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Abstract With the large-scale integration of renewable

generation, energy storage system (ESS) is increasingly

regarded as a promising technology to provide sufficient

flexibility for the safe and stable operation of power sys-

tems under uncertainty. This paper focuses on grid-scale

ESS planning problems in transmission-constrained power

systems considering uncertainties of wind power and load.

A scenario-based chance-constrained ESS planning

approach is proposed to address the joint planning of

multiple technologies of ESS. Specifically, the chance

constraints on wind curtailment are designed to ensure a

certain level of wind power utilization for each wind farm

in planning decision-making. Then, an easy-to-implement

variant of Benders decomposition (BD) algorithm is

developed to solve the resulting mixed integer nonlinear

programming problem. Our case studies on an IEEE test

system indicate that the proposed approach can co-opti-

mize multiple types of ESSs and provide flexible planning

schemes to achieve the economic utilization of wind

power. In addition, the proposed BD algorithm can

improve the computational efficiency in solving this kind

of chance-constrained problems.

Keywords Wind power, Capacity investment, Energy

storage, Power system planning, Chance constraint

1 Introduction

Nowadays, many countries are committed to promoting

the development of renewable power generation to cope

with global warming and fossil energy crisis. As reported

in [1], China pledged to prioritize renewable generation

and reach the non-fossil energy target of 20% by 2030.

Nevertheless, owing to the natural intermittency and

stochastic volatility of renewable energy, the utilization of

renewable generation, especially centralized wind power

generation, is still technically difficult. Reference [2]

mentions that in China, the annual wind curtailment in

2012 has exceeded 20 GWh, which accounted for 17% of

all the available wind power. It is urgent to integrate and

consume wind power safely and economically.

As far as the wind curtailment issue is concerned, power

systems should have sufficient flexibility to mitigate short-

term fluctuations of wind power as well as the temporal

mismatch between wind power and load. With the

increasingly mature energy storage technology, grid-scale

ESS is regarded as a potential solution to provide the

required flexibility for accommodating large-scale wind

power generation [3]. The related grid applications of ESSs

include, but are not limited to: peak shaving, power
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balancing and system upgrade deferral [4]. However,

considering the high capital cost of ESS, installing large-

capacity ESSs for such applications may lead to poor

investment economy [5]. Hence, it requires an optimiza-

tion-based ESS planning method to ensure that the ESS

investment is reasonable and economic for improving wind

power utilization.

To date, researchers have shown an increasing interest

in grid-scale ESS planning problems in power systems with

wind power integration. A deterministic planning model is

proposed in [6] to investigate the optimal sizing of ESS for

renewable power plants with a well-designed storage

operation strategy. To smooth the net load variations, ref-

erence [7] presents a fast sizing method for battery energy

storage (BES) based on calculating specific battery-sizing

indices. In [8], the ESS sizing model is further augmented

by incorporating the system peak-shaving policies. The

above studies focus on the optimal sizing of ESS in a

single-bus model that assumes the transmission capacity to

be unlimited. To further consider the role of ESS in

transmission congestion relief, plenty of methods have

been proposed for the joint optimization of ESS sizing and

siting in transmission-constrained networks. According to

the way of promoting wind power utilization, we catego-

rize these methods into the following three types.

1) Price-guidance methods. References [9, 10] propose a

market-based optimal power flow framework to opti-

mize the sizing and siting of compressed air energy

storage (CAES) considering different wind penetration

levels. Reference [11] incorporates the unit commit-

ment problem into the ESS planning and designs a

near-optimal solution strategy. This type of research

makes use of the price advantage of wind power, that

is, due to the low marginal price, the wind power can

be utilized preferentially to minimize the total cost of

meeting the load demand.

2) Robust-oriented methods. Reference [12] proposes a

scenario tree-based stochastic programming model for

CAES planning considering nonanticipative operating

behaviors. In [13, 14], the impacts of uncertain wind

power on the voltage profiles, transmission congestion

costs are respectively considered in ESS planning

problems by using the AC power flow model. All these

models [12–14] are formulated to cater for the full

utilization of available wind power. In addition, robust

optimization has also been well adopted in ESS

planning studies [15, 16] to obtain robust solutions

that can ensure reliable system operation without any

wind curtailment under uncertainties.

3) Penalty-based methods. Reference [17] provides a

practical and feasible ESS planning method for

realistic large-scale systems. Reference [18]

introduces specific constraints to guarantee a certain

level of profitability in ESS investment. In [19], a

dynamic programming model is presented to address

the multi-stage impacts of uncertainties on the invest-

ment of BES. What the above studies [17–19] have in

common is that they penalize the wind curtailment as

one of the optimization objectives to enhance wind

power utilization.

All the three types of models above for minimizing wind

curtailment can provide reasonable ESS planning decisions

that ensure high utilization of wind power. However, few

of these studies pay attention to the conflict between wind

power utilization and ESS investment economy. We

believe that the level of wind power utilization will have a

significant impact on ESS investment costs. The problem

which motivates this paper is the need for flexible ESS

planning models that support the precise adjustment of

wind power utilization level and help decision makers

achieve a desired trade-off.

On the other hand, different technologies of energy

storage have significantly different operation characteris-

tics and cost-effectiveness performances. Reference [20]

indicates that there is no single ideal storage technology

that can well satisfy the needs of power systems for power

and energy services. Therefore, how to determine the

optimal storage portfolio for the reliable and economic

operation of power systems is also a critical problem when

various storage technologies are available. Reference [21]

designs both analytical and optimization-based frameworks

for joint sizing of multiple storage technologies based on

the predetermined net load profiles. Reference [22] further

considers transmission constraints and proposes a storage

portfolio optimization method under a deterministic envi-

ronment. So far, however, there has been little discussion

about the non-deterministic storage portfolio optimization

problem with full consideration of wind power

uncertainties.

