
Real-time pricing method for smart grids based
on complementarity problem

Hongjie WANG1, Yan GAO1

Abstract Considering a demand response (DR) based

social welfare maximization model, a complementarity

problem based on the Karush-Kuhn-Tuker condition is

described, which is a non-dual method for determining

real-time price for smart grids. The Lagrange multiplier in

the dual method, which is used to determine the basic

electricity price, is applied in the model. The proposed

method computes the optimal electricity consumption,

price and production. According to the electricity price,

users can arrange their electricity equipment reasonably to

reduce the consumption pressure at peak time. The model

aims to encourage users to actively participate in the DR

and realize peak cutting and valley filling. In addition, the

model considers different utility functions representing

three types of users. Finally, a Jacobian smoothing version

of Newton method is used to solve the model. Statistical

simulations of the model validate the rationality and fea-

sibility of the proposed method.

Keywords Smart grids, Real-time pricing, Shadow price,

Complementarity problem, Smoothing method

1 Introduction

As our awareness about energy and the environment

grows, the demand for a reliable and sustainable power grid

and the need for high-quality and stable resources have led

to the evolution of smart grids as novel means of electricity

distribution [1, 2]. In particular, widespread blackouts in

parts of the north-eastern United States and eastern Canada

in 2003 attracted more attention to the development of

smart grids in many countries [1]. Smart grids are the

systems with complex structure and extensive stakeholders.

The idea behind smart grids is to improve the efficiency of

power system, from generation to end-users, which enables

user participation [3]. Power supply-side management and

demand-side management are the main problems in the

research on smart grids. Power supply-side management

refers to the management issues in traditional power sys-

tems. Demand-side management is a new research area in

smart grids and aims to improve terminal power efficiency,

change client electro-mode, optimize resource allocation,

and realize minimum-cost power service. Demand-side

management is a research focus on smart grids [4].

The deployment of communication infrastructure and

intelligent devices in smart grids is associated with the

concept of demand response (DR), which is a cost-effective

method for reducing energy prices [5]. DR enables

demand-side activities to balance the power supply and

demand. In smart grids, smart meters transmit the power

price and consumption information of electricity equip-

ment to users, to better control electricity consumption and

cost; the relevant information is sent to the power provider

for load control and price setting [6]. Thus, DR programs

are key elements in determining demand-side activities in

future smart grids. These DR programs concentrate on

shifting consumption from peak to off-peak periods to

CrossCheck date: 13 December 2018

Received: 14 July 2018 / Accepted: 13 December 2018 / Published

online: 13 May 2019

� The Author(s) 2019

& Yan GAO

gaoyan@usst.edu.cn

Hongjie WANG

w2x5j@163.com

1 School of Management, University of Shanghai for Science

and Technology, Shanghai 200093, China

123

J. Mod. Power Syst. Clean Energy (2019) 7(5):1280–1293

https://doi.org/10.1007/s40565-019-0508-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s40565-019-0508-7&amp;domain=pdf
https://doi.org/10.1007/s40565-019-0508-7


reduce the pressure on utility-handled equipment such as

distribution transformers and power lines and valuable

resources for the effective operation of smart grid struc-

tures [7, 8]. DR in demand-side management can be divi-

ded into two categories: incentive response mechanisms

and price response mechanisms. Among them, the price

response mechanisms refer to the load transfer or reduction

behavior of the user in response to the real-time change of

the electricity price. It saves electricity costs and is more

feasible [9, 10]. In recent years, many scholars and

researchers have studied the DR problem in smart grids and

obtained considerable achievements. Parvania et al [11]

presented a stochastic DR model based on two-stage

stochastic mixed integer programming in the wholesale

electricity market. Chai et al [12] studied the DR problem

in systems with multiple utility companies and multiple

residential customers, while Deng et al [13] proposed a

distributed real-time DR algorithm that determines each

user’s demand and each utility company’s supply. These

studies are concerned with DR programs and their role in

the analysis of power system operations. Haider et al [14]

proposed an adaptive consumption-level DR pricing

scheme, which can be used to easily implement DR. Dai

et al [15] analyzed a supply–demand equilibrium model

with many power providers using game theory, and Juan

et al [16] examined the role and influence of voluntary real-

time pricing in Spain. Asadi et al [17] proposed a method

for determining real-time pricing using a welfare maxi-

mization model based on DR. The main work of the real-

time pricing method based on the social welfare maxi-

mization model is to compute the shadow price (i.e., the

Lagrange multiplier of an optimization problem). The

demonstration proves that reasonable pricing can encour-

age users to actively participate in DR and is effective in

shifting consumption from peak to off-peak periods and

reducing the pressure on utility-handled equipment

[18–23]. The government or power companies can set

electricity or guidance prices based on the shadow price. In

this paper, we study real-time pricing based on the social

welfare maximization model.

The dual optimization method is an important method,

which solves not only the decision variables of the opti-

mization problem but also the Lagrange multiplier. Hence,

the dual method is used to solve the real-time pricing

problem based on the social welfare maximization model.

Asadi et al [17] developed a particle swarm optimization

algorithm to determine real-time pricing for smart grids,

whereas Zhu et al [21] solved the real-time pricing problem

using a simulated annealing algorithm. Song et al [22]

applied the gradient projection method to the problem of

real-time pricing, and Wang et al [23] used a distributed

online algorithm to determine energy distribution in smart

grids. The above techniques are based on the dual

optimization method, whereby a shadow price which is

Lagrange multiplier, is used to determine the basic price of

electricity. The social welfare maximization model is

divided into two sub-problems in the dual optimization

method. One sub-problem is that users determine their

intended electricity consumption based on a reference price

provided by power companies. Another sub-problem is

related to the electricity price and quantity of electricity

produced, in which the power companies find that the

quantity of electricity produced depends on the price. The

price provided by power companies, is the Lagrange

multipliers in the dual optimization method. Although the

dual optimization method solves the price problem (i.e.

