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Abstract In power market environment, the growing

importance of demand response (DR) and renewable

energy source (RES) attracts more for-profit DR and RES

aggregators to compete with each other to maximize their

profit. Meanwhile, the intermittent natures of these alter-

native sources along with the competition add to the

probable financial risk of the aggregators. The objective of

the paper is to highlight this financial risk of aggregators in

such uncertain environment while estimating DR magni-

tude and power generated by RES. This work develops DR

modeling incorporating the effect of estimating power at

different confidence levels and uncertain participation of

customers. In this paper, two well-known risk assessment

techniques, value at risk and conditional value at risk, are

applied to predict the power from RES and DR programs at

a particular level of risk in different scenarios generated by

Monte Carlo method. To establish the linkage between

financial risk taking ability of individuals, the aggregators

are classified into risk neutral aggregator, risk averse

aggregator and risk taking aggregator. The paper uses data

from Indian Energy Exchange to produce realistic results

and refers certain policies of Indian Energy Exchange to

frame mathematical expressions for benefit function con-

sidering uncertainties for each type of three aggregators.

Extensive results show the importance of assessing the

risks involved with two unpredictable variables and pos-

sible impacts on technical and financial attributes of the

microgrid energy market.

Keywords Aggregator, Demand response, Financial risk,

Value at risk, Conditional value at risk, Benefit analysis

1 Introduction

The dependency on the microgrid is because of it pro-

vides the potential benefits of reliability, security,

efficiency and being environment friendly [1, 2]. The

participation of microgrid in the centralized energy market

has been increasing dramatically in recent years. With the

recent advancement of smart metering technology, there is

a facilitation of the bidirectional communication that

enables the participants in the microgrid operators to

respond actively to the electricity prices in the energy

market to maximize profit by the means of controllable

distributed energy sources (DESs).

High penetration of renewable energy sources (RESs)

necessitates the need for a new entity to handle the com-

plexity associated with the RES [3–5]. This new entity is

called renewable energy source aggregator (RESA) under

whom solar and wind power producers act as independent

power producers (IPPs) and RESA procures power from

them. Reference [6] presented a multi-objective day-ahead

and reserve-market clearing model for RESA considering

the security and economic objective of minimization of

cost and maximization of voltage stability. The paper did

not consider the uncertainty involved with the power
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generated by the RES and response of the customers during

a DR event. Reference [7] proposed a two-stage micro

RESA model while the uncertainty of RES is determined

using a mean-variance model in the upper-level real-time

market and the event-driven mechanism is used for a lower

intra-market level. Reference [8] proposed optimal points

of residential microgrid for maximizing the RESAs profit

using design space exploration methodology. The robust-

ness of the day-ahead bidding strategy for flexible demand-

side resources is evaluated using multiple stochastic sce-

narios [9]. References [6–9] considered the uncertainty but

did not consider the financial risk that RESA faces during

bidding in a day-ahead scenario.

DR is becoming an effective tool to change consumption

of customer in order to maintain the balance between

generation and consumption in real time. DR can be con-

sidered as negative load (or power generation) which helps

in improving the reliability and economic efficiency of the

system [10, 11]. To handle the complexity in implementing

DR programs, a new entity has been introduced in the

electricity market, which is known as a demand response

aggregator (DRA). The main role of DRA is to implement

the appropriate DR program at different DR events.

Another function of DRA is to reduce the scalability issue

of the residential customers. The DRA aggregates the

entire DR magnitudes provided by different clusters. A

hierarchical market model is introduced in [12, 13], which

shows the competition between the set of DRAs by con-

sidering the incentives and DR quantities. In [13], this

competition is quantified with the available stored energy

between the aggregators using game theory. In [14–16],

optimal consumer behavior is modeled to decide the opti-

mal portfolio of DR contracts for a DRA participating in

the electricity market. The works in [12–16] did not con-

sider the RESs. In [17], the authors investigated the

significance of automated DR for reducing the critical

pressures on electricity supply industry, reducing the need

for peaking plants and better utilization of RES. In [18], an

optimal operation of DRA using mixed integer linear

program (MILP) is proposed with the DR portfolio con-

sidering various load curtailment and flexible load

contracts as the resources for DR.

The above analyses are carried out without considering

any risk. But the response of the customer in modifying

their consumption pattern is not certain so there is a

requirement of studying DR considering the uncertainty

associated with it. DR aggregation model is introduced in

[19] which has considered the different DR contract

options for hourly load reduction. In this model, the

uncertainty of the customers is not investigated which is

necessary for a voluntary response of customers. In [20],

the authors present the combined effects of DR program,

wind generator and network reconfiguration on distribution

network considering uncertainties involved with DR and

RES. In [21], profit maximization of DRA based on

stochasticity is introduced by considering the bottom-up

approach in the day-ahead and balancing markets. In this

work, the uncertainty of the customers is quantified with

the participation factors. The uncertain nature of the end-

user responses and market prices are the basis for finding

the short-term self-scheduling for DRA using information

gap decision theory (IGDT) [22]. In [17–22], a simplified

approach for load curtailment and load recovery is con-

sidered without using proper constraints. The load recovery

model requires constraints like the constraints of starting

and stopping of load recovery hours and the magnitude of

load that may be recovered in a specific recovery event

considering the base load of customers.