In light of the above issues, this paper proposes a flex-

ible transmission-constrained ESS planning approach

considering uncertain wind power and load. To precisely

control the wind power utilization level, specific chance

constraints are formulated on the occurrence probability

and amount of curtailing wind power generation for each

wind farm. Then we establish a scenario-based chance-

constrained programming model that supports the non-de-

terministic optimization of storage portfolio. The resulting

nonlinear nonconvex problem is reformulated using a

proper relaxation process and is solved by a customized

variant of Benders decomposition (BD) algorithm. Finally,

case studies on a modified IEEE-24 system are presented to

validate the proposed method.
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The main contributions of this paper are threefold: � A

scenario-based chance-constrained model is proposed to

achieve flexible adjustment of the risk level of wind power

curtailment and the wind power utilization rate in the ESS

planning under uncertainty; ` In addition to consideration

of wind power uncertainties, the modeling of storage

portfolio problem takes into account a number of factors

that reflect differences between different storage tech-

nologies, including the lifetime, the investment costs per

unit power/energy capacity, the typical energy/power ratio

of energy storage and the storage loss during the charging

and discharging; ´ According to the problem structure, a

modified BD algorithm is developed to improve the com-

putational efficiency of solving this kind of chance-con-

strained programming problem. Detailed techno-economic

analysis for ESS planning is provided considering different

energy storage portfolios and wind power utilization

levels.

The remainder of this paper is organized as follows.

Section 2 introduces the mathematical formulation of the

chance-constrained ESS planning problem. Section 3 gives

the BD type solution method. Case studies are given and

discussed in Section 4. Then Section 5 concludes this

paper.

2 Problem formulation

This paper concentrates on the static ESS planning

problem driven by uncertain load and wind power gener-

ation. As with the classical stochastic ESS studies [9–12],

this paper employs stochastic programming to model the

above uncertainties by using a finite set of scenarios. Note

that both the wind power output and wind power fluctua-

tion have peak distribution characteristics, that is, a high

level of wind power output or wind power variability only

occurs in small probability. Since a typical stochastic

programming model generally considers every scenario in

the scenario pool, ESSs should be built to cater for the peak

wind power output or mitigate the high-level wind power

volatility, which may result in costly and inefficient plan-

ning schemes. To avoid overinvestment in ESS, this paper

extends conventional ESS planning models by adding

scenario-based chance constraints on wind power utiliza-

tion, where a proper amount of wind curtailment is allowed

over the planning period. The detailed problem formulation

is given below.

2.1 Scenario reduction

Considering that for multiple uncertainties, it is easier to

obtain their scenario information than the specific proba-

bility distribution, we adopt the scenario-based method to

characterize multiple uncertainties by discrete scenarios.

The scenarios defined in this paper are composed of the

daily time series of load and wind power. In the real-world

applications, the raw scenario set can be obtained with the

historical load and wind speed data. Given that it is com-

putationally intractable to deal with large numbers of

scenarios in the optimization model, a clustering-based

scenario reduction method is proposed here to generate a

representative scenario set from the raw scenario set.

For simplicity, the daily net load time series is employed

to reflect the uncertain characteristic of each scenario.

Then, to implement the clustering analysis, the similarity

degree Dij between every two scenarios is evaluated by:

Dij ¼ DE
ij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

Cj j

t¼1

L2it

 !

P

Cj j

t¼1

L2jt

 !

v

u

u

t

P

Cj j

t¼1

LitLjt

ð1Þ

where Lit and Ljt are the net load values in period t of

scenario i and j; U is the set of time periods; and Dij
E

denotes the Euclidean distance between scenarios i and

j. Note that in addition to the Euclidean distance, this paper

also introduces the cosine distance to measure the simi-

larity of the net load fluctuation between time-series

scenarios.

A clustering method called density peaks clustering

(DPC) [23] is then adopted to divide the raw scenario set

into several clusters. Compared with traditional clustering

techniques, DPC is more suitable for the actual time series

dataset because it can determine the optimal cluster num-

ber. Through clustering analysis, the scenarios with similar

daily net load shapes will be assigned to the same cluster,

then we can intuitively produce a representative scenario

set by sampling few scenarios in each cluster. In addition,

to ensure the effectiveness of scenario reduction, we carry

out the scenario sampling and determine the weight coef-

ficient of each scenario by solving an optimization problem

of minimizing the Kantorovich distance between the raw

scenario set and the reduced scenario set, a detailed

description of which can be found in [24].

2.2 Mathematic formulation

2.2.1 Constraints at planning level

Given that the capacity investment of ESS has a discrete

nature in reality, this paper provides a mixed integer for-

mulation to achieve discrete planning decisions with mul-

tiple storage technologies. An integer decision variable n
q
i

represents the number of energy storage units of technol-

ogy q built at bus i, which is subject to:

Investment optimization of grid-scale energy storage for supporting different wind power… 1723

123



0� n
q
i U

q � u
q
i 8i 2 X; q 2 H ð2Þ

X

i2X
n
q
i U

q � u
q
S 8q 2 H ð3Þ

where Uq is the per-unit energy capacity of storage tech-

nology q; u
q
i and u

q
S are the maximum allowable investment

capacities of storage technology q built at bus i and in the

entire system, respectively; and X and H are the bus set and

storage technology set, respectively.

Constraints (2) and (3) limit the number of energy

storage units built at the local and system-wide levels. In

addition, the value of parameter u
q
i can be artificially set to

reflect the geographic location restrictions of some storage

technologies, such as pumped hydro energy storage

(PHES) and CAES.

2.2.2 Constraints at operational level

In this paper, a daily time planning horizon is adopted to

model the operational behavior of power systems as well as

ESSs under uncertainties. Since we mainly focus on the

benefits of ESS for the adjustment of active power, a DC

network model is adopted to keep the formulation simple.

The uncertain wind power and load are considered by using

the reduced scenario set. Detailed constraints of the daily

operation model are given as follows.

1) DC power flow constraints.

