedMPCbased strategy [17],

where each DER shares information with a set of neighbors

given a communication topology. In addition, the local

controller (LC) implements a consensus-based approach in

order to reach an agreement in the dispatch with the MG

central operator. This algorithm takes into account capacity

limits of generators and ramp-rate limits. Thereby, the price

information for the high-level controller implicitly considers

active constraints of generators in the MG.

2.1 Networked energy trading: a simple case

In the perspective of the MGO, the solution of the local

EMSprovides a distributed economic dispatch that preserves

energy balance and respects ramp constraints from conven-

tional generators. As a secondary result, the MGO collects

the information and builds a marginal cost function. This

information also includes the current generation status and

operation constraints. Asmentioned before, theMG is part of

a network that shares resources in order to reach a common

objective: minimization of the global cost. Since MGs are

interconnected through an AC power network, the main

concern in the energy trading is to keep energy balance in the

system. This implies a resource allocation problem where

resources from each MG marginal generator are reallocated

through the network in order to minimize operation costs. In

this paper, we have solved this problem by applying the

replicator dynamics algorithm and the consensus-based

approach. These algorithms are presented next.

2.1.1 Replicator dynamics algorithm

Evolutionary game theory, specifically population

dynamics, has been applied in the past few years to a

diverse range of applications in distributed optimization,

especially those related to resource allocation problems

MG1

MG3 MG4

MG2

MGO

MGO MGO

MGO

LC

LC

LC LC

LC LC

LCLC

LC

LC

LC LC

LCLC

LCLC

NMGO

Physical power
network

Distributed economic dispatch; Information aggregation
Trading among MGs

Fig. 1 Model of NMG
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[18]. In the context of MGs, applications in economic

dispatch and demand side management have been thor-

oughly explored. In this paper, recent results from [19] are

adapted into the high level energy trading in NMGs.

Replicator dynamics algorithm is a simple dynamical

model that shows how a proportion of agents is allocated in

a set of habitats with different conditions to reach a certain

goal. The population in each habitat perceives a shared

welfare that is measured by a fitness function. Fitness

depends on agent characteristics and distribution of the

population in the environment. The main objective is that

the population reaches a social equilibrium through evo-

lutionary processes, where all agents achieve the same

fitness. Denote H ¼ f1; 2; . . .;Hg as the set of pure

strategies, xi � 0 as the proportion of individuals playing

strategy i (ith population share), and x ¼ ½x1; x2; . . .; xH � as
the population state, which is restricted to the following

simplex formulation:

D ¼ x 2 RH :
X

i2H
xi ¼ 1

( )
ð1Þ

Evolution of the population in the different habitats is

modeled through the following replicator equation:

dxi

dt
¼ xiðfiðxÞ � �f ðxÞÞ 8i 2 H ð2Þ

where fiðxÞ represents the fitness function perceived by the

agent in the ith habitat; and �f ðxÞ ¼
P
j2H

xjfjðxjÞ is the the

average fitness. As a consequence of the calculation of the

average fitness, the set D defined by (1) is invariant and

every initial population state that starts inside this set will

remain in D for t� 0.

Consider a set of MGs M ¼ f1; 2; . . .;Mg that is

interconnected through an AC power network and is able to

share information through the NMGO that supervises the

trading in the network. For this case, it is assumed that

there will be only one marginal generator in each MG

characterized by the following information: current state of

the generator PMGi, the generation limits after ramp con-

straints ½Pmin
i ;Pmax

i � and the linear marginal cost function

2aiPMGi þ bi, where ai and bi are quadratic and linear

weights that depend on generator technology, respectively.

Consider the aggregated power to be redistributed in the

NMGs as the aggregation of the states of the marginal

generators PNMG ¼
P
i2M

PMGi, which defines the energy

balance that must be respected in the trading. Under these

considerations, the application of the replicator dynamics

for the energy trading in a NMGs follows a similar struc-

ture to an optimal dispatch problem. The following pro-

posal is adapted from [19].