Financial risk implies the uncertainty regarding the

expected returns, i.e. the actual return may not be equal to

the expected return. This type of risk includes the chances

of losing a part or whole investment. The risk can be

understood as a potential for loss, it is not exactly same as

uncertainty which means the absence of certainty in getting

a particular outcome. There are certain instances wherein

uncertainty is inherent with respect to the forthcoming

event as in the case of the speed of the wind, cloud pattern

which affects solar irradiance etc. There are different

indices for estimation of risk like Sharpe ratio, Sortino

ratio, value at risk (VaR) and conditional value at risk

(CVaR) etc. The risk assessment measures—VaR and

CVaR—have been used in many papers to reduce uncer-

tainty in different areas of research like financial portfolio

management [23–27]. Reference [26] highlights the non-

coherent nature of VaR due to lack of sub-additivity

property and suggest the use of CVaR to overcome this

drawback. Being a convex function, CVaR can also be

used in the optimization procedures. In [27–29], analytical

expressions for CVaR calculation and detailed comparative

analysis of risk measure of VaR are described and CVaR

are discussed. The concepts of VaR and CVaR are utilized

by [23–29] in the area of finance. These concepts are

incorporated in this paper for assessing the financial risk

involved with both forecasted uncertain power and uncer-

tain load curtailment or load recovery.

Some works have been reported so far addressing the

risk involved in monetary gain while doing the microgrid

aggregator. The authors in [30] addressed the uncertainties

of the load aggregators and renewable sources by using

ellipsoidal model wherein the risk is based on the Eucli-

dean distance between the profiles of offered and desirable

renewable productions. In [31], the CVaR is adopted for

finding the optimal hourly bids in the day-ahead market for

maximizing the profit of the RESA, and the DR is also

integrated into the operation of microgrid aggregator in

power balancing purpose in risk neutral scenario.
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Meanwhile, the benefit analysis on the basis of load cur-

tailment is reported as well. In [32], the scheduling of

renewable sources is done on the basis of maximization of

profit considering variation of electricity prices, and the

risk management is done using CVaR technique. In [33],

the problem of optimal power scheduling considering DR

and various alternative sources is formulated in the

framework of portfolio optimization and is done by

employment of Sortino ratio as the objective function.

Sortino ratio is a risk measure technique used in the area of

finance for the measurement of downside risk. But the

limiting constraints used in the paper are only for the

maximum and minimum values of variables, other con-

straints like start time, stop time have not been used. Again,

in [30–33], the proper penalty function imposed on the

aggregator is not considered and the effect of load recov-

ered during valley periods is not properly addressed in

benefit estimation.

In the light of aforesaid scenario, finding an effective

value proposition in terms of delivering uncertain RES

power and DR magnitude is an attempt of the paper. VaR

and CVaR, commonly used risk measuring indices in the

financial market, are effectively applied in this work both

in estimating risk and variation of risk with the variation in

uncertain parameters. The risk levels vary with a hope to

earn maximum gain from the market, therefore, the net

financial benefit of the three types of aggregators is pre-

sented in the result section. The contributions in nutshell

are given below:

1) This paper utilizes the risk measure indices, VaR and

CVaR, very differently for estimating the uncertain

power at different confidence levels by the aggregator

and assessing the risk of the estimated power in the

day-ahead market scenario. VaR and CVaR, are

applied for estimating the net financial benefit

acquired from DR and RES on the day-ahead market.

VaR is used in estimating the RES power and

magnitude of DR or load recovery at different

confidence levels. CVaR is then used to reflect the

amount of power that is liable for the financial risk.

This representation helps user to understand the level

of risk associated with uncertain generation and DR

magnitude.

2) Both load curtailing and shifting have been considered

in the paper which includes uncertain and fixed

participation of customers to consider the effect of

mandatory as well as non-mandatory participation.

Further, a load recovery model is designed justifying

the practical constraints during the day operation.

3) The potential effect on economic and technical issues

in microgrid operation due to the difference in

subjective judgment of different RES and DRAs on

severity of risk has been investigated.

The remaining paper is organized as follows. Section 2

presents the segregation of aggregators. The implementa-

tion procedure of applying VaR and CvaR with a brief on

these two techniques is given in Section 3. Section 4

describes the penalty function used in the paper for power

deviation. Sections 5 and 6 present the mathematical

modeling of DR and the benefit function of aggregators,

respectively. Results and discussion are provided in Sec-

tion 7. Finally, the paper concludes in Section 8.

2 Aggregator in decentralized energy market

There are two different types of aggregators in the

decentralized market, i.e. DRA and RESA. Unlike inde-

pendent system operator (ISO), an aggregator is a for-profit

organization as its main aim is to gain profit through its

operation by acting as a mediator between utility and price

responsive load (PRL) and negotiates on behalf of the PRL

with the operators/ISO. It acts as a seller of DR in the

electricity market and provides incentives to the PRL for

modifying their demand patterns. The response of the PRL

at a specific DR event is quite uncertain and the DRA faces

financial risk if the response is different from the amount

for which it has committed in the day-ahead market.

Another type of aggregator working in microgrid is the

RESA that can manage all the different individual power

producers and reduce the uncertainty. RESA is introduced

to communicate with all such power producers and com-

mits for the aggregated power in the energy market. The

structure of the market is as shown in Fig. 1. Both aggre-

gators participate in energy trading business while

distribution companies manage the day-to-day operation of

distribution network for their customers to ensure reliable

and uninterrupted power [34].