FijkðtÞ¼BijðhikðtÞ � hjkðtÞÞ 8ij 2 U; k 2 W; t 2 C ð4Þ

Fij;min �FijkðtÞ�Fij;max 8ij 2 U; k 2 W; t 2 C ð5Þ

�p� hikðtÞ� p 8i 2 X; k 2 W; t 2 C ð6Þ
hikðtÞ¼ 0 i ¼ is; 8k 2 W; t 2 C ð7Þ

PG
ikðtÞ þ PW

ik ðtÞ þ
X

q2H
P
q
SD;ikðtÞ ¼ PL

ikðtÞ þ
X

q2H
P
q
SC;ikðtÞ

þ PCW
ik ðtÞ þ

X

j2Oi

FijkðtÞ 8i 2 X; k 2 W; t 2 C

ð8Þ

where the subscript k is the kth scenario (the same below);

Fijk(t) is the power flow along line i-j in period t; Fij,min and

Fij,max are the corresponding lower and upper bounds; Bij is

the susceptance of line i-j; hik(t) and hjk(t) are the voltage

angles at bus i and j in period t, respectively; is denotes the

slack bus number; PG
ikðtÞ and PCW

ik ðtÞ are the conventional

generator output and wind curtailment at bus i in period t,

respectively; PW
ik ðtÞ and PL

ikðtÞ are both input parameters,

which denote the wind power and load at bus i in period t,

respectively; P
q
SD;ikðtÞ and P

q
SC;ikðtÞ are the discharging and

charging power of storage technology q at bust i in period t;

U and W are the sets of transmission lines and reduced

scenarios, respectively; and Oi is the set of buses connected

to bus i by available transmission lines.

Constraint (4) represents the DC power flow relation-

ship. Constraints (5)-(7) define the operation limits for the

line power flow and nodal angle. Constraint (8) is the nodal

power balance equation.

2) Operational constraints for conventional generators. In

this study, the quadratic fuel cost function of the

conventional generator is approximated by a piecewise

linearization. Specifically, the generator output PGik(-

t) is divided into l linear segments, each of which is

subject to:

PG
ikðtÞ ¼ PG

i;min þ
X

l

a¼1

P
G;a
ik ðtÞ 8i 2 X; k 2 W; t 2 C ð9Þ

0�P
G;a
ik ðtÞ�P

G;a
i;max 8i 2 X; k 2 W; t 2 C; a 2 ½1; l�

ð10Þ

where P
G;a
ik ðtÞ is the ath segment of the generator output

PG
ikðtÞ; P

G;a
i;max is the corresponding upper bound; and P

G
i;min is

the minimum output of the conventional generator at bus

i.

In addition, the generator output PG
ikðtÞ in each period is

restricted by the generation ramp-rate limitation:

�Ri �PG
ikðt þ 1Þ � PG

ikðtÞ�Ri 8i 2 X; k 2 W; t� Cj j � 1

ð11Þ

where Ri is the maximum up/down ramp rate of the

conventional generator at bus i.

3) Operational constraints for ESS. Firstly, the charging/

discharging power is restricted by the power rating of

ESS as follows:

0�P
q
SD;ikðtÞ� n

q
i c

q
D;ikðtÞ � Uq=Tq ð12Þ

0�P
q
SC;ikðtÞ� n

q
i c

q
C;ikðtÞ � Uq=Tq ð13Þ

cqD;ikðtÞþcqC;ikðtÞ� 1

cqD;ikðtÞ 2 f0; 1g
cqC;ikðtÞ 2 f0; 1g

8

<

:

ð14Þ

where 8i 2 X; k 2 W; q 2 H; t 2 C; cqD;ikðtÞ and cqC;ikðtÞ are
two binary decision variables that determine whether the

energy storage units built at bus i operate in discharging or

charging state in period t; Tq is the rated discharge duration

of storage technology q, which represents the typical

energy/power ratio in its practical application. Note that by

introducing parameters Uq and Tq, we can, to a certain

extent, take into account the investment and application
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characteristics of different storage technologies in the ESS

planning modeling.

Furthermore, the energy capacity limits, which is related

to the charging/discharging power, are given as below:

0� S
q
ikðtÞ� n

q
i U

q 8i 2 X; k 2 W; q 2 H; t 2 C ð15Þ

S
q
ikðt ¼ 1Þ ¼ S

q
ikðt ¼ Cj jÞ 8i 2 X; k 2 W; q 2 H ð16Þ

S
q
ikðt þ 1Þ � S

q
ikðtÞ ¼ gqCP

q
SC;ikðtÞ �

1

gqD
P
q
SD;ikðtÞ

8i 2 X; k 2 W; q 2 H; t� Cj j � 1

ð17Þ

where S
q
ik is the state of charge (SoC) of storage technology

q at bus i in period t; gqC and gqD are the charging and

discharging efficiencies of storage technology q, respec-

tively. Constraint (15) makes the SoC less than the rated

energy capacity. Constraint (16) describes the coupling

relationship between the charging/discharging power and

SoC. To satisfy the daily continuous operation of ESS,

constraint (17) makes sure that the SoC in the last period

should be the same with its initial condition.

2.2.3 Constraints on wind curtailment

Firstly, the wind curtailment should be no more than the

actual available wind power, which can be expressed by:

0�PCW
ik ðtÞ�PW

ik ðtÞ 8i 2 X; k 2 W; t 2 C ð18Þ

Furthermore, to guarantee a certain level of wind power

utilization for each wind farm, this paper introduces a

chance constraint as shown in (19), which restricts the

occurrence probability of excessive wind curtailment

within a certain risk tolerance level e:

Pr
X

t2C
PCW
i ðtÞ� 1� jð Þ

X

t2C
PW
i ðtÞ

( )

� 1� e 8i 2 X

ð19Þ

where j represents the utilization rate of wind power that

needs to be satisfied.

On the basis of the reduced scenario set, constraint (19)

is further reformulated into the following constraints:

X

t2C
PCW
ik ðtÞ � ð1� jÞ

X

t2C
PW
ik ðtÞ

" #

1� zkð Þ� 0

8i 2 X; k 2 W

ð20Þ

X

k2W
zkpk � e zk 2 f0; 1g ð21Þ

where zk is a binary decision variable; pk is the occurrence

probability of scenario k. For scenario k, it can be observed

that zk is used as an indicator to determine whether the

wind power can be curtailed over the predefined range

(zk = 1) or not (zk = 0). More importantly, note that the

values of j and e can be flexibly adjusted to reflect different
needs of planning decision makers for the wind power

utilization level. Accordingly, an effective trade-off

between wind curtailment and ESS investment costs can be

studied in the ESS planning.