Lagrange multiplier in the real-time pricing problem), the

following problems still need further study.

1) The computation speed is slow. Real-time pricing is

short-term and the algorithm needs to respond quickly.

The dual optimization method is a minimax problem,

which is suited to solving small-scale problems. In the

social welfare maximization model, each user’s elec-

tricity consumption is a variable, and the scale of the

problem is large. Hence, the dual optimization method

cannot guarantee the computation speed, and it is

difficult to achieve a quick response [17].

2) The accuracy is low. Although the Lagrange multiplier

can be computed by the dual optimization method,

they are obtained as a byproduct. The multiplier and

the decision variable are not equal during the execu-

tion of the algorithm. The numerical accuracy of the

decision variables is focused, but that of the multiplier

is not high in the dual optimization method. However,

the Lagrange multiplier is the electricity price we want

to determine [21–23].

To solve these problems, we propose a complementarity

method, which contains the Lagrange multiplier. First,

based on the social welfare maximization model, a Karush-

Kuhn-Tucker (KKT) condition is established. This system

is a complementarity problem, which contains the multi-

plier and the decision variables. Then a Jacobian smoothing

Newton method is used to solve the KKT condition and get

the electricity price. The advantage of the proposed

approach is that the computing speed and numerical

accuracy of the associated algorithms is dramatically

improved. Moreover, both the multiplier and decision

variables play the same role in the algorithm. Further,

convergence of Newton method has been proven, which

further ensures the accuracy of the numerical results. In

addition, we consider three types of users, i.e. residential

users, commercial users, and industrial users. They are all

important players in the electricity market, which have a

great impact on the research. Residential electricity is used

in household appliances for residential life, consumption is
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low, and prices have been low for a long time. Industrial

and commercial electricity demands are large, and elec-

trical energy requirements are higher than residential

requirements. Since the price is an equilibrium price under

multi-user conditions, if the electricity consumption gaps

between different users are large, the equilibrium price for

the user with lower power consumption is unfair. There-

fore, it is more reasonable to consider the price and gen-

eration capacities separately for different types of users. In

the proposed method, we consider multi-price and utility

functions for different type of users, and perform simula-

tion verification.

The remainder of this paper is organized as follows. In

Section 2, we briefly describe the social welfare model. In

Section 3, the real-time pricing problem is established with

a KKT condition, and the Jacobian smoothing Newton

method is presented. Finally, simulation results are pre-

sented and discussed in Section 4.

2 Social welfare model

Similar to [24], the intended time cycle for the operation

of users is divided into C time and C ¼ f1; 2; :::; Tg; is the
set of all time slots. This division can be based on the

behavior of all the users and their power demand pattern,

peak load time slots, valley load time slots and normal load

time slots. Denoting N ¼ 1; 2; � � � ;Nf g as the set of users

requiring electricity, each user i 2 N requires a certain

amount of electricity for his/her electrical appliances.

Denoting xti as the electricity consumption demand of

residential user i, ytj as the electricity consumption demand

of commercial user j, and ztk as the electricity consumption

demand of industrial user k in time slot t. The electricity

consumption for each user and each time slot is bounded

which is in ½mt
i;M

t
i �; i 2 N . Here, the minimum electricity

consumption level mt
i represents the load from the appli-

ances which are always required to be on during the day,

and the maximum electricity consumption level Mt
i repre-

sents the total power consumption level of the appliances

assuming they are all on. Denoting Lxt as the generation

capacity for residential user, L
y
t as the generation capacity

for commercial user, Lzt as the generation capacity for

industrial user, and Lt ¼ Lxt þ L
y
t þ Lzt as the total genera-

tion capacity in time slot t. The electricity provider must

provide the generation capacity to cover minimum and

maximum electricity requirements of all the users, i.e.,

Lmin
t ¼

PN

i¼1

mt
i and Lmax

t ¼
PN

i¼1

Mt
i .

2.1 Utility function

Utility functions are often used in microeconomics as a

measure of the requirements and desires of a customer

based on their consumption or leisure activities. These

functions represent the relationship between the consuming

utility and the number of a commodity. They are usually

increasing concave functions that satisfy:

1) An increasing function: oU
ox

� 0;

2) A decreasing marginal function: o2U
o2x

� 0.

Where Uð�Þ is an utility function. When these two

conditions are satisfied, the utility function increases with

the consumption and is the maximum at the boundary. In

previous studies, researchers adopted quadratic or loga-

rithmic functions as the utility function [17–23]. Because

the electricity requirements and desires are different for

residential, industrial, and commercial users, we consider

three types of utility functions.

For residential users:

Uxðx;xxÞ ¼
xxx�

a
2
x2 0� x\

xx

a
x2

x

2a
x� xx

a

8
><

>:
ð1Þ

For commercial users:

Uyðy;xyÞ ¼
b log3ðxyymax þ 1Þ y� ymax

b log3ðxyyþ 1Þ 0\y\ymax

0 y ¼ 0

8
<

:
ð2Þ

For industrial users:

Uzðz;xzÞ ¼
c logðxzzmax þ 1Þ z� zmax

c logðxzzþ 1Þ 0\z\zmax

0 z ¼ 0

8
<

:
ð3Þ

where x, y, and z denote the electricity consumption of the

three types of users; ymax and zmax are the maximum

demand of commercial and industrial users, respectively; a,
b, and c are pre-determined constants characterizing the

saturation point of the utility; xx, xy and xz are non-neg-

ative parameters characterizing the user types; and

Uxðx;xxÞ, Uyðy;xyÞ, and Uzðz;xzÞ satisfy increasing and

marginal conditions, as shown in Fig. 1.

A user that consumes �x kW of electricity during a des-

ignated number of hours at a rate of p ¥/kWh is charged p �x

¥/h. Hence, the welfare of a user can be simply represented

as:

Wxðx;xxÞ ¼ Uxðx;xxÞ � pxx ð4Þ
Wyðy;xyÞ ¼ Uyðy;xyÞ � pyy ð5Þ

Wzðz;xzÞ ¼ Uzðz;xzÞ � pzz ð6Þ
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where pxx, pyy, and pzz are the costs imposed by the

electricity provider on the different types of users.