2.1 Segregation of aggregators

Both the aggregators mentioned above may face a

financial risk due to the uncertainty of their resources. To

reduce this financial risk, these aggregators work at a

DR
Aggregator 1,2, ,N ISO

RES
Aggregator 1,2, ,M

Distribution 
company 1

Distribution 
company 2

Distribution 
company P

Solar
IPPs

Wind
IPPs

Price responsive load

Fig. 1 Market structure
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certain confidence level. Owing to different aggregators

commit at different confidence levels, we classify the

aggregators into three different types based on the psy-

chology of aggregators. The first type is risk neutral

aggregator (RNA), which tries to commit a minimum or

zero risk value. This type of aggregator commits at a value

where there is no loss even though it gets a very less or zero

benefit. The second type is risk averse aggregator (RAA).

This type of aggregator always tries to reduce the risk with

the motto of gaining higher benefits, and tries to get high

risk-adjusted returns by taking a minimum amount of risk.

The third type of aggregator is the risk taking aggregator

(RTA). This type of aggregator commits at a higher risk

level for getting higher benefits. By segregating aggrega-

tors on the basis of risk-taking capability, the different

business strategies are highlighted and thus the profit and

the financial risk due to the power deviation of the aggre-

gator are compared in this paper.

3 Introduction of VaR and CVaR

For the financial and economic analysis where uncer-

tainty is involved, risk analysis needs to be incorporated to

analyze the effect of uncertainty on the profits. Here we use

the risk measures VaR and CVaR to find out the benefit of

the RES and DRAs. The uncertainty studies carried out

here is basically to assess uncertainties in predicting the

power to be committed and further to analyze the proper-

ties of the uncertainties for the future forecast. The

uncertainty in the power generated by the RES and cus-

tomers response is those that are inherent and cannot be

removed. These uncertainties can often be modeled by

probability distribution unlike the economic uncertainty

that follows Brownian motion or discrete Markov chain.

A simple mathematical representation of the VaR at a
confidence level is given in (1) [23]. The confidence level

is expressed in percentage. The probability of any random

value in the data set being greater than VaRa value is a.
VaRa is the largest value of all the values that belongs to

100%� a of the lower values, as shown in (2). This

ensures that probability of obtaining power less than VaRa

is lower than 100%� a.

Pr R�VaRað Þ ¼ a ð1Þ
VaRa;s;t ¼ 100%� að ÞRs;t 8s 2 NR ð2Þ
where Pr(·) is the probability function; R is the random

value; VaRa is the VaR at a confidence level; VaRa;s;t is the

value of power by source s at a confidence level at time t;
Rs;t is a set of all the random values of power by source s at
a confidence level at time t; NR is the number of random

variables. For a given confidence level a 2 (0; 100%), the

risk measure CVaRa can be defined as an average expected

value of the loss with probability a. Equation (3) gives a

simple calculation of CVaR. CVaR in a basic sense can be

said to be the mean of the a-tail. In other words, it is the

mean of all values of the random samples that are less than

or equal to VaRa.

CVaRa ¼ 1

NVaRa

XNVaRa

g¼1

Rg ð3Þ

where NVaRa is the number of random values of power that

is below VaRa; Rg is the set of all random values below

VaRa.

3.1 Proposed implementation of risk using VaR
and CVaR

In this paper, we propose a simple method for the use of

VaRa as a committed value of power while the CVaRa as

the value of power during a risky scenario. This approach is

simple and briefly gives the idea about the probable risk of

power deviation and financial risk caused due to these

power deviations from the uncertain energy source. In the

day-ahead market, both RES and DRAs commit for their

power at different a. Consideration of a helps in converting

the uncertainty into certainty to some extent as we are

certain about the probability of power being greater than or

equal to VaRa is a. A number of mathematical studies on

VaR and CVaR lead to a problem of a confidence level

choice. In practice, the level of a lies in between 0.8 and 1

where 0.8 means 20% of risk and 1 means 0% of risk or

risk-free.

In the day-ahead market, each RES and DRA commits

for the power that it can aggregate at that hour. The gen-

erated power from DR and RES is predicted using the

probability distribution function (PDF) at different hours

with different VaRa values given in (1). Each predicted

power at a confidence level has some risks associated with

it, i.e. the 100%−a worst value of power whose value is

less than the value of power at VaRa. Now for calculation

of risk we have used CVaRa. Power at CVaRa is calculated

using (3).

The difference of power between VaRa and CVaRa

causes financial loss associated with power at VaRa. Taking

Fig. 2 as an example, as shown in it 138.45 kW is the

committed power at 80% confidence level but there is a

chance that the actual generation on the day may be less

than 138.45 kW. CVaR at 80% confidence level or 20%

risk (i.e. 68.34 kW) indicates the highest probable power

generation at risk. Therefore, the difference of these two

values of power is the risky power that causes financial

risk. The impact of a on the financial loss is discussed in

the Section 7.
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4 Deviation and penalty charge

The power generated by RESs and the response of the

customers are uncertain and the power which is predicted

for day-ahead scheduling is always associated with some

forecast errors. These errors cause the deviation of actual

power from the committed power. These deviations can be

either due to overestimation or underestimation of the

predicted power. Overestimation means the predicted

power will be less than the power that we get on the day

and deviation due to underestimation means the power

predicted will be more than the power on the actual day.