2.2.4 Objective function

The above constraints indicate that a feasible planning

scheme should be able to ensure the safe system operation

without load shedding and excessive wind curtailment.

Aiming at finding the least-cost planning solution, this

paper defines the objective function V as the minimization

of both the planning-stage cost and the weighted opera-

tional-stage cost, which is given by:

V ¼ min CCap þ CF þ
X

k2W
pk CV;k þ CG;k þ CL;k

� �

" #

ð22Þ

Specifically, the first element in (22) is the daily

investment cost of all storage units, which is formulated

by:

CCap ¼
1

365

X

i2X

X

q2H
cq c

q
En

q
i U

q þ c
q
Pn

q
i � Uq=Tqð Þ ð23Þ

where cq is the capital recovery factor of storage technol-

ogy q; c
q
E and c

q
P are the investment costs corresponding to

the energy rating and power rating of storage technology q,

respectively.

The second element is the daily fixed ESS operation &

maintenance (O&M) cost, which is defined as follows [12]:

CF ¼
X

i2X

X

q2H
c
q
Fn

q
i � Uq=Tq ð24Þ

where c
q
F denotes the daily fixed O&M cost corresponding

to the power rating of storage technology q. Note that the

fixed ESS O&M cost is only related to the installed ESS

power capacity.

The third element is the daily variable ESS O&M cost,

which is formulated as follows [12]:

CV ;k ¼
X

i2X

X

q2H

X

t2C
P
q
SD;ikðtÞc

q
V 8k 2 W ð25Þ

where c
q
V denotes the variable O&M cost of storage tech-

nology q. It can be observed that the value of CV,k depends

on the daily operation of all storage units.

The fourth element is the daily generator fuel cost

approximated by piecewise linearization, which is given by

[15]:

CG;k ¼
X

i2X

X

t2C
c0G;i þ

X

l

a¼1

caG;iP
G;a
ik ðtÞ

 !

8k 2 W ð26Þ
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where c0G;i is the fixed cost of the generator at bus i cor-

responding to its minimum output; caG;i denotes the lin-

earized cost parameter for the generator output over

segment a at bus i.

The last element is the daily ESS loss cost, which is

defined as follows:

CL;k ¼ cL
X

i2X

X

q2H

X

t2C
P
q
SD;ikðtÞ 1� gqDð Þ=gqD þ P

q
SC;ikðtÞ 1� gqC

� �

h i

8k 2 W

ð27Þ

where cL is the penalty cost of storage loss during charging

and discharging. Note that the storage loss during the daily

operation, which is also an undesirable waste of energy like

the wind curtailment, is rarely considered in the previous

studies. Since different storage technologies have signifi-

cant differences in the charging/discharging efficiency, it is

necessary to introduce the corresponding loss cost into the

objective function so as to take into account the impact of

the charging/discharging efficiency on storage portfolio

optimization.

Due to the existence of bilinear terms in (12), (13) and

(20), the proposed ESS planning model is a complicated

mixed integer nonlinear programming (MINLP) problem.

In Section 3, a solution method inspired by the bilinear BD

algorithm [25] is presented to solve this chance-constrained

problem.

3 Solution method

3.1 Linear formulation of original MINLP problem

Firstly, we note that the introduction of the variable

O&M cost and ESS loss cost in the objective function (22)

can already help avoid the simultaneous charging and

discharging of ESS. Hence, for the non-convex constraints

(12) and (13), this paper relaxes them by taking the convex

hull of the corresponding feasible region, which is given

by:

P
q
SD;ikðtÞ þ P

q
SC;ikðtÞ� n

q
i � Uq=Tq P

q
SD;ikðtÞ� 0

P
q
SC;ikðtÞ� 0 8i 2 X; k 2 W; q 2 H; t 2 C

�

ð28Þ

Obviously, by replacing (12) and (13) with (28), a total

of 2|X||H||W||C| binary decision variables can also be

removed to reduce the problem-solving scale.

In addition, for the bilinear constraint (20), we adopt the

McCormick linearization method [26] to obtain its linear

counterpart as follows:

X

t2C
PCW
ik ðtÞ �

X

t2C
PCW 0

ik ðtÞ � 1� zkð Þð1� jÞ
X

t2C
PW
ik ðtÞ� 0

8i 2 X; k 2 W

ð29Þ

PCW
ik ðtÞ � PW

ik ðtÞ 1� zkð Þ�PCW 0

ik ðtÞ�PCW
ik ðtÞ

8i 2 X; k 2 W; t 2 C
0�PCW 0

ik ðtÞ�PW
ik ðtÞzk 8i 2 X; k 2 W; t 2 C

8

>

<

>

:

ð30Þ

where PCW 0

ik ðtÞ is the auxiliary variable that replaces the

bilinear term PCW
ik ðtÞzk. It can be observed that (29) and

(30) are completely equivalent to (20) because the desired

restriction on wind curtailment also only works under the

responsive scenarios (zk=0).

Using the above relaxation, the original ESS planning

model is reformulated into a mixed integer linear pro-

gramming (MILP) model. However, it is still a challenge to

directly solve this problem due to the multiple scenarios.

Given that its computational complexity can be decen-

tralized by decomposing the two-stage problems with

respect to each scenario, a BD type solution method is

presented in the following.

3.2 Modified BD algorithm

According to the general BD framework [27], the pro-

posed ESS planning problem can be decomposed into an

investment master problem and a series of operation sub-

problems over the reduced scenario set.

3.2.1 Operation subproblems

The operation subproblems are employed to check

whether the first-stage decision obtained in the master

problem is global optimal. They come in two forms, which

depends upon the values of binary decision variables zk.

