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Abstract The increasing penetration of wind power brings

great uncertainties into power systems, which poses chal-

lenges to system planning and operation. This paper pro-

poses a novel probabilistic load flow (PLF) method based

on clustering technique to handle large fluctuations from

large-scale wind power integration. The traditional cumu-

lant method (CM) for PLF is based on the linearization of

load flow equations around the operating point, therefore

resulting in significant errors when input random variables

have large fluctuations. In the proposed method, the sam-

ples of wind power and loads are first generated by the

inverse Nataf transformation and then clustered using an

improved K-means algorithm to obtain input variable

samples with small variances in each cluster. With such

pre-processing, the cumulant method can be applied within

each cluster to calculate cumulants of output random

variables with improved accuracy. The results obtained in

each cluster are combined according to the law of total

probability to calculate the final cumulants of output ran-

dom variables for the whole samples. The proposed method

is validated on modified IEEE 9-bus and 118-bus test

systems with additional wind farms. Compared with the

traditional CM, 2m?1 point estimate method (PEM),

Monte Carlo simulation (MCS) and Latin hypercube

sampling (LHS) based MCS, the proposed method can

achieve a better performance with consideration of both

computational efficiency and accuracy.

Keywords Cumulant method (CM), Improved K-means

algorithm, Large-scale wind power integration,

Probabilistic load flow (PLF)

1 Introduction

Load flow study is a vital tool for power system plan-

ning and operation. However, there are many uncertainties,

which result from changes in load demands, outages of

generators and changes of network. Large-scale wind

power integration further introduces great uncertainties

into power systems. Many researchers have performed

researches on applying probabilistic load flow (PLF)

methods to handle these uncertainties.

A critical review was provided in [1], where the meth-

ods to solve PLF problems were classified into three types,

namely simulation methods, approximation methods and

analytical methods.

Monte Carlo simulation (MCS) can obtain accurate

results after a large number of simulations, which are
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generally treated as reference results for comparisons. But,

MCS is time-consuming. The application of importance

sampling [2], Latin hypercube sampling (LHS) [3, 4] and

Latin supercube sampling [5] reduced the computational

burden of MCS. For handling correlated input random

variables, Nataf transformation [6, 7] and copula function

[8] were applied together with LHS. References [9–11]

applied a quasi-Monte Carlo approach to solve PLF prob-

lems. That approach was more efficient than MCS.

The point estimate method (PEM), one kind of

approximation methods, was widely applied to solve PLF

problems. Reference [12] first proposed the 2m PEM to

solve PLF. Reference [13] introduced a modified 2m PEM

to handle correlated uncertain variables. Compared with

2m PEM, 2m?1 PEM had higher accuracy, but conducted

more simulations [14]. For handling correlated uncertain

variables, references [15, 16] provided a modified 2m?1

PEM based on Cholesky decomposition. Reference [17]

applied 2m?1 PEM to solve probabilistic three-phase load

flow for unbalanced electrical systems with wind farms.

Reference [18] discussed the performance of five point

estimate method (5PEM). Reference [19] proposed another

approximation method, unscented transformation method

(UTM), which could consider correlations of input vari-

ables. Approximation methods are generally more efficient

than MCS. However, the accuracy and efficiency are sen-

sitive to the number of input random variables.

Analytical methods do not need to run many times of

simulations as Monte Carlo method does. In [20], a first-

order second-moment method (FOSMM) was applied to

obtain the mean and standard deviation of load flow solu-

tions. The sequence operation methodology [21] is one of

the analytical methods. It has a great advantage in terms of

efficiency by sequence operation. But the sequence oper-

ation needs to meet new operation rules, which limits its

application. Cumulant method (CM) is another analytical

method to solve PLF and has an excellent performance on

computational efficiency. In [22, 23], CM and Gram-

Charlier expansion were applied to solve PLF. Reference

[24] discussed the properties, advantages and deficiencies

of three types of series expansions, namely Gram-Charlier,

Edgeworth and Cornish-Fisher expansions. Furthermore,

Cholesky decomposition [25] and joint cumulants [24, 26]

were utilized to deal with correlations of input variables.

Reference [27] applied Gaussian mixture approximation

method to handle non-normal correlated random variables.

References [28, 29] applied the maximum entropy instead

of series expansions to calculate probability density func-

tions (PDFs). It could improve the accuracy of PDFs, but

required a relatively more complex process.