2.2 Energy cost model

The cost function CðLtÞ is increasing and strictly con-

vex. In smart grids, researchers often use quadratic func-

tions as the cost function [12]. In this research, the cost

function is represented as:

CðLtÞ ¼ atL
2
t þ btLt þ ct ð7Þ

where at is a pre-determined positive constant; bt and ct are

pre-determined non-negative constants; and Lt is the gen-

eration capacity in time slot t.

2.3 Social welfare model

From a social equality perspective, the social welfare

model of electricity aims to maximize social welfare

among the users and the electricity provider. It is desirable

to maximize the total utilities of the subscribers and min-

imize the cost imposed on the electricity provider. Thus,

the objective function is the total utility of the subscribers

subtracted from the cost incurred by the electricity provider

[17, 21, 22]. The mathematical model can be represented

as:

W ¼
XT

t¼1

XN1

i¼1

Uxðxti;xt
iÞ þ

XN2

j¼1

Uyðytj;xt
jÞ þ

XN3

k¼1

Uzðztk;xt
kÞ � CðLtÞ

 !

ð8Þ

where Uxðx;xxÞ , Uyðy;xyÞ, and Uzðz;xzÞ are described
by formula (1)*(3); xti is the electricity consumption demand

of residential user i; ytj is the electricity consumption demand

of commercial user j; ztk is the electricity consumption demand

of industrial user k;xt
i,x

t
j andx

t
k are non-negative parameters

characterizing the user types. As the total generation capacity

Lt is the summation of all electricity production, we assume

that Lt can be written as:

Lt ¼ Lxt þ L
y
t þ Lzt

Lxt ¼ e1Lt
L
y
t ¼ e2Lt

Lzt ¼ e3Lt

8
>><

>>:
ð9Þ

where Lxt , L
y
t , and Lzt are the generation capacities of the

electricity provider for the three different types of users;

ei 2 0; 1ð Þ i ¼ 1; 2; 3ð Þis a pre-determined constants and

P3

i¼1

ei ¼ 1.

Bounded uncertainty has long been used to model

dynamic control systems such as (8). Thus, the electricity

optimization problem schedule based on the model of the

users is represented as:

max
PT

t¼1

PN1

i¼1

Uxðxti;xt
iÞ þ

PN2

j¼1

Uyðytj;xt
jÞ

 

þ
PN3

k¼1

Uzðztk;xt
kÞ � CðLtÞ

�

s:t:
PN1

i¼1

xti � Lxt

PN2

j¼1

ytj � L
y
t

PN3

k¼1

ztk � Lzt

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

ð10Þ

where t ¼ 1; 2; � � � ; T .
The objective function in (10) is the maximum sum of

each social welfare model in time slot t. It has the fol-

lowing equivalent formula:

XT

t¼1

max
XN1

i¼1

Uxðxti;xt
iÞ þ

XN2

j¼1

Uyðytj;xt
jÞ

 

þ
XN3

k¼1

Uzðztk;xt
kÞ � CðLtÞ

! ð11Þ

Obviously, (10) can be modified into a simple

optimization sub-problem as follows:

Fig. 1 Utility function of users
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max
PN1

i¼1

Uxðxti;xt
iÞ þ

PN2

j¼1

Uyðytj;xt
jÞ

 

þ
PN3

k¼1

Uzðztk;xt
kÞ � CðLtÞ

�

s:t:
PN1

i¼1

xti � Lxt

PN2

j¼1

ytj � L
y
t

PN3

k¼1

ztk � Lzt

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

ð12Þ

where t ¼ 1; 2; � � � ; T .
For residential users, the hourly electricity load is equal

to the sum of consumption of each household appliance.

According to the using requirements, some household

appliances such as daily lighting and refrigerators must

always be on, other appliances such as geysers and washing

machines are directly affected by the electricity price and

require a specific amount of time to complete their work

assignments. Like residential users, commercial and

industrial users have reasonable electricity consumption

requirements in different time slots according to order,

production demand or working time. So the electricity

requirements and desires of users based on electricity

consumption may be different in each time slot, i.e. xx, xy,

and xz are different for each user and time slot. Hence, (12)

needs to be independently solved at the beginning of each

time slot.

3 Real-time pricing formulation

3.1 Model of KKT conditions

For the purposes of discussion, the objective function

and constraints of (12) are expressed as follows:

f ð�xÞ ¼
XN1

i¼1

Uxðxti;xt
iÞ þ

XN2

j¼1

Uyðytj;xt
jÞ þ

XN3

k¼1

Uzðztk;xt
kÞ

� CðLtÞ
ð13Þ

and

gð�xÞ ¼ Lxt �
XN1

i¼1

xti; L
y
t �

XN2

j¼1

ytj; L
z
t �
XN3

k¼1

ztk

 !T

ð14Þ

where x ¼ xt1; x
t
2; :::; x

t
N1
; yt1; y

t
2; :::; y

t
N2
; zt1; z

t
2; :::; z

t
N3
; Lt

� �T
.

Then (12) is a maximum optimal problem, and can be

transformed into the following equivalent minimum

optimal problem:

min � f ð�xÞ
s:t: gð�xÞ� 0

(

ð15Þ

Furthermore, we obtain the following theorems.

Theorem 1 The optimization problem (15) has a unique

global optimal solution.

Proof According to (1)–(3) and (7), the utility function is

concave, and the cost function is convex. The objective

function �f ð�xÞ in (15) is the algebraic sum of quadratic

functions and logarithm functions, so �f ð�xÞ is strictly

convex. Let

D ¼ x gðxÞ� 0; x ¼j
�

xt1; x
t
2; :::; x

t
N1
; yt1; y

t
2; :::; y

t
N2
; zt1; z

t
2; :::; z

t
N3
; Lt

� �T
�

Set D is convex. Hence, (15) is a convex optimization

problem and a solution must exist.