Consider the fixed decision variables n̂
qðmÞ
i and ẑ

ðmÞ
k

obtained in the mth BD iteration, the subproblem for the

responsive scenario (ẑ
ðmÞ
k ¼ 0) is formulated as (31), sub-

ject to (4)–(7), (9)–(11), (15)–(18), (25)–(28) and (32)–

(34).

uðmÞ
k ¼ min CV ;k þ CG;k þ CL;k þM

X

i2X
g1ik þ

X

i2X

X

t2C
g2ikðtÞ

 !" #

ð31Þ
X

t2C
PCW
ik ðtÞ� ð1� cjÞ

X

t2C
PW
ik ðtÞ þ g1ik 8i 2 X ð32Þ
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PG
ikðtÞ þ PW

ik ðtÞ þ
X

q2H
P
q
SD;ikðtÞ ¼ PL

ikðtÞ � g2ikðtÞ þ
X

q2H
P
q
SC;ikðtÞ

þ PCW
ik ðtÞ þ

X

j2Oi

FijkðtÞ 8i 2 X; t 2 C

ð33Þ

n
q
i ¼ n̂

qðmÞ
i 8i 2 X; q 2 H ð34Þ

where the objective function uðmÞ
k aims to minimize the

operational-stage cost under the responsive scenario; n1ik
and n2ikðtÞ are two non-negative slack variables for the wind

curtailment and load, respectively; M is a penalty

coefficient to penalize n1ik and n2ikðtÞ in (31). These two

slack variables are employed to ensure that such

subproblems are always solvable, thus giving an

optimality cut as below:

ûðmÞ
k þ

X

i2X

X

q2H
sqðmÞik n

q
i � n̂

qðmÞ
i

� �

" #

1� zkð Þ� nk ð35Þ

where sqðmÞik is the dual multiplier associated with (34); nk is
the system operation cost during the second stage. Note

that the indicator zk is employed to ensure that the bilinear

cut (35) is active only when zk = 0.

For the non-responsive scenario ẑ
ðmÞ
k ¼ 1, another opti-

mality subproblem, which has a similar formulation to the

previous one, is given by:

wðmÞ
k ¼ min CV ;k þ CG;k þ CL;k þM

X

i2X

X

t2C
g2ikðtÞ

 !

ð36Þ

Equation (26) is subject to (4)-(7), (9)-(11), (15)-(18),

(25)-(28), (33) and (34). Note that this subproblem only

penalizes the load shedding. Likewise, a corresponding

bilinear optimality cut is formulated as follows:

ŵðmÞ
k þ

X

i2X

X

q2H
mqðmÞik n

q
i � n̂

qðmÞ
i

� �

" #

zk � nk ð37Þ

where mqðmÞik is the dual multiplier of (34) with respect to the

latter subproblem.

Although the bilinear terms in (35) and (37) can be

linearized by the McCormick method, the unavoidable

introduction of auxiliary variables and constraints will

increase the computational burden of the master problem.

This study therefore develops another linearized counter-

part of this kind of bilinear optimality cuts.

Here we take the optimality cut (35) as an example.

Consider a set E ¼ i; qð Þ : i 2 X; q 2 Hf g, we can obtain a

specific subset E
ðmÞ
1 ¼ i; qð Þ 2 E : sqðmÞik � 0

n o

and its

complimentary set E
ðmÞ
2 ¼ i; qð Þ 2 E : sqðmÞik \0

n o

under

scenario k in the mth BD iteration. Here we define an

auxiliary parameter f1ðmÞk as follows:

f1ðmÞk ¼
X

i;qð Þ2EðmÞ
1

sqðmÞik n
q
i;max þ

X

i;qð Þ2EðmÞ
2

sqðmÞik n
q
i;min ð38Þ

where n
q
i;max and n

q
i;min are respectively the physical upper

and lower bounds of n
q
i . Then, a valid linear formulation of

the optimality cut (35) is given below:

ûðmÞ
k �

X

i2X

X

q2H
sqðmÞik n̂

qðmÞ
i

 !

1� zkð Þ

þ
X

i2X

X

q2H
sqðmÞik n

q
i � f1ðmÞk zk � nk

ð39Þ

Remark We mention that when zk = 0, it is clear that cut

(39) reduces to a traditional Benders cut, which is valid for

any feasible solution (n
q
i , zk = 0). When zk = 1, the left

side of the reduced cut should have:
X

i2X

X

q2H
sqðmÞik n

q
i � f1ðmÞk

� max
n
q
i

X

i2X

X

q2H
sqðmÞik n

q
i � f1ðmÞk ¼ 0� nk

ð40Þ

which also indicates that the reduced cut is valid for any

feasible solution (ni
q, zk = 1), thus proving the validity of

the proposed cut (39). It can be further observed that, by

introducing parameter f1ðmÞk , cut (39) is not only inherently

linear without adding auxiliary variables or constraints, but

also avoids excessive relaxation of (35). As the upper/

lower bounds of decision variables n
q
i are naturally

available, it is feasible to perform this linearization in

practice.

Similarly, for another optimality cut (37), we can also

formulate its linearized counterpart as follows:

ŵðmÞ
k �

X

i2X

X

q2H
mqðmÞik n̂

qðmÞ
i

 !

zk

þ
X

i2X

X

q2H
mqðmÞik n

q
i � f2ðmÞk ð1� zkÞ� nk

ð41Þ

where parameter f2ðmÞk is obtained according to the values

of mqðmÞik as well as the upper/lower bound of n
q
i .

3.2.2 Investment master problem

The master problem aims to minimize the total cost

under the planning constraints and the optimality cuts

passed by subproblems. According to (39) and (41), the

master problem in the mth iteration can be written as a

MILP problem in the following:
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V ðmÞ ¼ min CCap þ CF þ
X

k2W
pknk

 !

ð42Þ

It is subject to (2), (3), (21), (23), (24), (43) and (44).

Equations (43) and (44) can be solved by using commercial

MILP solvers.

ûðlÞ
k �

X

i2X

X

q2H
sqðlÞik n̂

qðlÞ
i

 !