Let pMGi ¼ PNMGxi be the dispatch of the marginal gen-

erator from ith MG disposed for the energy trading. There-

fore, MGs represent habitats while the proportion of

demanded power represents a group of individuals. The

replicator equation applied to the trading resource allocation

problem is:

d

dt
pMGi ¼ pMGi fiðpMGiÞ � �fð Þ ð3Þ

where fiðpMGiÞ is the fitness function that describes the

payoff of ith MG; and �f ¼ 1
PNMG

P
i2M

pMGifiðpMGiÞ is the

average fitness function. The solutions for the energy

trading among MGs are invariant under the following

simplex formulation:

DMG ¼ ðpMGiÞ 2 RH :
X

i2H
pMGi ¼ PNMG

( )
ð4Þ

In other words, if the initial resource distribution

pMGið0Þ 2 DMG, then the trajectories of the NMGs trading

stay within DMG. Therefore, the balance in the NMGs can

be guaranteed. The equilibrium point of (3), denoted as

p�MG ¼ ½p�MG1; p
�
MG2; . . .; p

�
MGM�

T 2 DMG satisfies the

following condition:

fiðp�MGÞ ¼ �f ðp�MGÞ ¼ �f
� 8i 2 M ð5Þ

It means that allMGs obtain a fitness equals to the average

fitness �f
�
in the equilibrium. This condition can be used to

design a pricing mechanism for the NMGs. A desirable

property of the trading is that its energy price is equal for

everyMG. Considering that the lower level provides a linear

marginal cost function of each MG, then the fitness function

is related to that function. One advantage of linking the

fitness with the marginal cost function is that equilibrium of

the replicator dynamics corresponds to the minimization of

the cost function of all the generators. This property is the

result of to the gradient property in replicator dynamics,

which states that if the fitness is defined accordingly to:

f iðpMGiÞ ¼ � oCðpMGÞ
opMGi

� ðaipMGi þ biÞ ð6Þ

Then, the equilibrium guarantees the minimization of

costs CðpMGÞ. The fitness function is complemented by

incorporating capacity limits through barrier functions as

follows:

fiðpMGiÞ

¼
�Cmax

i � mðpMGi � Pmax
i Þ pMGi\Pmin

i

�f iðpMGiÞ Pmin
i � pMGi �Pmax

i

�Cmin
i � mðpMGi � Pmin

i Þ pMGi [Pmax
i

8
>><

>>:

ð7Þ
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where Cmin
i and Cmax

i are the minimum and maximum

values of the marginal cost function for each MG; and m is

the slope of the barrier function. The barrier functions are

modified from [19] in order to guarantee continuity of the

fitness function in the constraint limits.

Stability and convergence of the replicator equation

depends mainly on the fitness function characteristics.

Considering that it does not depend on the strategies of

other players, the equilibrium point is asymptotically

stable if it is positive and differentiable 8i 2 M and

8x 2 D, and if its derivative with respect to the strategy

decreases. Hence, a positive constant B is added to each

fitness function in order to guarantee their positivity

without affecting obtained solutions. Even though the fit-

ness function is non-differentiable, the assumption can be

relaxed to a locally Lipschitz condition as shown in [20],

demonstrating asymptotic stability of the equilibrium point

p�MGi. Therefore, the replicator equation converges to a

minimum generation cost and to a unique nodal price.

Although the replicator method works fine for specific

conditions of the fitness function, this is not a real case

since marginal cost functions are not necessarily continu-

ous and linear. Indeed, these functions are usually piece-

wise linear due to multiple marginal energy resources with

possible discontinuities. Moreover, the existence of ramp-

rate limits makes more complex the task of obtaining a

continuous linear fitness function.

2.1.2 Consensus-based agreement algorithm

Consensus algorithms [21–23] have gained importance

because of their capabilities to share information in con-

nected graphs where there is no central controller, and their

capabilities to reach agreements among different partici-

pants. Case in point, equitable allocation of resources. In

this research, the main goal of the high-level controller is

that nodal prices are equal for all nodes when possible, i.e.,

when there are no active flow constraints.