Suppose both �x�1 and �x�2 are global optimal solutions to

(15), where �x�1 6¼ �x�2. The global optimal solution must be

in the feasible region, and therefore �x�1; �x�2 2 D exist.

According to the definition of the strictly convex function,

for any l 2 ð0; 1Þ such that

�f ðl�x�1 þ ð1� lÞ�x�2Þ\� lf ð�x�1Þ � ð1� lÞf ð�x�2Þ
¼ �lf ð�x�1Þ � ð1� lÞf ð�x�1Þ
¼ �f ð�x�1Þ

let ~x ¼ l�x�1 þ ð1� lÞ�x�2. Feasible region D is a convex set,

and therefore these must be ~x 2 D and ~x 6¼ �x�1. Hence, ~x is

a feasible solution. Because �x�1 is a global optimal solution,

it contradicts �f ð~xÞ\� f ð�x�1Þ. Therefore the assumption

that �x�1 and �x�2 are global optimal solutions is not true.

Hence the optimization problem (15) has a unique global

optimal solution.

According to the extreme value theorem, if �x� is a local
optimal solution to (15), k� 0 exists and the KKT condi-

tions can be set up as:

rf ð�x�Þ þ
P3

k¼1

kkrgkð�x�Þ ¼ 0

kTgð�x�Þ ¼ 0 k ¼ 1; 2; 3
kk � 0; gkð�x�Þ� 0

8
>><

>>:
ð16Þ

where f ð�x�Þ and gð�x�Þ are expressed as (13)–(14). In

microeconomics, ki ði ¼ 1; 2; 3Þ means the shadow price of

electricity, which reflects the value of electricity. We adopt

the shadow price as the basic electricity price of smart

grids. We can prove that �x� is the global optimal solution to

(15). There is a definition about convex function as follows

[25].

Definition 1 Suppose that set D � Rn is convex, and

FðxÞ is convex in D. If FðxÞ is differentiable, for any

x; y 2 D, there exists a following equivalent definition:

1284 Hongjie WANG, Yan GAO

123



FðyÞ�FðxÞ þ rFðxÞðy� xÞ

Theorem 2 If �x� is a solution of the KKT conditions (16),

then �x� is the global optimal solution to (15).

Proof Since �x� is a solution to (16), �x� satisfies the

condition gð�x�Þ� 0. Hence, �x� 2 D, i.e. �x� is a feasible

solution to (15).

The objective function �f ð�xÞ in (15) is convex.

According to Definition 1, for any feasible solution y 2 D

and �x� 2 D which satisfies

�f ðyÞ� � f ð�x�Þ þ rð�f ð�x�ÞÞðy� �x�Þ

If �x� is a KKT point, it can be proved that x� is a local

optimal solution to (15) and satisfies gðx�Þ ¼ 0. Hence,

there does not exist a descent direction p 2 RN such that

�rf ð�x�ÞTp\0 and pTrgð�x�Þ[ 0. As for any vector

p 2 D, we have �rf ð�x�ÞTp� 0. For x�, we have

ð�x�ÞTð�rf ð�x�ÞÞ ¼ ð�x�ÞT
P3

i¼1

kirgið�x�Þ ¼ 0. Hence, for any

y 2 D, there exists �f ðyÞ� � f ð�x�Þ, i.e. �x� is the global

optimal solution to (15).

Since (15) is obtained by the conversion of (12), �x� is

also the global optimal solution to (12). Thus, we can get

the optimal solution of (12) by solving the KKT conditions

(16). In particular, researchers often use quadratic func-

tions as utility functions in most simulation experiments. If

only the utility function is quadratic, the optimal problem

(12) is a quadratic programming problem which is a special

form of convex optimization. Hence, the KKT condition

can also be established for quadratic programming.

According to the extreme value theorem, each variable of

the solution to (16) is optimal, that is, the electricity com-

putation, price, and production are optimal, and the social

welfare is the maximum. It is the goal to solve real-time

pricing. Therefore, we can adopt the KKT condition (16) as

the new real-time pricing model of smart grids based on DR.

3.2 Optimization problem formulation

In (16), kTgð�xÞ ¼ 0; kk � 0; gkð�xÞ� 0 has a distinct

form which requires a different method of solution.

Definition 2 Given a mapping F : Rn ! Rn, the com-

plementarity problem is to find a vector x 2 Rn which

satisfies

x� 0

FðxÞ� 0

xTFðxÞ ¼ 0

8
><

>:
ð17Þ

Recently, the complementarity problem has undergone

significant development, resulting in tremendous progress

in both theory and methodology [26–28]. According to

complementarity theory, if (17) is established, each

component has the following equivalent definitions:

xi � 0;FiðxÞ� 0; xiFiðxÞ ¼ 0 , min xi;FiðxÞf g ¼ 0

, xi � xi � FiðxÞð Þþ¼ 0

ð18Þ

where xi 2 x; FiðxÞ 2 FðxÞ; and �ð Þþ¼ maxð�; 0Þ.
Obviously, (16) contains a complementarity problem

and can be transformed into the following system of

equations:

rf ð�xÞ þ
X3

k¼1

kkrgkð�xÞ

k� k� gð�xÞð Þþ

0

B
@

1

C
A ¼ 0 ð19Þ

Define uðk; gð�xÞÞ ¼ k� k� gð�xÞð Þþ. Obviously, (19) is
non-smooth. Both the non-smooth and smoothing Newton

methods are used to solve this system of non-smooth

equations. The non-smooth Newton method solves this

problem by using a Jacobian matrix, whereas the

smoothing Newton method approximates the non-smooth

functions by constructing a smooth function with good

convergence. Previous research and numerical results show

that the smoothing Newton method offers better

convergence and more stable numerical results than the

non-smooth method. Therefore, we propose a Jacobian

smoothing Newton method to solve the system of non-

smooth equations (19). The Jacobian smoothing method

has global and super-linear convergence.