These deviations can cause a power imbalance along with

violation of scheduled contracts. Thus, the deviation of the

power that is actually supplied on the day from the com-

mitted value of power is subjected to penalty. In this paper,

the penalty applied to the power deviation is calculated on

the basis of the difference between the actual power PAG;t

at time t on the day and the committed or scheduled power

PSG;t at same time t by the aggregator, as shown in (4)

[35, 36].

D ¼ PAG;t � PSG;t

PAVC;t
� 100% ð4Þ

where D is the percentage of power deviation; PAVC;t is the

available capacity of the resource at time t.
The deviation charge CD (`) paid by the aggregator is

decided on the day for which the power is committed. The

power deviation cost is nonlinear due to the product of two

variables, i.e. power deviation and its rate for power

deviation which is taken from the power purchase agree-

ment (PPA) documents followed in India [26–28]. In India,

Indian Energy Exchange charges penalty that depends on

different percentages of power deviations, as shown in (5).

CD ¼
0 D 2 ð0; 15%Þ
0:5 D 2 ½15%; 25%Þ
1:0 D 2 ½25%; 35%Þ
1:5 D� 35%

8>><
>>:

ð5Þ

As already mentioned, the power at corresponding VaR

indicates the confidence level associated with the

generation. Penalty arises if any deviation happens from

generation at specific VaR. We propose to calculate the

penalty on the basis of percentage deviations if the

generation deviates from VaR to CVaR. The penalty

formation facilitates to understand the merit of the different

business strategies adopted under risky environment.

5 DRA

The DRA operates the load shifting and load curtailment

programs in order to decrease the load during peak demand

hours. The PRLs under load shifting program, will recover

their curtailed load in valley periods through load recovery

programs, but the total consumption will be less for them.

The reward for these reductions is determined based on

agreements between aggregator and PRL. The mathemat-

ical modeling of the DR and load recovery is given briefly

in the following section.

5.1 DR modeling

The aggregated DR includes the load shifting and load

curtailment based reductions from the PRL during DR

events which are given in (6). The first part Psh;a;tUsh;t in

(6) indicates the load shifting quantity, and the second part

Pc;a;tUc;t in (6) indicates the load curtailment quantity.

Psh;a;t represents the total DR magnitude through shifting to

time t; Pc;a;t represents the total load curtailed by the cus-

tomers at a confidence level at the same time t; and Ush;t,

Uc;t are the binary status indicators of load shifting and

load curtailment event respectively at time t. It is to be

noted that part of the voluntary response is fixed, as

denoted by Psh;fixed and Pc;fixed in (7), and the rest of the

response is uncertain, as denoted by Psh;random and Pc;random

in (7). For better implementation of DR, the aggregator

needs to fulfill some technical constraints which are given

in (8)–(13).

PDR;t ¼ Psh;a;tUsh;t þ Pc;a;tUc;t ð6Þ
Psh;a;t ¼ Psh;fixed þ Psh;random

Pc;a;t ¼ Pc;fixed þ Pc;random
ð7Þ

Pmin
DR;t � PDR;t � Pmax

DR;t 8t ð8Þ

XtþRmin
k;DR�1

i¼t

UDR
k;i �Rmin

k;DRS
DR
k;t 8k; 8t ð9Þ

Fig. 2 Normal distribution curve for wind power generation for 1st

hour
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XtþRmax
k;DR�1

i¼t

QDR
k;i � SDRk;t 8k; 8t ð10Þ

SDRk;t � QDR
k;t ¼ UDR

k;t � UDR
k;t�1 8k; 8t ð11Þ

SDRk;t þ QDR
k;t � 1 8k; 8t ð12Þ

X
t2TDR

on

IDRk;t �Mmax
DR ð13Þ

The constraint (8) limits the minimum and maximum

capacity of the DR at time t where Pmin
DR;t represents the

minimum capacity of DR and Pmax
DR;t represents the

maximum capacity of DR. This constraint would run the

DR program only if the required DR is in between the

limits. The constraints (9) and (10) declare that the

minimum and maximum durations for kth DR event. UDR
k;i

is the status of the kth DR event at time i; Rmin
k;DR and Rmax

k;DR

are the minimum and maximum DR reduction durations in

kth DR event at time t, respectively; SDRk;t is the load

reduction at the kth event that would be started at time t;
and QDR

k;i is the stop indicator of kth DR event at time i. The
simultaneous functioning of start and stop indicators of the

kth DR event is avoided by using (11) and (12). Finally, a

number of DR events in a day should not exceed its

maximum number of the DR event in a day as indicated in

(13). TDR
on represents the hours when DR event takes place;

IDRk;t is the binary variable which checks the DR initiation at

time t; and Mmax
DR is the number of times that DR program

can be called in a day.