Consider a connected and undirected communication

graph denoted by G ¼ ðN ; EÞ, where N ¼ f1; 2; . . .;Ng is

the set of nodes, E is the set of edges connecting nodes,

each node is designated a decision variable denoted by p‘.
To reach an agreement or consensus between participants,

consider the following process described in [22]. Let n 2
RN be a vector of auxiliary variables, i.e., nv 2 R corre-

sponding to a node v 2 N . The variables are initialized at

time 0 with the current values of variables at time �k, i.e.,

nv;0 ¼ pv;�k, for all v 2 N . Therefore, a continuous-time

standard average consensus algorithm is computed, i.e.,

nv;�kþ1 ¼ nv;�k þ
X

i2N v

wvi ni;�k � nv;�k

� �
8v 2 N ð8Þ

where wvi is the weight of the link between nodes v and i;

and N v is the set of neighbors of node v 2 N . Since the

graph is undirected, wvi ¼ wiv. Here, �k is the discrete time

for a sampling time very close to zero. If the communi-

cation graph G is connected and the weight of links are

symmetrical, then the dynamics in (8) converge to

n� 2 Rm, where n�v ¼
P
v2N

nv;0=jN j, for all v 2 N [23].

According to [21] and [24], if the out-degree of every node

in the graph is equal to its in-degree and if the graph is

connected, the system is average-preserving. For choosing

adequate weights, it can be used the definitions of [25] and

the max-degree characterization that achieves average

convergence.

Since we do not want to achieve average consensus, but

a different consensus where nodal prices are equal and

ensure energy balance, we propose a different consensus

algorithm. From the previous description of the consensus,

it can be seen that the update of the auxiliary consensus

variable depends on the current state and deviations with

respect to neighbors’ states (8). However, the agreement in

that consensus is the average of initial conditions, i.e., the

mean value of marginal prices of MGs when they operate

in isolated mode. Such result might not be appropriate for

the global optimization objective though we are looking for

same nodal prices. From the economic principles and dif-

ferent analysis described in [16], the maximum benefit of

interconnected systems arises when nodal prices are equal.

Nevertheless, the agreement obtained through average

consensus can violate the energy balance constraint.

In this section we provide a general consensus-based

algorithm that reaches a nodal price agreement while

complying with the energy balance constraint. The basic

functioning of the algorithm relies on the comparison of

nodal prices and the average of them. Thus, MGs with a

nodal price lower than the average will have an incentive

for increasing their power, whereas MGs with a nodal price

higher than the average will have an incentive for

decreasing their output. The proposed procedure is

described in Algorithm 1, where a is a convergence

parameter; lp is the average of nodal prices; pi is the nodal
price of ith MG; tol is a termination condition; I is the set of

nodes with a price below lp; D is the set of nodes with a

price above lp; Ij j is the cardinality of the set I ; dj is a

distribution factor according to the distance of pj and lp;
and DPI is the total power increased by nodes in the set I .
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Algorithm 1: consensus-based nodal prices agreement
Inputs: α, ai , bi
Outputs: μπ , πi , PMGi
Calculate initial price πi = 2ai PMGi + bi
Calculate initial average μπ

while
i∈N

|πi − μπ | ≥ tol do

Determine the set of nodes I below μπ

Determine the set of nodes D above μπ

Increase the price of nodes I:
π j = π j + α(μπ − π j )/ |I|
Power updating of nodes I:

PMGj = min Pmax
j ,

π j − b j

2a j
Allocate power reduction to the set of nodes j ∈ D:

PMGj = PMGj − d j PI
Price updating of the set of nodes j ∈ D

π j = 2a j PMGj + b j
Calculate μπ

end

2.2 Networked energy trading: general case

In the previous section, we show the operation problem

of NMGs for a simple case. In that case, we have an

explicit linear function of the marginal cost of MGs, or

equivalently the nodal price function, and capacity limits.

However, it is not straightforward to define a marginal cost

function of the MG, and in the possible case, this function

might be discontinuous and piece-wise linear. Moreover,

this function is dynamic and changes in terms of generator

characteristics within the MG. Finally, the methods pro-

posed in Sections 2.1.1 and 2.1.2 do not include ramp-rate

limits of generators. This constraint is essential as it

describes the maximum output change from one period to

the next, and it may modify nodal prices.