3.3 Smoothing method

Considering a system of non-smooth equations is:

U xð Þ ¼ 0 ð20Þ

where U �ð Þ : Rn ! Rn is a non-smooth function. Ulk �ð Þ :
Rn ! Rn is a sequence of smooth functions satisfying the

following condition:

lim
lk!0

Ulk xð Þ ¼ U xð Þ ð21Þ

The smoothing method is to construct a smooth function

Ulk xð Þ to fit the non-smooth function U xð Þ. Then the

solution of the smooth equations is as follow:

Ulk xð Þ ¼ 0 ð22Þ

is approximate to the solution of the original problem (20).

The quadratic function, density and maximum entropy

methods are typically used to construct the smooth func-

tion, which must satisfy the following definitions [25–28].
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Definition 3 The function U xð Þ : Rn ! Rn is non-

smooth. We say that Ul xð Þ : Rn ! Rn is a smooth function

of U xð Þ if, for any x 2 Rn and l[ 0, there exists a con-

stant j[ 0 which satisfies

Ul xð Þ �U xð Þ
�
�

�
�� jl ð23Þ

According to Definition 3, if function Ul xð Þ is a smooth

function of U xð Þ, there must exist parameter l[ 0

satisfying the curves of function Ul xð Þ and U xð Þ almost

coincide. Thus, Definition 3 ensures that the solutions of

(20) and (22) are similar.

Definition 4 Suppose that U xð Þ : Rn ! Rn is locally

Lipschitzian continuous. Ul xð Þ : Rn ! Rn is a smooth

function of U xð Þ. If for any x 2 Rn, such that

lim
l!0

dist U0
l xð Þ; ocU xð Þ

� 	
¼ 0 ð24Þ

We say that the functions Ul xð Þ and U xð Þ satisfy the

Jacobian consistency property, where ocU xð Þ is the C-sub-
differential.

Definition 4 shows the approximation of the first-order

differential, i.e. the descent directions of function Ul xð Þ
and U xð Þ are consistent. For real-time pricing, we will

construct a new smooth function satisfying the Jacobian

consistency property. First, the functions denoted by the

density method are modified as follows:

qðsÞ ¼
sþ 1 �1

2
� s� 1

2

0 others

8
><

>:
ð25Þ

Pðl; xÞ ¼
Z x=l

�1
ðx� lsÞþqðsÞds ¼ x

Z x=l

�1
qðsÞds� l

Z x=l

�1
sqðsÞds

¼

x� l
12

x

l
� 1

2

x

24

2x

l
þ 3


 �2

þ l
12

� 1

2
\

x

l
\

1

2

0
x

l
� � 1

2

8
>>>>>>><

>>>>>>>:

ð26Þ
UlðxÞ ¼ x� P l; x� FðxÞð Þ ð27Þ

where P l; x� FðxÞð Þ is a function of (26).

UðxÞ ¼ x� x� FðxÞð Þþ ð28Þ

where l 2 ð0; 1Þ and qðsÞ are density functions. Obviously,

Ul xð Þ is a piecewise-smooth function consisting of poly-

nomial functions. Hence, it is easier to solve its sub-dif-

ferential and the system of equations UlðxÞ ¼ 0. Next, we

prove that Ul xð Þ is a smooth function of UðxÞ that satisfies
the Jacobian consistency property.

Theorem 3 Suppose that Ul xð Þ and UðxÞ are defined as

(25)–(28). Then Ul xð Þ is a smooth function that can be

used instead of UðxÞ.

Proof Let ~x ¼ x� FðxÞ. First, we prove that for any x 2
Rn and l[ 0, there exists some j[ 0 which satisfies

Ul xð Þ �U xð Þ
�
�

�
�� jl

We consider two cases: n ¼ 1 and n[ 1.

Case 1: n ¼ 1. We have x 2 R and F : R ! R.

According to (25)–(28), if ~x=l is in 1=2; 1½ Þ, there exists

Ul xð Þ � U xð Þ
�
�

�
� ¼ P l; ~xð Þ � ~xð Þþ

�
�

�
�

¼ ~x� 1

12
l� ~x

�
�
�
�

�
�
�
� ¼

l
12

\
l
4

If �x=l is in 0; 1=2ð Þ, we have

Ul xð Þ � U xð Þ
�
�

�
� ¼ P l; ~xð Þ � ~xð Þþ

�
�

�
� ¼ ~x

24

2~x

l
þ 3


 �2

þ l
12

� ~x

�
�
�
�
�

�
�
�
�
�

¼ l
24

4
~x

l


 �3

þ12
~x

l


 �2

� 15~x

l
þ 2

 !�
�
�
�
�

�
�
�
�
�

Let �y ¼ ~x=l and Y ¼ 4�y3 þ 12�y2 � 15�yþ 2.

When ~x=l 2 0; 1=2ð Þ, �y 2 0; 1=2ð Þ. Obviously, Y is

differentiable, and for any �y 2 0; 1=2ð Þ, there exists

Y 0 ¼ 3ð2�yþ 5Þð2�y� 1Þ\0

According to the extreme value theorem, Y must

decrease. Calculate the two end-point function values as

Y �y¼0

�
� ¼ 2 and Y �y¼1=2

�
� ¼ �2. Thus, Y 2 �2; 2ð Þ when

�y 2 0; 1=2ð Þ. Furthermore, for ~x=l 2 0; 1=2ð Þ, we have

Ul xð Þ � U xð Þ
�
�

�
�� l

12
� l

4

At point ~x=l 2 �1=2; 0ð �, the proof is similar to that of

~x=l 2 0; 1=2ð Þ. For ~x=l 2 �1=2; 0ð �, we can write

Ul xð Þ � U xð Þ
�
�

�
� ¼ P l; ~xð Þ � ~xð Þþ

�
�

�
�

¼ ~x

24

2~x

l
þ 3


 �2

þ l
12

�
�
�
�
�

�
�
�
�
�
� l

4

If ~x=l is in �1; �1=2ð �,
Ul xð Þ � U xð Þ
�
�

�
� ¼ P l; ~xð Þ � ~xð Þþ

�
�

�
� ¼ 0

If we choose j ¼ 1=4, for any x 2 R and l[ 0, there

must exist Ul xð Þ � U xð Þ
�
�

�
�� jl. Hence, UlðxÞ is a smooth

function of UðxÞ.
Case 2: n[ 1. As in case 1, we choose j ¼ 1=4. Then,

for any x 2 Rn and l[ 0, we have

UlðxÞ �UðxÞ
�
�

�
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

UlðxiÞ � UðxiÞ
� 	2

s

�
ffiffiffi
n

p
jl
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We choose �j ¼
ffiffiffi
n