1� zkð Þ

+
X

i2X

X

q2H
sqðlÞik n

q
i � f1ðlÞk zk � nk 8k 2 W; l�m� 1

ð43Þ

ûðlÞ
k �

X

i2X

X

q2H
sqðlÞik n̂

qðlÞ
i

 !

1� zkð Þ

+
X

i2X

X

q2H
sqðlÞik n

q
i � f1ðlÞk zk � nk 8k 2 W; l�m� 1

ð44Þ

On the basis of the above master problem and

subproblems, the proposed ESS planning problem can be

solved using a conventional iterative solution procedure

[27]. The flow chart is presented in Fig.1.

4 Case study

In this section, a modified IEEE 24-bus system is

studied to validate the proposed ESS planning approach.

The network topology is shown in Fig. 2.

The time horizon is 24 hours in time steps of 1 hour. A

reduced scenario set consisting of 55 scenarios is selected

from the historical data of load and wind power output.

According to the ideas of [15, 22], the original IEEE

24-bus system is modified in the following three aspects:

1) To render the test system less reliable and aggravate

the transmission congestion, all the loads are assumed

to be 1.3 times of the original values, and capacities of

all transmission lines are reduced by 20%. The ramp-

rate limitations are also imposed on the conventional

generators.

2) Five wind farms, each with a capacity of 250 MW, 250

MW, 250 MW, 550 MW and 550 MW, are added to

buses 1, 4, 5, 14 and 17, respectively. The penetration

level of wind generation with respect to the overall

load is 49.93%.

3) Three different storage technologies, PHES, CAES

and BES, are considered in the case studies. For each

storage technology, the energy capacity per unit is set

to 1000 MWh, 400 MWh and 40 MWh, respectively,

and the rated discharge duration is set to 10 hours, 8

Input scenario data and implement scenario reduction

Form constraints at the planning/operational level

Form constraints on the wind curtailment

Form objective function

Form the proposed ESS planning model and implement reformulation

Investment master problem

Generate optimality 
cut (39)

Initial parameter setting

Is it the last 
scenario?

End

N

Y
Generate optimality 

cut (41)

N

Y

Add Benders cuts

Y

Is the current
scenario a responsive

scenario?

N
Is the convergence 
criterion satisfied?

Start

Initialization 

Fig. 1 Flow chart of proposed ESS planning methodology
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Fig. 2 Single line diagram of modified IEEE 24-bus system
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hours and 2 hours, respectively. Detailed parameter

setting can be found in [28].

4.1 Experiments with different storage technologies

This subsection aims to show the effect of different

storage technologies on planning decisions through com-

parison. Three cases, each of which considers only one

storage technology, are defined as follows:

1) Case R1 only considers PHES, and the site locations

are limited to buses 3, 7, and 22 to reflect geographic

restrictions.

2) Case R2 only considers CAES while the site locations

are the same as those in C1.

3) Case R3 only considers BES, and the site locations are

limited to buses 6, 8, 10, 16 and 17, which are selected

based on the most congested lines.

With the risk level e and wind utilization rate j set to

10% and 95%, Table 1 gives the planning results for cases

R1-R3, where ni in each scheme denotes the power/energy

capacity planned to be installed in bus i. It can be clearly

seen that the features of each storage technology have a

direct impact on planning results. Specifically, since BES

has the minimum energy capacity per unit and can be built

more flexibly than PHES and CAES, the overall energy

capacity built in case R3 is only 1000 MWh, which is

66.67% and 58.33% less than that in cases R1 an R2,

respectively. However, the small energy/power ratio of

BES also results in building a huge power capacity up to

500 MW in case R3, which is 1.67 times higher than that in

cases R1 and R2. On the other hand, it can be observed that

the planning scheme with larger energy capacity brings in

more cost savings in terms of fuel costs, and the usage of

BES is of salient benefit in reducing the ESS loss costs

because of its high charging/discharging efficiency.

Two operation indices, which are respectively called the

energy capacity utilization level (ECUL) and the power

capacity utilization level (PCUL), are presented as follows

to show how much the overall energy/power capacity is

utilized during the daily/hourly system operation.

ECUL
q
k ¼

max
t2C

P

i2X
S
q
ikðtÞ �min

t2C

P

i2X
S
q
ikðtÞ

P

i2X
n
q
i U

q
ð45Þ

PCUL
q
kðtÞ ¼

max
P

i2X
P
q
SD;ikðtÞ;

P

i2X
P
q
SC;ikðtÞ

� 	

P

i2X
n
q
i � Uq=Tq

ð46Þ

By calculating these two indices over the reduced

scenario set, we obtain the statistical distribution

characteristics of ESS utilization for cases R1-R3 as

shown in Fig. 3.

Obviously, in terms of energy capacity, case R3 fully

utilizes the built BESs in almost all scenarios, whereas the

maximum ECUL in cases R1 and R2 are no larger than

80%, which means the corresponding built energy capacity

has already exceeded the system operation requirements.

On the other hand, cases R1 and R2 make better use of the

built power capacity than case R3 in which the PCUL is

less than 60% in a probability of 93.97%. It can be

Table 1 ESS planning results with single storage technology

Case Planning scheme Daily cost ($ per day) Total cost ($ per

day)
Investment

cost

O&M

cost

Fuel

cost

ESS loss

cost

R1 PHES (300 MW/3000 MWh):

n3=100 MW/1000 MWh, n22=200 MW/2000 MWh

253538 4562 1050374 26017 1334491

R2 CAES (300 MW/2400 MWh):

n7=50 MW/400 MWh, n22=250 MW/2000 MWh

239049 4553 1066982 29551 1340135

R3 BES (500 MW/1000 MWh):

n6=120 MW/240 MWh, n8=60 MW/120 MWh,

n10=60 MW/120 MWh, n16=60 MW/120 MWh, n17=200 MW/

400 MWh

231202 9926 1072301 8703 1322132

Fig. 3 Histogram for ESS utilization under cases R1-R3
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observed that the power capacity built in case R3 is over-

invested because the power regulation requirements are

also met in cases R1 and R2 with less power capacity.