In [17], we have proposed a distributed MPC to solve

the EDP of a single MG. In that case, generators implicitly

preserves energy balance at the same time that capacity

limits and ramp-rate restrictions are considered. In order to

account for ramp-rate limits in the problem of NMGs, we

use the distributed model predictive control (DMPC) pro-

posed in [17] along with a high-level controller for the

nodal price agreement. Instead of using an explicit function

of nodal prices, the DMPC provides the nodal price as a

result of the local economic dispatch. Algorithm 2

describes the proposed procedure to include ramp-rate

constraints without requiring the marginal cost function of

MGs. Here, ai; bi;P
min
i ;Pmax

i ;DPmin
i ;DPmax

i are vectors in

Rg, where g is the number of generators in ith MG,

DMPCð�Þ is the method proposed in [17], and Di is the

demand of ith MG.

Algorithm 2: consensus-based nodal prices agreement
with DMPC
Inputs: α, Di ,a i , bi ,P

min
i ,P max

i P min
i P max

i
Outputs: μπ , πi , PMGi
Calculate initial price

πi = DMPC(Di ,a i , bi ,P
min
i ,P max

i P min
i P max

i )
Calculate initial average μπ

while
i∈N

|πi − μπ | ≥ tol do

Determine the set of nodes I below μπ

Determine the set of nodes D above μπ

Increase the demand of nodes j ∈ I:
Dj = Dj + αd j (μπ − π j )/ |I|
Price updating of nodes j ∈ I:

π j = DMPC(Dj ,a j , b j ,P
min
j ,P max

j P min
j P max

j )
Allocate power reduction to the set of nodes j ∈ D:

PMGj = PMGj − d j PI
Price updating of the set of nodes j ∈ D

π j = DMPC(Dj ,a j , b j ,P
min
j ,P max

j P min
j P max

j )
Calculate μπ

end

:

2.3 Networked energy trading: power flow limits

In the problem of NMGs, and in general for power

systems operation, it is necessary to consider grid con-

straints, which are related to the capacity of distribution

lines. Generally, this is a complex problem since economic

trading do not follow power flow behavior as this latter

obeys Kirchhoff laws. In the presence of active network

constraints, global agreement of nodal prices can not be

reached [16]. Therefore, resources must be re-dispatched in

order to achieve a feasible and efficient solution that

complies with network constraints.

Without loss of generality, the case considered with

three interconnected MGs is shown in Fig. 2, where DG

denotes distributed generator. Let MG1 and MG2 to be

sellers and MG3 to be a buyer when network constraints

are neglected. Next, consider a line capacity between nodes

DG DG DG DG

DG

DG

DG
DG

DG
MG1 MG3

MG2

Z1 3

Z1 2 Z2,3

Fig. 2 Testbed for trading in an isolated AC network of MGs
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2 and 3, i.e. line 2-3. Applying the superposition theorem,

we can find the flow on line 2-3 when injecting D1;3
MW in

node 1 and extracting it in node 3 (F1;3), and when

injecting D2;3
MW in node 2 and extracting it in node 3 (F2;3) as

follows:

F1;3 ¼
Z1;3

Z1;2 þ Z2;3 þ Z1;3
D1;3
MW ð9Þ

F2;3 ¼
Z1;3 þ Z1;2

Z1;2 þ Z2;3 þ Z1;3
D2;3
MW ð10Þ

where Zi;j is the line impedance between nodes i and j.

Equations (9) and (10) are known as distribution factors,

and represent the incremental change of power flow in

distribution lines according to injection and extraction of

power in specific nodes. Now, if there is an excess (Ex) of

power in line 2-3, the flow from sellers to buyers must be

reduced. Thereby, by using (9) and (10) the following

condition must be fulfilled.

Z1;3

Z1;2 þ Z2;3 þ Z1;3
P�
MG1 þ

Z1;3 þ Z1;2

Z1;2 þ Z2;3 þ Z1;3
P�
MG2 ¼ Ex

ð11Þ

where P�
MGi is the power reduction of ith MG. Additionally,

energy balance and efficiency must be achieved as well.