p
j. Then, UlðxÞ �UðxÞ

�
�

�
�� �jl for any

x 2 Rn and l[ 0. Hence, according to Definition 3, UlðxÞ
is a smooth function of UðxÞ, as shown in Fig. 2.

Theorem 4 Suppose that UlðxÞ and UðxÞ are expressed

as in (25)–(28). Then, the function UlðxÞ and UðxÞ satisfy
the Jacobian consistency property.

Proof As Pðl; xÞ ¼ x
R x=l
�1 qðsÞds� l

R x=l
�1 sqðsÞds is dif-

ferentiable, its derivative is

P0ðl; xÞ ¼ x

Z x=l

�1
qðsÞds� l

Z x=l

�1
sqðsÞds

 !0

x

¼
Z x=l

�1
qðsÞds ð29Þ

q sð Þ is a density function, so q sð Þ is differentiable and

satisfies

q sð Þ� 0 ð30Þ
Z 1

�1
qðsÞds ¼ 1 ð31Þ

Hence, P l; xð Þ is continuously differentiable, and there

exists P0ðl; xÞ 2 ½0; 1�, and

lim
l!0þ

P0ðl; xÞ ¼ 0 x\0

1 x[ 0

�

ð32Þ

Let ~x ¼ x� FðxÞ, we can obtain the differential as such

U0
l xð Þ ¼ ðaijÞn	n where

aij ¼
1� P0ðl; ~xiÞð1� ðFiðxÞÞ0xjÞ i ¼ j

P0ðl; ~xiÞðF0
iðxÞÞ

0
xj

i 6¼ j

(

ð33Þ

where i; j ¼ 1; 2; � � � ; n.

Denote Dlð~xÞ ¼ diagðP0
xðl; ~xÞÞ, then

U0
l xð Þ ¼ F0ðxÞ � Ið ÞDlð~xÞ þ I ð34Þ

lim
l!0

Dlð~xÞ
� 	

ii
¼

1 ~xi [ 0

0 ~xi\0

2 ½0; 1� ~xi ¼ 0

8
><

>:
ð35Þ

Because ocU xð Þ ¼ oU1 xð Þ 	 � � � 	 oUn xð Þ ¼ ðaijÞn	n,

where

aij ¼

1� ð1� ðFiðxÞÞ0xjÞ i ¼ j; ~xi [ 0

1 i ¼ j; ~xi\0

1� við1� ðFiðxÞÞ0xjÞ i ¼ j; ~xi ¼ 0

ðFiðxÞÞ0xj i 6¼ j

8
>>><

>>>:

ð36Þ

where i; j ¼ 1; 2; � � � ; n; vi 2 0; 1½ �. Therefore, ocU xð Þ
can be marked as:

ocUðxÞ ¼ F0ðxÞ � Ið ÞDð~xÞ þ I ð37Þ

where Dð~xÞ ¼ diagðvÞ, and v 2 Rn satisfies

vi ¼
1 ~xi [ 0

0 ~xi\0

2 ½0; 1� ~xi ¼ 0

8
<

:
ð38Þ

Hence, we have

lim
l!0

dist U0
lðxÞ; ocUðxÞ

� 	
¼ 0

According to Theorem 4, UlðxÞ and UðxÞ satisfy the

Jacobian consistency property.

Definitions 3 and 4 show that if l[ 0 is small enough,

the curves of function UlðxÞ and UðxÞ almost coincide,

and the gradient of UlðxÞ approximates the sub-differential

of UðxÞ. The characteristic of approaching the gradient

ensures that the descent directions of the smooth and non-

smooth functions are consistent. Hence, we can select

the function ulð�xÞ ¼ k� P l; k� gð�xÞð Þ and substitute

non-smooth function uð�xÞ ¼ k� k� gð�xÞð Þþ in (19).

3.4 Jacobian smoothing Newton method

The Jacobian smoothing Newton method uses the

Jacobian smooth function to approximate and replace the

non-smooth function. Equation (19) is a partial comple-

mentarity problem, but it can be solved using the Jacobian

smoothing Newton method because smooth functions sat-

isfy Theorems 3 and 4. Therefore, we define a system of

non-smooth equations as follows:

Uð�x; kÞ :¼
rf ð�xÞ þ

X3

k¼1

kkrgkð�xÞ

k� k� gð�xÞð Þþ

0

B
@

1

C
A ¼ 0 ð39Þ

a system of smooth equations:

Fig. 2 Numerical deviation between the non-smooth function

y ¼ maxðx:0Þand the smooth functiony ¼ Pðl; xÞ in the interval

�0:08; 0:08½ �
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Ulð�x; kÞ :¼
rf ð�xÞ þ

X3

k¼1

kkrgkð�xÞ

k� P l; k� gð�xÞð Þ

0

B
@

1

C
A ¼ 0 ð40Þ

The non-smooth (39) can be solved using the smooth

version in (40). Let

Hðl; �x; kÞ :¼
el � 1

Ulð�x; kÞ

" #

¼ 0 l[ 0 ð41Þ

Fð�x; kÞ :¼ 1

2
Hðl; �x; kÞk k2¼ 1

2
el � 1ð Þ2þwlð�x; kÞ ð42Þ

wlð�x; kÞ :¼
1

2
Ulð�x; kÞ
�
�

�
�2 ð43Þ

rwð�xk; kkÞ :¼ VTUð�xk; kkÞ V 2 oUð�xk; kkÞ ð44Þ

where f ð�xÞ and gð�xÞ are expressed as (13)–(14), and

P l; k� gð�xÞð Þ is expressed as (25)–(28). For the purposes

of discussion, we express the variables as Z ¼ ðl; �x; kÞ and
X ¼ ð�x; kÞ. The process of solving the real-time pricing

based on (40) is as follows.