5.2 Load recovery modeling

The total load shifted in load shifting programs during

different DR events is recovered through load recovery

programs during valley periods of the day. The total load

shifted is recovered by the customers is as shown in (14),

where PRC;j is the aggregated recovered quantity at jth

recovery event; Psh;a;k is the load shifting quantity at a at k
th

DR event; N1 and N are the total number the recovery

events and total DR events in a day respectively. Equa-

tion (15) helps in deciding the maximum quantity that can

be recovered during jth load recovery event, where Pmax
RC is

the maximum quantity that can be recovered during a

recovery event; PAC;t is the actual power at time t; c is the

percentage of maximum load recovery quantity during jth

event at time t. The quantity of power recovered PRC;j;t

during the recovery hour at time t should not be more than

the maximum limit of base load of the customer Pmax
CBL. This

is logical as it is desirable to avoid another peak due to load

recovery. If the total load shifted is not recovered in a

specific load recovery hour then the recovery is shifted to

next load recovery hour. This is to mention that these

constraints would avoid the new DR hours which may

occur due to load during recovery hour. The load recovery

quantities at (j+1)th event are given in (16), where the

remaining fraction of the shifted load is recovered.X
j2N1

PRC;j ¼
X
k2N

Psh;a;k ð14Þ

PRC;j;t ¼
Pmax
RC Pmax

RC þ PAC;t �Pmax
CBL

0 PAC;t [Pmax
CBL

Pmax
CBL � PAC;t ¼ cPmax

RC otherwise

8<
:

ð15Þ
PRC;jþ1;t ¼ 1� cð ÞPsh;a;k ð16Þ

The minimum and maximum durations of load recovery

at jth event are given in (17) and (18), where VRC
j;l is the load

recovery status indicator of jth event at time l; Rmin
j;RC and

Rmax
j;RC are the minimum and maximum load recovery

durations during jth event, respectively; WRC
l;t is the load

recovery at the jth event that would be started at time l;
HRC

j;l is the stopping indicator of jth recovery event at time

l. The simultaneous functioning of start and stop indicators

of the jth load recovery event is avoided by using (19) and

(20). Finally, the number of jth load recovery events in a

day should not exceed its maximum limit, as given in (21),

where IRCj;t is the binary variable which checks the recovery

initiation at time t; Mmax
RC is the number of times that

recovery program can be called in a day; TRC
on represents

the hours when recovery event takes place.

XtþRmin
j;RC�1

l¼t

V RC
j;l �Rmin

l;RCW
RC
l;t 8j; 8t ð17Þ

XtþRmax
j;RC�1

l¼t

HRC
j;l �WRC

j;t 8j; 8t ð18Þ

WRC
j;t � HRC

j;t ¼ VRC
j;t � VRC

j;t�1 8j; 8t ð19Þ
WRC

j;t þ HRC
j;t � 1 8k; 8t ð20Þ

X
t2TRC

on

IRCj;t �Mmax
RC ð21Þ

5.3 Price based on load responsive model

Price elasticity can be defined as the responsiveness of

demand to the change in price. High value of elasticity

signifies that load is more elastic with price. If it is unity,

there is a linear change between the price and demand. In

power system economics, the price of electric power is

highly dependent on the amount of electricity demanded by

the consumers. Therefore, the price during the peak period

is very high compared to the other periods. Meanwhile,

during the valley hours when the demand is low, the gen-

erating companies become price taker. DR is employed
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during peak hours to reduce market clearing price. While in

valley periods load recovery programs for the shifted load

are employed resulting MCP becomes higher during these

periods.

Elasticity can be calculated using (22) which shows the

percentage of elasticity (PoE) at time t, where P0;t and Pf ;t

are initial and final magnitudes of power and k0;t and kf ;t
are initial and final values of prices in kW/h at time t. PoE
is the ratio of the changes in price to change in demand

during recovery and DR event at time t.

PoEt ¼
P0;t�Pf ;t

P0;tþPf ;t

k0;t�kf ;t
k0;tþkf ;t

ð22Þ

k0;t � kf ;t
k0;t þ kf ;t

¼
P0;t�Pf ;t

P0;tþPf ;t

PoEt
¼ bt ð23Þ

k0;t � kf ;t ¼ bt k0;t þ kf ;t
� � ð24Þ

Equation (24) can be rearranged as:

1� btð Þk0;t ¼ 1þ btð Þkf ;t ð25Þ
The price changed due to DR and recovery hours is

determined using (26). This price rises during load

recovery hours and drops during load curtailment hour.

kf ;t ¼ 1� btð Þk0;t
1þ bt

ð26Þ

6 Benefit framework of aggregators in electricity
market

In this paper the data for load profile and an hourly price

profile has been taken from the Indian Energy Exchange.

Since the wind and solar are considered here as the must

run units, the total available power generated by such

sources will be supplied to the grid without any curtail-

ment. The DR program is utilized during the peak and

valley hours. The scheduling of conventional units is

decided based on availability of the committed power from

the RESA and DRA in the day-ahead market.

EBRESA ¼ P24
t¼0

BRESA;a;t

EBDRA ¼ PN2

t¼1

BDRA;a;t

8>><
>>:

ð27Þ

where EBRESA is the total expected financial benefit of

RESA; BRESA;a;t is the financial benefit of RESA at a con-

fidence level; EBDRA is the total expected financial benefit

of DRA; BDRA;a;t is the financial benefit of RESA at a
confidence level at time t; N2 is the total number of DR

hours.

6.1 Benefit of RESA

The benefit of the RESA given in (28) is the difference

between the revenue (RRES;a;t) that is obtained from the ISO

and the cost of the distributed generation of the RESA

(CRES;a;t).

BRES ¼ RRES;a;t � CRES;a;t ð28Þ
The cost of the RESA is given in (29), where the first

and second terms represent the production cost of wind and

solar, and the third term represents the cost of deviation

charges (penalty) of wind and solar.