These are defined respectively as:

p1ðPMG1 � P�
MG1Þ ¼ p2ðPMG2 � P�

MG2Þ ð12Þ

P�
MG1 þ P�

MG2 ¼ Pþ
MG3 ð13Þ

This is a first approach and entire combinations must be

analyzed to define and provide a better algorithm. For

instance, the flow when 1 MW is injected in node 1 and

extracting it in node 2, the flow decreases the power flow in

line 2-3 (L2;3). Algorithm 3 shows the proposed procedure

for including network constraints in the consensus-based

agreement of nodal prices, where ZT ¼ Z1;3 þ Z1;2 þ Z2;3.

This pseudo-code solves a simple case when there is one

flow constraint in line 2-3 and MG3 is a buyer.

Nevertheless, this reasoning can be generalized and

extended to more network constraints and different

operation scenarios. In order to take network

constraints into account, the following conditions based

on generalized distribution factors can be modeled:

d11;2 d11;3 . . . d1n;n�1

d21;2 d21;3 . . . d2n;n�1

..

. ..
. ..

.

dC1;2 dC1;3 . . . dCn;n�1

2
666664

3
777775

P1;2

P1;3

..

.

Pn;n�1

2
66664

3
77775
�

Lmax
1;2

Lmax
1;3

..

.

Lmax
C;C�1

2
666664

3
777775

ð14Þ

where d‘i;j is the distribution factor on line ‘ of injecting

power in node i and extracting it at node j; Pi;j is the power

injected at node i and extracted in node j; and Lmax
i;j is the

power limit of line connecting i and j. For the specific case

of this paper, with a power flow constraint in line 2-3, (14)

can be written as:

d1;3P1;3 þ d2;3P2;3 � Lmax
2;3 ð15Þ

The previous reasoning and the power distribution

factors are used in Algorithm 3 for taking into account

network constraints.

Algorithm 3: consensus-based nodal prices agreement
with DMPC and network constraints
Inputs: α, Di ,a i , bi ,P

min
i ,P max

i P min
i P max

i
Outputs: μπ , πi , PMGi
Execute Algorithm 2
Check network constraint on line 2-3:

L2,3 = F1,3 + F2,3
if L2,3 > Lmax

2,3 then
Find the set of sellers S
Find an initial guess of power reduction:

P−
MG1 = P−

MG2 =
L2,3 − Lmax

2,3 ZT

2Z1,3 + Z1,2
Find the price of sellers j ∈ S: π j =

DMPC(Dj − P−
MGj ,a j , b j ,P

min
j ,P max

j , . . . )
Apply Algorithm 2 to sellers only
Calculate initial average of sellers’ price μπ while

i∈S
|πi − μπ | ≥ tol do

Determine the set of nodes I below μπ

Determine the set of nodes D above μπ

Update power reduction of nodes j ∈ I:
P−
MGj = P−

MGj − αd j (μπ − π j )/ |I|
Price updating of nodes j ∈ I: π j =

DMPC(Dj − P−
MGj ,a j , b j ,P

min
j ,P max

j , . . .)
Update power reduction of nodes j ∈ D by

complying with (11)
Price updating of nodes j ∈ D: π j =

DMPC(Dj − P−
MGj ,a j , b j ,P

min
j ,P max

j , . . . )
Calculate μπ

end
else
end

3 Case studies and results

3.1 Simple case: linear marginal cost function

In order to validate the consensus and replicator pro-

posed for the simple case where the marginal cost functions

are linear and unique, a case study comprising three MGs is

proposed in Table 1. The low-level control provides to

each MGO the explicit parameters of the marginal cost

function, as well as the current dispatch state and operation
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limits of the marginal generator. In Fig. 3, it can be seen

that both algorithms converge to the same energy price for

the trading and the same dispatch for each MG. As a result,

due to the gradient property of the replicator dynamics for

potential games, it may be concluded that the proposed

consensus-based algorithm is able to converge to a unique

price and to a power dispatch that achieves costs mini-

mization. Although the case study presented has full-in-

formation, both of the proposed algorithms can be easily

extended to a fully distributed scheme without full infor-

mation. The main difference between replicator dynamics

and consensus-based algorithms is the convergence speed,

where the latter requires fewer iterations. The replicator is

implemented discretely by using the Euler approximation

for solving differential equations. This approximation has a

parameter that dictates convergence speed, so its tuning

may improve performance. Furthermore, the implementa-

tion of both algorithms is not very complex and their

execution is done in the same timeframe. However, the

main drawback for the proposed replicator dynamics

algorithm is the election of the fitness function. In this case,

we have used a linear marginal cost function for its fitness,

which is an assumption that does not hold for a more

general MG scenario. In terms of theoretical convergence,

in the replicator case, a connected graph is necessary [19].