Therefore, under such circumstance, the main driving

factor of PHES and CAES construction is the demand for

power service, while that of BES construction is the

demand for energy service. The above discussion demon-

strates that in the ESS planning, using only one type of ESS

can hardly meet the unstructured demand for power and

energy capacity of system operation without redundant

capacity investments.

4.2 Experiments with different storage technology

portfolios

In this subsection, with the same parameter settings, we

obtain all possible joint planning schemes (R4-R7) by

enumerating each storage technology portfolio. Note that

cases R4-R6 in Table 2 correspond to the joint planning

schemes with only two storage technologies, while case R7

in Table 3 introduces all three storage technologies.

As indicated in Tables 2 and 3, all planning schemes

(R4-R7) involving multiple storage technologies cost less

than the previous schemes (R1-R3) in terms of the total

cost. In particular, case R7, which introduces all three

storage technologies, has the minimum total cost among

cases R1-R7, thus revealing the effectiveness and necessity

of the joint planning of various types of energy storage.

Furthermore, it can be seen that although the investment

cost of case R7 is larger than that of case R6, the cost

savings in the remaining three types of costs still render

case R7 the most economic planning scheme. Actually,

there is no clear positive or inverse relationship between

the above four types of costs, it is therefore necessary to

introduce all of them as optimization objectives in the ESS

planning model.

Figure 4 further shows simulation results of system

operation before/after building ESS (case R7). It can be

observed that all three types of energy storage are involved

in storing wind energy during the valley-load period and

drastically promote wind power utilization by peak shav-

ing. In addition, BES also provides the capability of power

regulation to maintain power balance at the 9th, 10th and

15th hours.

Likewise, we employ the above two indices to investi-

gate the changes in ESS utilization after introducing mul-

tiple storage technologies. Taking case R7 as an example,

the utilization of each storage technology is analyzed and

depicted in Fig. 5. It can be seen that, compared to the

separate use of each storage technology, the combined use

of three storage technologies in case R7 effectively

improves the utilization level of all types of energy storage.

Specifically, in terms of power capacity for PHES, CAES

and BES, the probability of PCUL above 80% significantly

increases from 26.01%, 14.39% and 1.12% to 40.16%,

26.27% and 6.41%. On the other hand, the redundant

investment in the energy capacity of PHES and CAES is

also alleviated, where the probability of ECUL above 60%

correspondingly increases from 42.1% and 1.55% to

49.87% and 16.71%, respectively.

As a conclusion, compared with cases R1-R3, case R7

takes better advantage of the low-cost energy capacity of

PHES and CAES as well as the low-cost power capacity of

BES, thus providing a more reasonable planning scheme.

4.3 Additional analyses

4.3.1 Impact of ESS loss cost

In order to investigate whether it is necessary to involve

the energy loss of ESS in the ESS planning studies, two

planning schemes (R8 and R9) are obtained with the same

Table 2 ESS planning results with two storage technologies

Case Planning scheme Daily cost ($ per day) Total cost ($ per

day)
Investment

cost

O&M

cost

Fuel

cost

ESS loss

cost

R4 PHES?CAES (300 MW/2800 MWh):

PHES: n22=200 MW/2000 MWh; CAES: n22=100 MW/800

MWh

248708 4297 1055031 25382 1333418

R5 PHES?BES (400 MW/1600 MWh):

PHES: n22=100 MW/1000 MWh;

BES: n6=20 MW/40 MWh, n8=20 MW/40 MWh

n10=60 MW/120 MWh, n17=200 MW/400 MWh

223233 7482 1063501 14283 1308499

R6 CAES?BES (350 MW/1600 MWh):

CAES: n3=100 MW/800 MWh, n22=50 MW/400 MWh;

BES: n10=20 MW/40 MWh, n17=180 MW/360 MWh

212005 6313 1071247 19052 1308617
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parameter settings as cases R4 and R5, but ignoring the

ESS loss cost in the objective function. Table 4 shows that

compared to cases R4 and R5, more storage units with

lower charge/discharge efficiency are built in cases R8 and

R9 whereas high-efficiency storage units are removed.

Specifically, the ESS loss costs of cases R8 and R9 increase

by 85.09% and 69.41%, respectively, which is the main

reason that results in more costly planning schemes. It can

be concluded that the consideration of ESS loss cost can

help to avoid unreasonable capacity investments of the

storage technologies with low charging/discharging

efficiency.

4.3.2 Sensitivity analysis

To analyze the conflict between the wind power uti-

lization level and ESS investment decision, we take case

R6 as the benchmark and obtain four other planning

schemes as shown in Table 5 with the same storage port-

folio but different values of e and j. Here we additionally

calculate the penalty cost of wind curtailment in each case

to reflect the impact of changes in wind power utilization

level on the actual wind curtailment loss.

Table 5 indicates that owing to the restrictive require-

ments for wind power utilization, the storage investment

costs in cases R10 and R12 are respectively increased by

17.12% and 27.5% as compared with the benchmark (case

R6). However, the cost savings corresponding to wind

curtailment reduction are quite limited because of the peak

distribution characteristics of wind power, which leads to

poor economy in cases R10 and R12. On the contrary, with

an appropriate decrease in the wind power utilization level,

less storage devices are required to be built in cases R11

and R13 whereas the corresponding wind curtailment costs

slightly increase, thus the total cost is effectively

reduced.

The above observations show that: � the proposed

chance-constrained approach can flexibly adjust the wind

power utilization level in the ESS planning, thus helping

decision-makers to better determine the most suit-

able planning scheme; ` blindly maximizing the wind

power utilization does not necessarily help to improve the

Table 3 ESS planning results with all three storage technologies

Case Planning scheme Daily cost ($ per day) Total cost ($ per

day)
Investment

cost

O&M

cost

Fuel

cost

ESS loss

cost

R7 PHES?CAES?BES (350 MW/1800 MWh):

PHES: n3=100 MW/1000 MWh; CAES: n22=50 MW/400

MWh;

BES: n10=20 MW/40 MWh, n17=180 MW/360 MWh

216835 6216 1064369 17654 1305074

Fig. 4 Simulation results for daily system operation

Fig. 5 Histogram for ESS utilization under case R7
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overall economy of power systems. Instead, the economy

of system planning and operation can be improved by

allowing the wind curtailment in an appropriate proportion.