CRES;a;t ¼ kwt
X24
t¼1

Pwt;a;t þ kpv
X24
t¼1

Ppv;a;t

þ kpen
X24
t¼0

ðPRES;a;t � PRES;t;riskÞ
ð29Þ

where kwt and kpv are the wind and solar power selling

prices; Pwt;a;t and Ppv;a;t are the expected wind and solar

power generation at time t with a confidence level; kpen is

the price paid by RESA as a penalty; PRES;a;t is the total

power expected by RESA at time t at a confidence level;

PRES;t;risk is the total power expected by RESA at time t
during risk; kpen is decided using the deviation charges

given in (5). The revenue of the RESA RRESð Þ is

determined using (30), it is the aggregated revenue

obtained from grid and the deviation charges (incentive)

of the RES power, where kgrid;t is the price of the grid

power at time t.

RRES ¼
X24
t¼1

½ðkgrid;t � kpv;tÞPpv;a;t þ ðkgrid;t � kwt;tÞPwt;a;t�

ð30Þ
6.2 Benefit of DRA

The expected benefit of DRA (EBDRA) is determined

using (31) which is the difference between the revenue that

the aggregator gets for the DR (RDRA) and incentive that

DRA has to pay to the consumers for their load reduction

(CDRA).

EBDRA ¼ RDRA � CDRA ð31Þ
As shown in (32), CDRA is calculated by summing the

total incentive paid to the customers and the penalty is

imposed on the DRA due to the deviation from committed

DR magnitude. ICC is the incentive given to the customers

which is announced by aggregator for DR magnitude

PDR;a;t at a confidence level at time t and PDR;t;risk is the

expected power from DR during risk. The revenue of the

DRA is determined by using (33) and it is the net payment

received from the ISO for the committed power, where ICA
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is the incentive price given to the aggregator for DR

aggregation at time t.

CDRA ¼ ICC

XN2

t¼1

PDR;a;t þ kpen
X24
t¼1

PDR;a;t � PDR;t;risk

� �

ð32Þ

RDRA ¼ ðICA � ICCÞ
X24
t¼1

PDR;a;t ð33Þ

6.3 Algorithm for calculation of committed power
for RESAs and DRAs

In this section the whole process of benefit estimation

and risk estimation is explained starting from the genera-

tion of the PDF for uncertain power.

Step 1: Historical data of wind, solar and DR are

collected.

Step 2: From the historical data, the random samples

within maximum and minimum limits for hourly wind

power, solar power and DR power during the DR hours

are generated by using the function below.

RVs;t ¼ Pmin
s;t þ Pmax

s;t � Pmin
s;t

� �
fr ð34Þ

where Pmin
s;t and Pmax

s;t are the minimum and maximum

power respectively at time t for a type of resource s; fr is the
random function with output between 0 and 1. The number

of random samples generated greatly determined the

accuracy of the prediction.

Step 3: The random samples are sorted and the PDF is

generated. Through the PDF, the power at a specific

confidence levels is calculated by using VaRa.

Step 4: The committed resource risk value is measured

with CVaRa, as given in (3).

Step 5: The benefit analysis for the power at a confidence
level is then done considering risk.

7 Results and discussion

A case study has been conducted for evaluating the

benefits of aggregators on the basis of the risk taking

capability of the aggregator in committing the power in

day-ahead market. The work considers that the three types

of aggregators (RNA, RAA, RTA) are presented both in

DR market and RES market. For the purpose of study,

various data sets such as forecasted day-ahead demand

curve and day-ahead price profile from Indian Energy

Exchange are utilized [32]. As shown in Fig. 3, the demand

profile can be divided into three distinct periods, namely

valley period (6th–11th hours), peak period (18th–22th

hours) and off-peak period (rest hours of the day), which

help us to constrain DR hours and recovery hours. To

distinguish the three periods from each other, and to

determine the magnitude of DR, base load of customers is

used. The base load of customers is the average of the loads

of a customer throughout the day. The off-peak periods are

those hours where the demand lies between ±10% of the

aggregated base load of customers. The hours where the

demand above the +10% of aggregated base load of cus-

tomers are considered as peak period while the hours where

the demand below −10% of aggregated base load of cus-

tomers are considered as valley periods.

The price in the restructured energy market is volatile in

nature, i.e. it changes based on the demand at that very

instant. To show this volatile nature of price, the price

profile of Indian Energy Exchange is used, as shown in

Fig. 4 [37]. As seen in the Fig. 4, there is an abrupt rise in

the price of the 18th hour owing to rise in the demand

during 18th–22th hours. Similarly, the drop in the price of

the 6th hour is due to the sink in the demand.

Table 1 shows the various data used for the analysis.

Prices for solar and wind power have been taken from the

recent bids placed by the IPPs in India [38]. The minimum

value MCP of the day-ahead price profile has been con-

sidered as incentive paid to the customers and the average

daily price is taken as the reward given to DRA for

aggregation of DR.

The DR has been utilized to reduce the peak load which

in turns helps in reducing peak prices. The reduction in

demand by using DR reduces the price of the energy

market because of the demand elasticity of the price.

Equation (27) is used to calculate the final price due to load

change during DR hours with PoE of 0.8. The risk levels of

the three aggregators are also shown in Table 1. The risk

level of RTA is 20% which means the confidence level is

80%. Power deviation charge for different power devia-

tions are given in (5).

In the distribution system, RESAs and DRAs are

responsible for the aggregation of the power from dis-

tributed RESs and DR. In the day-ahead market, both

RESA and DRAs commit for its power at different

Fig. 3 Hourly demand curve
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confidence levels. In the day-ahead market, the RESA and

DRA commit for the power that they can aggregate at that

hour. The power from DR and RES is predicted here by

using the PDF curves at different hours using VaRa. The

selection of a depends on the audacity of the aggregator.