1) For electricity provider

Step 1: If t 2 T , choose the parameters based on

historical data, and then compute the electricity

price and production by (40) in the beginning of

pricing time; else update the information of user

demand.

Step 2: Send the electricity price and production

information to the users.

Step 3: Update the information of users demand. If

the demand is greater than a predetermined thresh-

old, Update the electricity generation capacity by

(45)–(47) and compute the price by formula (40).

Step 4: Repeat the step 2 until the pricing time end

or the supply and demand are in balance.

2) For each user

Step 1: Update the price and production information

from provider.

Step 2: Determine the electricity usage based on the

price and production given by provider.

Step 3: Send the electricity demand to the provider.

Step 4: Repeat the step 1 until the pricing time end

or the supply and demand are in balance.

The update formula for electricity generation capacity is

as follows:

Lxt ¼ Lxt þ f1
XN1

i¼1

xti � Lxt

 !

ð45Þ

Lyt ¼ Lyt þ f2
XN2

i¼1

yti � Lyt

 !

ð46Þ

Lzt ¼ Lzt þ f3
XN3

i¼1

zti � Lzt

 !

ð47Þ

e1 ¼
Lxt

Lxt þ L
y
t þ Lzt

ð48Þ

e2 ¼
L
y
t

Lxt þ L
y
t þ Lzt

ð49Þ

e3 ¼
Lzt

Lxt þ L
y
t þ Lzt

ð50Þ

where fi 2 0; 1ð Þ i ¼ 1; 2; 3ð Þ is a step length factor. If only

demands of some types exceed the threshold, the electricity

generation capacities of these types are updated and the

value of variables associated with other type’s users do not

change.

The step of solving the equations as (40) is as follows.

Step 1: Choose the parameters.

Step 2: Determine the direction of iteration Dzk and step

length factor q by formulas as follows:

H0ðZkÞDZk¼ �HðZkÞ ð51Þ

f ðZk þ qDZkÞ� ð1� 2rqÞf ðZkÞ ð52Þ

Let Zkþ1 ¼ Zk þ qDZk. If (51) or (52) has no solution,

determine the direction of iteration and step length factor

by formulas as follows:

DXk ¼ �rwðXkÞ ð53Þ

wðXk þ qDXkÞ�wðXkÞ � rq DXk
�
�

�
�2 ð54Þ

Let Xkþ1 ¼ Xk þ qDXk and Zkþ1 ¼ ðlk;XkÞ. Repeat the
step 2 until the end condition is satisfied.

4 Numerical simulations

Numerical simulations are conducted to evaluate the

performance of the proposed method. The simulation

assumptions and parameters are as follows. We consider 20

residential customers, two commercial customers, and one

industrial customer. The random variable xx has the range

½0; 2�. Both xy and xz are also in ½0; 2�. Let a ¼ 0:5,

b ¼ 10, and c ¼ 25. The cost parameters are set as at ¼
0:01 and bt ¼ ct ¼ 0.
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To demonstrate the effectiveness of the proposed

method, the simulation results are compared with those

from a single real-time pricing model and a distributed

algorithm based on the dual method.

4.1 Multi-price and single-price algorithms based

on complementarity problem

In the multi-price algorithm, users are divided into res-

idential, commercial and industrial groups, each of which

is assigned a different electricity price. In the single-price

algorithm, all users form a single group, and the electricity

is supplied at one price.

The prices in the multi-price algorithm are lower than in

the single-price algorithm as shown in Fig. 3. In the multi-

price case, the industrial price is the lowest and the resi-

dential price is the highest. The low price reduces the

average consumption cost, which brings more practical

benefits to users. For industrial users, in particular, the cost

of production can be greatly reduced. Furthermore, the

multi-price algorithm considers the condition and charac-

teristic of different user types, so it is more reasonable than

the single-price algorithm.

For residential users, the total electricity production and

consumption results are shown in Fig. 4. Most of the

electricity consumption is concentrated around 25–30

kWh. The greatest residential consumption occurs at 20:00,

with the lowest at 00:00. There are three peaks, at 06:00,

13:00, and 20:00. The consumption increases over the

period 00:00–06:00, and the price also increases. The

lowest price occurs at 00:00, and the highest price occurs at

06:00. This suggests that the lowest price prevents power

consumption from decreasing, while the highest price

prevents electricity consumption from increasing. At

higher prices, users can shift their electricity consumption

from peak to off-peak periods to reduce the pressure on

utility-handled equipment. This ensures that there are no

‘‘shocks’’ to the electricity consumption at particular times.

The price and consumption patterns around the other peaks

exhibit similar behavior. Obviously, this reflects the con-

sumption is related to the price, and the model is

reasonable.

The results in Fig. 5 indicate that the electricity price

and consumption of commercial users are stable. Elec-

tricity consumption is largely concentrated around 26–30

kWh, with the electricity price concentrated around ¥

0.5–0.6. In Fig. 5, when the electricity consumption

decreases, the price becomes lower to encourage electricity

consumption. Consumption is observed to increase over the

next hour, such as at 02:00, 09:00, and 20:00.