CM requires less computational effort than other

methods. However, it may produce significant errors when

input random variables have large fluctuations. The reason

is that the linear relationship between input and output

variables is estimated based on the linearization of load

power equations at the operating point. When input random

variables fluctuate away from the operating point, the

relationship between input and output variables may

change significantly. Reference [30] studied the error

resulting from linear model and showed that the error

would increase when the varying ranges of input variables

increased. The wind power output can change significantly

over time due to fluctuations of wind speeds. To solve PLF

considering large-scale wind power integration, reference

[31] divided PDFs of wind power into multiple intervals,

and incorporated these intervals into the integral formula-

tion of calculating cumulants. This method cannot handle

the correlation of different input variables and is compu-

tationally complex. Our previous work [32] tried to solve

probabilistic optimal power flow (P-OPF) with large fluc-

tuations using the method of combined the traditional K-

means clustering technique and CM. However, the tradi-

tional K-means performs inefficiently for large-scale

systems.

To solve PLF considering large-scale wind power inte-

gration, this paper proposes a novel PLF method by com-

bining an improved K-means clustering technique and CM.

It tackles the problems that the traditional CM cannot

handle input random variables with large fluctuations, and

that the traditional K-means is not efficient for large-scale

systems. Compared with existing methods, such as the

traditional CM, 2m?1 PEM, LHS and MCS, the proposed

method can achieve a better performance with considera-

tion of both computational efficiency and accuracy. The

proposed method can be used to analyze effects of uncer-

tainties on power systems.

The rest of this paper is organized as follows: Section 2

introduces the CM for PLF formulation. The theoretical

framework of the proposed method is described in Sec-

tion 3. IEEE 9-bus and 118-bus test systems are modified

for case studies in Section 4. Finally, conclusions are

summarized in Section 5.

2 CM for PLF formulation

CM for PLF is based on the linearization of load flow

equations. In the process, a set of equations, which consist

of nodal power injections and line power flows, are

formulated.

Let X be the vector of nodal power injections, U be the

vector consisting of voltage angles at PV and PQ buses and

voltage magnitudes at PQ buses, and Z be the vector of

power flows in branches. AC power flow equations can be

written as:
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X ¼ f Uð Þ
Z ¼ g Uð Þ

�
ð1Þ

where f(�) and g(�) are the corresponding power injection

functions and corresponding line flow functions,

respectively.

The linear equations can be obtained by linearizing (1)

at the operating point:

U ¼ U0 þ J�1
0 DX ¼ U0 þH0DX

Z ¼ Z0 þ G0DU ¼ Z0 þ L0DX

�
ð2Þ

where U0 and Z0 are the values of U and Z at the operating

point, respectively; DU and DX are the vectors of the

changes in U and X; J�1
0 is the inverse of Jacobian matrix

at the operating point; H0 ¼ J�1
0 ; G0 ¼ oZ=oUð Þ U¼U0

j ;

L0 ¼ G0J
�1
0 .

For power systems containing wind farms, fluctuations of

both wind generation and load can result in uncertainties. The

active wind power output can be obtained as follows [23]:

Pw ¼

0

mi � mcið Þ= mr � mcið ÞPr

Pr

0

8>><
>>:

0\mi\mci
mci � mi\mr
mr � mi\mco
mi � mco

ð3Þ

where Pw is the active wind power output; Pr is the rated

power of the wind farm; vi is the wind speed of the wind

farm; vci, vr and vco are the cut-in, rated and cut-out speeds

of the wind farm, respectively. Wind power output is

treated as a negative load, whose power factor is kept

constant [13].

Thus, DX can be reformed as follows:

DX ¼ DW � DL ð4Þ

where W is the vector consisting of active and reactive

wind power outputs at corresponding buses; L is the vector

consisting of active and reactive load demands at corre-

sponding buses; DW and DL are the vectors of the changes

in W and L.

From (2), taking a specific variable in U for example, it

can be converted to a linear combination as follows:

ui ¼ ui0 þ
XNX

j¼1

h0ij wj � wj0

� �
�
XNX

j¼1

h0ij lj � lj0
� �

¼ usi0 þ
XNX

j¼1

h0ijwj �
XNX

j¼1

h0ijlj

ð5Þ

where usi0 ¼ ui0 �
PNX

j¼1

h0ijwj0 þ
PNX

j¼1

h0ijlj0; ui is a specific

variable in U; wj is the j
th variable inW; lj is the j

th variable

in L; ui0, wj0 and lj0 are the values of uj, wj, and lj at the

operating point, respectively; h0ij is the value at row i and

column j of H0; NX is the number of variables of X. For

active and reactive power flows in branches, they can also

be expressed as a linear combination of input variables.