Each predicted VaRa has some risks associated with the

power difference between VaRa and CVaRa. This power

difference causes financial loss associated with a particular

committed risky power value at VaRa. Figures 5, 6 and 7

show the day-ahead hourly committed power profile of the

solar and wind aggregators, and the load reduction through

DR program by DRA. Figure 5 shows the hourly solar

generation at different VaRa. The power variation between

VaRa and CVaRa for the solar and DR is not very signifi-

cant, as shown in Figs. 5 and 7. It can also be said that

hourly PDF will have low dispersion and will have low

value of standard deviation in case of solar and DR in

comparison to the variation in wind power, as shown in

Fig. 6.

7.1 Benefit analysis

In this section, analyses are done considering the day-

ahead scenario where the aggregator would commit the

power for the next day. RESs are considered to be the

must-run units that will supply the power throughout the

day on the basis of the availability of its generation. DR is

utilized only during the peak hours of the day and the

shifted load is recovered during the valley periods on the

basis of availability of generation. Various scenarios

involving risk are generated by various risk levels that the

aggregator faces or expected to face on the day. Figure 8

shows the change in the price profile by using different

VaRa with considering the price elasticity of load to be 0.8.

The change in the prices is visible in different hours of the

day.

Fig. 4 Hourly price profile

Fig. 5 Solar generation profile

Table 1 Input data

Data Value

Solar power price (`/kW) 2.44

Wind power price (`/kW) 2.65

Incentive price for customers (`/kW) 2.19

Incentive price for DRA (`/kW) 3.81

Load recovery time (h) 7–11

Load reduction time (h) 18–22

Risk level of RNA (%) 5

Risk level of RAA (%) 10

Risk level of RTA (%) 20

Elasticity 0.8

Fig. 6 Wind generation profile

Fig. 7 Estimated DR magnitudes at VaRa and CVaRa

Fig. 8 Base price and change in price with DR at different VaRa
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7.1.1 Benefit of DRA

DR is applied during the peak period through load

curtailment and load shifting by the customers. This load

reduction reduces the prices during peak load demand. The

change in price is happened in the valley period (6th–11th

hours) where the shifted load is recovered and this load

recovery causes increment in the prices. This reduces the

volatility of price. Figure 8 shows that DR helps in flat-

tening the price profile that directly helps the ISO,

distribution companies, generating companies and cus-

tomers. Table 2 shows the effect of DR on the financial

attributes and how different DRAs affect these attributes.

The recovery of demand during valley periods also helps

generating companies to save profit or reduce losses by the

recovery as most of the generating companies become

price taking during these periods. The effect on the price

profile is dependent on the magnitude of DR that is com-

mitted by different aggregators at different risk levels. For

RNA, RAA and RTA, the risk levels are assumed as 5%,

10% and 20%, respectively.

As observed, RTA is the aggregator that shows the best

results as it commits for the highest magnitude of DR. The

result produced considering the estimated power curtailed

by the three types of aggregators at their corresponding

confidence levels. RTA brings down the ratio of peak price

to average price, ratio of peak price to valley price and

price volatility. DR also helps in improvement of different

technical attributes in the demand profile of the system, as

shown in Table 3. It can be observed that RTA has the

maximum capability in reducing technical attributes. The

recovery of the shifted load helps in improvement of the

overall load factor of system.

Table 4 shows the financial benefit of different DRAs.

Benefit at no risk shows the case when actual power is

equal to the committed power VaRa. However, the benefit

is decreased when actual power is equal to CVaRa, instead

of VaRa. The DR is subject to some constraints given in

(6)–(21). The penalty rates applied to the power deviation

from the committed value are taken from [35, 36]. The net

financial benefit of DRA is then calculated considering that

the aggregator is facing risk. It is calculated by subtracting

the penalty faced by the aggregator from the total expected

benefit during risk.

7.1.2 Financial risk assessment and benefit of RESA

This case highlights the value of financial risk faced by

the aggregator for the committed value of power at certain

confidence level a. Figure 9 shows the reduction of the

total power required from the grid by the microgrid. The

RESA commits for the power that it can supply at different

confidence levels, thus there is lesser demand from the

utility. Table 5 shows the total financial benefit of risk

averse RESA consisting of solar and wind risk averse IPPs.

It has been found that combining both the RESs, the

amount of power deviation and the number of hours during

which the penalty is applied are reduced. The total

expected benefit of the RESA can be calculated and is

found to be much larger than the sum of benefit of the both

solar and wind IPPs. RESA faces a loss during the 3rd, 8th

and 9th hours. The loss occurring at the 3rd and 8th hours are

owing to the market prices in these hours which are less

than the cost of generation. But in the 9th hour, aggregator

faces a penalty of `241.23 due to power deviation of

482.46 kW from the committed value. Table 6 shows the

total financial benefit of the RESA at different risk levels. It

is found that the RTA gets the maximum net financial

benefit `10498.98, while the RNA and RAA earn a net

financial benefit of `5453.20 and `7700.869, respectively.
It can also be seen that RTA pays the maximum penalty

`3597.913, which is much larger than those of RNA and

RAA. Comparing the net financial benefit of the IPPs and

RESA, it is seen that penalty paid by the RESA is much

less than the sum of penalty of both the IPPs. It can also be

seen that the net financial benefit acquired by RESA is

much larger than the sum of the net financial benefit of both

IPPs.