In Fig. 6, the results indicate that the electricity price

and consumption of industrial users are also stable. Elec-

tricity consumption is concentrated around 24–27 kWh,

with prices generally at ¥ 0.45–0.48. Stable real-time

pricing is useful in ensuring the stability of electricity

production because drastic changes in production can be

harmful to equipment and work arrangements, potentially

Fig. 3 Optimal price of multi-price algorithm and single-price

algorithm based on complementarity algorithm

Fig. 4 Optimal electricity consumption and production for residents

based on the multi-price algorithm

Fig. 5 Optimal electricity consumption and production for com-

merce based on the multi-price algorithm
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leading to huge losses. Thus, maintaining stable production

is important for industrial users and the electricity

provider.

According to Figs. 4, 5 and 6, the total actual electricity

consumption of the three groups of users is very similar.

However, the number of users in each group is different,

with twenty residential users, two commercial users, and

one industrial user. This means that the individual con-

sumption of industrial users is the highest and that of res-

idential users is the lowest.

Figures 7 and 8 present a comparison of the multi-price

and single-price algorithms. Although the prices in the

multi-price algorithm are lower than the single-price, the

electricity consumption and social welfare are clearly

higher than those in the single-price case. Thus, the multi-

price method based on the complementarity problem plays

a role in enhancing satisfaction with electricity consump-

tion. The low average cost and high welfare are beneficial

to encouraging users to take part in DR programs offered

by smart grids.

In Fig. 9, the results indicate that the proposed multi-

price method achieves good convergence and is effective.

The price is close to the optimal price after 10 iterations.

Thus, the proposed method is fast.

4.2 Multi-price algorithm based

on the complementarity problem

and distributed algorithm based on the dual

method

In the dual optimal method [23, 24], the social welfare

maximization model is translated into sub-optimization

problems as follows:

DðxÞ ¼ max
PN

i¼1

Uðxti;xt
iÞ � k

PN

i¼1

xti


 �

RðxÞ ¼ max kL� CðLÞð Þ

8
<

:
ð55Þ

The iterative formula for the distributed algorithm is as

follows:

Fig. 6 Optimal electricity consumption and production for industries

based on the multi-price algorithm

Fig. 7 Optimal electricity consumption and production based on the

single-price algorithm

Fig. 8 Social welfare value of multi-price and single-price algorithm

Fig. 9 Iterations of multi-price algorithm based on the complemen-

tarity problem
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ktkþ1 ¼ ktk þ r
P

i2 �N

xt�i ðktkÞ � L�t ðktkÞ
 !" #þ

L�t ðk
t
kÞ ¼ argmax

Lmin
t � Lt �Lmax

t

ktkLt � CtðLtÞ

xt�i ðktÞ ¼ argmax
mt

i
� xt

i
�Mt

k

Uðxti;xt
iÞ � ktxti

8
>>>>>><

>>>>>>:

ð56Þ

where the three types of users do not interact each

other, and their prices are computed separately.

The price given by the distributed algorithm is shown in

Fig. 10, and the electricity consumption is presented in

Fig. 11.

The price and consumption vary considerably across the

different groups of users as shown in Figs. 10 and 11. The

industrial price is mainly between ¥ 0.65–0.7, the com-

mercial price is generally ¥ 0.5–0.6, and the residential

price varies from ¥ 0.08–0.1. Clearly, the industrial and

commercial prices are similar, and the residential price is

the lowest. In response to these prices, industrial and

commercial consumption is also similar at 30–35 kWh, but

the residential consumption is between 45–60 kWh as

shown in Fig. 11. The residential price is too low, resulting

in a sharp increase in consumption. For the multi-price

complementarity algorithm, the price for all three groups is

between ¥ 0.4–0.6 as shown in Fig. 3, and consumption is

mainly 24–30 kWh as shown in Fig. 12. This indicates that

our proposed algorithm reduces the price gaps to give a

balanced structure and promotes an increase in electricity

consumption that prevents excessive user cost, thus bal-

ancing the consumption profile as well.

In the distributed algorithm, each user is an independent

individual who does not interact with others, so the max-

imum social welfare is the sum of the optimal individual

welfares. However, there are always certain influences

between individuals in social activities. In the pricing

model based on the complementarity method, every type of

users interacts with each other in the process of real-time

pricing, and the maximum social welfare is an integral,

rather than the sum of optimal individual welfares. The

numerical results show that the social welfare of the

complementarity algorithm is higher than that of the dis-

tributed algorithm, as shown in Fig. 13. Obviously, the

pricing model based on the complementarity algorithm is

more reasonable.

Fig. 10 Optimal prices based on distributed algorithm

Fig. 11 Optimal electricity consumption based on the distributed

algorithm

Fig. 12 Optimal consumptions based on the multi-price complemen-

tarity algorithm

Fig. 13 Social welfare value
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5 Conclusion

The complementarity model is described to solve the

real-time pricing problem for smart grids. The proposed

model is based on KKT conditions of the social welfare

maximization problem, which computes the optimal elec-

tricity consumption for users, price and production for the

electricity provider at the beginning of each time slot

according to the electricity equipment information entered

by users, and production and cost information provided by

power companies. We consider three types of users in our

model, which avoids the problem of a single utility func-

tion. Numerical results show that the proposed algorithm

balances electricity supply and demand, improves social

welfare, and encourages users to actively participate in the

DR program. Users can use more electricity appliances

during periods of low prices and turn off anything that is

not required at all time during periods of high price, which

is beneficial to peak cutting and valley filling. In addition,

the simulations reported in this paper are on a small scale,

but the advantages of peak cutting and valley filling are

very significant. Hence, when the model includes larger

numbers of users, the advantages will be even greater.

The method provides a new basic theory for more

studies on real-time pricing. In the future, we will further

study this issue from two aspects. Firstly, we will try to

improve the model. Since the proposed model is simple

and contains a few limitations, we will be committed to

study a model with more constraints such as rewards for

power consumption, energy scheduling of home appliances

and the effects of weather on power distribution systems.

Secondly, we will study the decentralized pricing method

based on the complementarity problem.
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