On the other hand, the convergence of the proposed con-

sensus-based algorithm is more complex to be demon-

strated. This proof along with an extension to the

generalized case of the replicator will be covered in future

work.

The assumption on the linearity of the marginal cost

function of each MG does not hold in a generalized con-

text, where the low level DMPC economic dispatch may

result in more than one marginal generator with their

respective ramp constraints. This translates into a piece-

wise marginal cost function for each MG that dynamically

changes the trading conditions. For future work, the com-

plimentary analysis will be required to study the nature of

the general marginal cost function and to make assump-

tions about the resulting fitness in order to guarantee

the asymptotic stability.

3.2 General marginal cost function

This section shows the results of consensus-based

algorithm (Algorithm 2) applied to the problem of NMGs.

In this case, the DMPC proposed in [17] is used as the low-

level controller. Integration of DMPC with the consensus-

based algorithm is very important because ramp-rate con-

straints can be considered. In addition, MGs do not provide

an explicit marginal cost function but they can deliver

nodal price information as the output of local economic

dispatch. This case study is composed by 3 MGs (Fig. 2),

and their specific details are shown in Tables 2, 3 and 4.

Figure 4 depicts the behavior of power of MGs in terms of

ramp-rate constraints. For this case, the ramp constraint of

DG2 in MG1 is 0.5 MW. In the ideal case, nodal prices

converge to $24.17, thus maximizing the social welfare as

described in [16]. Nevertheless, in the presence of ramp

limits, the nodal price increases. This behavior arises as a

consequence of the limitation in second generator of MG1.

From nodal prices in Fig. 4, it can be seen in the first

iteration that nodal price of MG1 is the lowest. Thereby, if

Table 1 Parameters of simple case

MG ai ð$=MW2Þ bi ð$=MWÞ Pmin
i ðMWÞ Pmax

i ðMWÞ Di ðMWÞ

MG1 1 0 0 20 10

MG2 2 0 0 15 12

MG3 3 5 0 20 20
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Fig. 3 Evolution of energy prices and power dispatch in NMGs
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a generator in this MG is constrained, the remaining MGs

(MG2 and MG3) should deliver the lack of energy in the

network. This analysis can be observed in the power pat-

terns shown in Fig. 4. In this real and probable scenario,

nodal prices stabilize at $32.84. Hence, the cost of the

constraint to the nodal price agreement is $8.67.
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Ramp constraint, MG2; Ramp constraint, MG3
Ramp constraint, MG1No ramp constraints, MG3;

No ramp constraints, MG1; No ramp constraints, MG2

Fig. 4 Comparison of trading behavior when ramp constraints are

applied

Table 2 Parameters of generators in MG1

DG ai ð$=MW2Þ bi ð$=MWÞ Pmin
i ðMWÞ Pmax

i ðMWÞ DPmin
i ðMW/minÞ DPmax

i ðMW/minÞ

DG1 1 1 0 8 �1:6 16.4

DG2 2 2 0 6 �1:2 1.2

DG3 3 3 0 6 �1:2 1.2

Table 3 Parameters of generators in MG2

DG ai ð$=MW2Þ bi ð$=MWÞ Pmin
i ðMWÞ Pmax

i ðMWÞ DPmin
i ðMW/minÞ DPmax

i ðMW/minÞ

DG1 1 3 0 4 �0:8 0.8

DG2 1 2 0 7 �1:4 1.4

DG3 4 3 0 5 �1 1

Table 4 Parameters of generators in MG3

DG ai ð$=MW2Þ bi ð$=MWÞ Pmin
i ðMWÞ Pmax

i ðMWÞ DPmin
i ðMW/minÞ DPmax

i ðMW/minÞ

DG1 0.1 1 0 5 �1:0 1.0

DG2 3.0 2 0 10 �2:0 2.0

DG3 4.0 4 0 6 �1:2 1.2

Pr
ic

e 
($

/M
W

)