Table 2 Effect on financial attributes in presence of different DRAs

DRA Ratio of peak

price to average

price

Ratio of peak

price to valley

price

Peak price

reduction

(%)

Price

volatility

RNA 1.863 2.863 9.1436 4.680

RAA 1.860 2.852 9.3570 4.556

RTA 1.850 2.832 10.0120 4.530

Base

case

2.022 3.080 0 5.520

Table 3 Effect on technical attributes in presence of different DRAs

DRA Ratio of peak power

to average power

Ratio of peak power

to valley power

Peak power

reduction (%)

RNA 1.279003 1.639784 7.231029

RAA 1.277520 1.608610 7.367550

RTA 1.274800 1.486070 7.617930

Base

case

1.373789 1.808075 0
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8 Conclusion

The paper investigates the impact on financial and

technical attributes in microgrid operation due to financial

risk taking behavior of the market players. DRA and RESA

are considered as market players and they have been

divided into three types in order to represent the diverse

nature of risk taking ability of individuals. Monte Carlo

method is used for the creating different scenarios on the

basis of probable hourly DR magnitudes and RES powers.

Table 4 Financial benefit of different DRAs

DRA VaRa

(kW)

CVaRa

(kW)

Power

deviation (kW)

D (%) Benefit at no

risk (`)
Benefit when actual power is

equal to CVaRa (`)
Net financial benefit during

risky scenario (`)

RNA 780.35 758.90 21.45 2.145059 1263.25 1229.42 1229.42

RAA 798.78 775.93 22.84 2.284893 1302.02 1264.77 1264.77

RTA 855.25 810.76 44.48 4.448000 1394.06 1321.55 1321.55

Table 5 Financial benefit of total power generated by solar and wind IPPs for risk averse RESA

Time

(hour)

VaRa

(kW)

CVaRa

(kW)

Power

deviation

(kW)

Percentage

error (%)

Benefit at

no risk (`)
Benefit when actual

power is equal to

CVaRa (`)

Penalty

rate

applied (`)

Total

penalty

(`)

Net financial benefit

during risky scenario

(`)

0 467.63 280.93 186.70 6.220 344.300 206.84300 0 0 206.840

1 273.36 149.43 123.92 4.130 156.880 85.76014 0 0 85.760

2 171.84 90.05 81.78 2.720 −25.410 −13.32110 0 0 −13.320

3 338.80 155.90 182.89 6.090 150.180 69.10780 0 0 69.100

4 485.08 230.45 254.62 8.480 305.730 145.25170 0 0 145.250

5 293.10 165.75 127.35 4.240 176.410 99.76432 0 0 99.760

6 485.89 253.78 232.11 7.730 281.880 146.15170 0 0 146.150

7 1136.11 717.26 418.84 13.960 −435.454 −251.33400 0 0 −251.334

8 1383.11 900.65 482.46 16.080 15.490 28.94260 0.5 241.2319 −212.289

9 1301.01 956.14 344.86 11.490 752.040 568.43700 0 0 568.430

10 968.88 650.22 318.66 10.620 864.690 589.66160 0 0 589.660

11 878.66 595.65 283.00 9.433 917.580 630.82570 0 0 630.820

12 604.53 359.43 245.09 8.169 523.590 313.99890 0 0 313.990

13 626.13 381.13 244.99 8.160 593.140 364.26000 0 0 364.260

14 637.05 453.85 183.19 6.100 638.590 465.01900 0 0 465.010

15 644.42 462.09 182.32 6.070 638.250 471.24720 0 0 471.240

16 627.68 340.28 287.40 9.580 374.220 208.71730 0 0 208.710

17 556.12 278.96 277.15 9.230 247.900 124.35120 0 0 124.350

18 302.46 166.16 136.30 4.540 1534.052 842.09180 0 0 842.090

19 311.09 143.20 167.89 5.590 1433.983 660.10190 0 0 660.100

20 411.90 185.34 226.55 7.550 1515.274 681.85010 0 0 681.850

21 527.60 205.72 321.87 10.720 1509.680 588.67150 0 0 588.670

22 897.68 443.52 454.16 15.130 1324.073 654.18900 0.5 227.0809 427.100

23 886.34 449.82 436.51 14.550 962.720 488.59420 0 0 488.590

Total 7700.860

Fig. 9 Hourly demand profile at different VaRa
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These scenarios are utilized to generate PDFs for each hour

of the day. The paper introduces a new way of utilizing

VaR and CVaR, to distinguish the audacity of different

types of aggregators. In order to integrate the down-side

risk for deciding the magnitude of DR at different DR

events, the load curtailment, load shifting and load recov-

ery models have been modified accordingly. A benefit

function has been developed to incorporate the uncertainty

of the power generated by DR and RES considering the

penalty function following in India for power deviations.

An extensive result using the data taken from Indian

Energy Exchange is given to justify the proposed work. It

is demonstrated that the volatility of price reduces when the

market players become more risk taking. Results also show

that risk taking market players help to further flatten the

load profile of the system which enhances the efficiency of

the market operation however the higher risk takers may

face a loss instead of making a profit at the same time. The

authors are now working on finding the best confidence

level for each type of aggregators considering both day-

ahead and balancing market scenarios.
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