4.3.3 Computational performance

Comparative experiments are carried out here to vali-

date the proposed BD algorithm. In the solving procedure,

all the above planning cases R1-R13 are solved by using

CPLEX and the proposed BD algorithm, respectively. The

relative optimality gap is set to 10-3 when using CPLEX,

while the BD tolerance is also set to 10-3. Comparison

results of the computational performance are given in

Table 6.

It can be observed that the proposed BD algorithm

performs faster than the commercial solver CPLEX in all

experiments. Specifically, the computational time by the

BD algorithm is reduced by more than 80% in 11 of the

Table 4 ESS planning results without considering ESS loss cost

Case Planning scheme Daily cost ($ per day) Total cost ($ per

day)
Investment

cost

O&M

cost

Fuel

cost

ESS loss cost (post

evaluation)

R8 PHES?CAES (300 MW/2800 MWh):

PHES: n22=200 MW/2000 MWh;

CAES: n22=100 MW/800 MWh

239049 6157 1056082 46981 1348269

R9 PHES?BES (320 MW/2240 MWh):

PHES: n22=200 MW/2000 MWh;

BES: n10=20 MW/40 MWh, n17=100 MW/200

MWh

224513 5619 1057107 24197 1311436

Table 5 ESS planning results under different wind power utilization levels

j
(%)

e
(%)

Planning scheme Daily cost ($ per day) Curtailment cost ($

per day)

Total cost ($

per day)
Investment

cost

O&M

cost

Fuel

cost

Loss

cost

95.0 10.0 R6 (350 MW/1600 MWh):

CAES: n3=100 MW/800 MWh, n22=50

MW/400 MWh;

BES: n10=20 MW/40 MWh, n17=180 MW/

360 MWh

212005 6313 1071247 19052 60247 1368864

95.0 7.5 R10 (320 MW/2440 MWh):

CAES: n3=100 MW/800 MWh, n22=200

MW/1600 MWh;

BES: n17=20 MW/40 MWh

248297 4987 1065873 30213 52867 1402237

95.0 12.5 R11 (260 MW/1120 MWh):

CAES: n22=100 MW/800 MWh;

BES: n6=20 MW/40 MWh, n17=140 MW/

280 MWh

153668 4795 1096793 13634 66551 1335441

97.5 10.0 R12 (440 MW/2080 MWh):

CAES: n3=200 MW/1600 MWh;

BES: n10=60 MW/120 MWh, n17=180

MW/360 MWh

270343 7639 1066263 22260 49326 1415831

92.5 10.0 R13 (230 MW/1360 MWh):

CAES: n3=50 MW/400 MWh, n22=100

MW/800 MWh;

BES: n10=20 MW/40 MWh, n17=60 MW/

120 MWh

156517 4041 1083196 17934 71089 1332777
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above cases. Note that the subproblems are independent of

each other, the solution efficiency of the BD algorithm can

be further improved by parallel computing techniques.

5 Conclusion

This paper presents a chance-constrained ESS planning

approach under uncertainty. A density-based clustering

method is employed to generate a reduced scenario set to

represent uncertain wind power and load. A scenario-based

stochastic ESS planning model is established to achieve the

joint planning of different energy storage technologies in

transmission-constrained networks, and specific chance

constraints are designed to ensure a certain level of wind

power utilization. Numerical results in a modified IEEE

24-bus system indicate that: � the planning schemes based

on co-optimizing different storage technologies are more

reasonable and economically efficient; ` more than 5.9%

savings can be achieved in terms of the total cost by

allowing a proper amount of wind curtailment; ´ the

proposed BD algorithm performs at least 70% faster than

using CPLEX to directly solve this kind of chance-con-

strained problems.

Although employing ESS can help defer the transmis-

sion construction, the economic relationship between the

construction of ESSs and transmission lines is still

ambiguous and needs to be further investigated. In the

future, more efforts will be made to carry out the multi-

stage co-planning of ESS and transmission network.
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[11] Pandžić H, Wang Y, Qiu T et al (2015) Near-optimal method for

siting and sizing of distributed storage in a transmission net-

work. IEEE Trans Power Syst 30(5):2288–2300

[12] Xiong P, Singh C (2016) Optimal planning of storage in power

systems integrated with wind power generation. IEEE Trans

Sustain Energy 7(1):232–240

[13] Wen S, Lan H, Fu Q et al (2015) Economic allocation for

energy storage system considering wind power distribution.

IEEE Trans Power Syst 30(2):644–652

[14] Hemmati R, Saboori H, Jirdehi MA (2017) Stochastic planning

and scheduling of energy storage systems for congestion man-

agement in electric power systems including renewable energy

resources. Energy 133:380–387

Table 6 Computational performance

Case Solution time (s)

BD CPLEX

R1 117.32 426.74

R2 111.46 627.31

R3 164.31 4684.77

R4 385.79 2618.99

R5 1771.23 27219.41

R6 1171.76 9441.81

R7 3498.11 19747.82

R8 320.64 4971.80

R9 1643.93 9731.70

R10 1579.53 5334.36

R11 716.44 5112.57

R12 1039.03 8623.44

R13 410.04 6282.77

Investment optimization of grid-scale energy storage for supporting different wind power… 1733

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.whitehouse.gov/the-press-office/2015/09/25/fact-sheet-united-states-and-china-issue-joint-presidential-statement
https://www.whitehouse.gov/the-press-office/2015/09/25/fact-sheet-united-states-and-china-issue-joint-presidential-statement
https://www.whitehouse.gov/the-press-office/2015/09/25/fact-sheet-united-states-and-china-issue-joint-presidential-statement
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