Po
w

er
 (M

W
)

50

45

40

35

30

25

20

15

10
0 5 10 15 20 0 5 10 15 20

18

17

16

15

14

13

12

11

Iteration
(a)

Iteration
(b)

MG1; MG2; MG3

Fig. 5 Comparison of trading behavior before (until iteration 11) and

after (after iteration 11) network constraints are considered
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3.3 Network contraints

Considering the same case study as in Section 3.2, we

include an additional constraint to the problem, i.e., 2 MW

power flow limit in line 2-3. If the power flow in line 2-3

surpasses its capacity limit, MGs must be re-dispatched.

This process is described in Algorithm 3, and its results are

shown in Fig. 5. Algorithm 3 shows that at first Algo-

rithm 2 must be executed in order to find ideal outputs of

MGs, then MGs are re-dispatched if capacity limits are

violated. The first stage (Algorithm 2) is shown in Fig. 5

from iterations 1 to 11. After this, capacity limit of line 2-3

is surpassed by 0.4 MW and MGs must be re-dispatched,

which is the second stage of Algorithm 3 (from iterations

12 to 16).

From the results, it can be seen that nodal prices of

sellers (MG1 and MG2) reach an agreement, but the nodal

price of buyers (MG3) differs and is larger. Here, there is

an implicit incentive to make an investment in line 2-3

because of the constraint cost to users in MG3. A different

approach considered in DC MGs is to manage the power

flow between MGs. Such an approach can be seen in [26].

4 Conclusion

The trading in a network of interconnected MGs by an

AC power network was studied through a hierarchical

approach that integrates local energy management of each

MG, and the trading in the network. The lower layer solves

the economic dispatch through a DMPC approach that

preserves inner balance and respects ramp constraints. The

MGO aggregates the results and finds the nodal marginal

cost, and distributes this information to a NMG operator

who is in charge of distributing data to other MGs. The

MGs update prices based on this information. For the

simple case where the marginal cost function from each

MG is linear, a consensus-based algorithm and a replicator

dynamics algorithm have been proposed. It has shown that

both algorithms converge to the same nodal price, which is

a minimum cost solution for the energy trading.

Since an explicit function of nodal prices or marginal

costs of a MG is not always available, we have proposed

two algorithms based on consensus, which use DMPC as a

low-level controller. The DMPC controller considers ramp-

rate constraints and delivers its nodal price as a result of a

local economic dispatch. This information is used by the

consensus-based agreement algorithms to provide power

change signals to the participant MGs.

We have analyzed the impact of two kinds of constraints

in the power system, i.e., ramp-rate limits and network

limits. The impacts of these constraints are the increase of

the nodal price agreement, and the difference of nodal

prices between buyer MGs and seller MGs. Costs of the

constraints in the nodal price imply incentives for investing

in the MGs or in the network. Thereby, there would be only

a single nodal price agreement without active constraints,

thus maximizing social welfare.

In summary, the main advantages of the proposed

algorithms are as follows: � the proposed algorithms

emulate the centralized benchmark in the absence of con-

gestion limits by achieving agreement of nodal prices; `

the algorithms are distributed, so the communication

infrastructure is less demanding; ´ there is no need of

sharing private information of generators within the MGs;

ˆ these algorithms stabilize very fast; ˜ they rely on a

local market based on distributed MPC. Additionally,

network constraints can be included.

For the future work, we propose to generalize network

constraints in both the consensus-based algorithm and the

replicator dynamics algorithm. For the latter, we propose as

well to analyze the impacts of having a piecewise linear

marginal cost function and its implications in the fitness to

guarantee asymptotic stability. Additionally, we will

explore how the main grid acts in these algorithms as a

passive player (only provides energy prices and does not

respond to the MGs decision) or an active player (energy

prices evolve according to the NMGs decision).
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