According to (5), system variables can be converted to a

linear combination of input random variables. Assuming

the independence among input random variables, the

cumulants of output random variables can be calculated by

combining the cumulants of input random variables based

on the property of cumulants [22]. In general, there are

correlations of input random variables. In this paper, the

correlations of input random variables are handled by the

Cholesky decomposition algorithm [25].

3 Proposed method

The fundamental reason why the traditional CM has

high errors for solving PLF of power systems containing

large-scale wind power is that the wind power output can

change significantly over time due to fluctuations of wind

speeds. Therefore, this paper focuses on how to reduce the

fluctuations of input random variables. Given the proba-

bility distribution functions and correlation coefficient

matrix of input random variables, the samples of input

random variables can be generated through the inverse

Nataf transformation [33]. The values of input variables at

the same position form one point as shown in Fig. 1, where

Xi is a column vector of samples for a specific input

variable (wind power or load). Then, these points are

grouped into several clusters through the K-means algo-

rithm. After clustering, the samples in each cluster have

small variances. Furthermore, the proposed method adopts

the law of total probability to combine the results obtained

using CM for PLF in all clusters.

3.1 Improved K-means algorithm

After generating the whole samples, the K-means clus-

tering is applied to divide the whole samples into several

clusters. Each cluster has a cluster center. In fact, the

cluster centers form a multi-state model for random vari-

ables. For the case with only one input random variable,

such as the load at one bus, the obtained cluster centers

Variable Xi

Point l

x1i

xli

xNi

x1n

xln

xNn

x12

xl2

xN2

x11

xl1

xN1

X=

Fig. 1 Samples of input variables
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correspond to multiple load levels. The analysis on the

cluster centers can represent the analysis on the whole load

samples. For the case with two input random variables,

such as two wind farm outputs in the same area, the

K-means clustering divides their samples into a number of

clusters. Each cluster center is a combination of two wind

power output levels, which has implied the correlation of

these two wind power outputs. For clustering samples of

more input variables, the K-means algorithm is conducted

in the multi-dimensional Euclidean space. The detailed

analyses are introduced in the following subsections.

3.1.1 General steps of K-means algorithm

Step 1: Select initial cluster centers, which is expressed

as the matrix M0.

M0 ¼

x011 x012 � � � x01i � � � x01n

..

. ..
. ..

. ..
.

x0j1 x0j2 � � � x0ji � � � x0jn

..

. ..
. ..

. ..
.

x0K1 x0K2 � � � x0Ki � � � x0Kn

2
6666664

3
7777775

ð6Þ

where K is the number of clusters set in advance; x0ji is the

initial center of the variable i in the jth cluster. The jth cluster

center can be expressed as: x0j1; x
0
j2; � � � ; x0ji; � � � ; x0jn

� �
.

Step 2: Calculate the Euclidean distance of all points to

each cluster center.

Ed l; jð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

xli � x0ji

� �2

s
ð7Þ

where Ed l; jð Þ denotes the Euclidean distance of point l to

the center of the jth cluster.

Step 3: Assign all points to the closest cluster according

to the Euclidean distance, and recalculate the cluster

centers.

Step 4: Repeat Steps 2 and 3 until cluster centers don’t

migrate.

3.1.2 Methods for improving performance of K-means

1) Selection of the initial cluster centers

The clustering performance is sensitive to the initial

cluster centers, so that it is important to select them. In this

paper, 10% of samples are randomly selected for clustering

first. The obtained cluster centers through the first clus-

tering can reflect the locations of cluster centers for the

whole samples to some extent. Then, the obtained cluster

centers are used as initial cluster centers to perform K-

means clustering for the whole samples.

2) Determination of the appropriate value of K

It is necessary to determine the number of clusters

before performing K-means clustering. Therefore, the

weighted average radius (WAR) is proposed to evaluate the

clustering performance. The WAR can be calculated as

follows:

R ¼
XK
j¼1

pjrj ð8Þ

where R is the WAR; pj is the ratio of the number of points

in the jth cluster to the number of all points; rj is the radius

of the jth cluster [34].

In general, the value of WAR decreases with the

increase of the number of clusters. Furthermore, the value

of WAR decreases slowly once the number of clusters

exceeds one value, which indicates that the quality of

clustering doesn’t improve significantly once the number

of clusters is larger than that value. Therefore, that value is

suggested as the appropriate value of K.

3) Dimensionality reduction

For improving the efficiency of K-means to handle high-

dimensional samples, the singular value decomposition

(SVD) can be used when the number of input variables is

high. X consisting of the samples of input random variables

is an N � n matrix. Carry on SVD to X:

X ¼ UxRxV
T
x ð9Þ

where Rx is a diagonal matrix with singular values along

the main diagonal; Ux and Vx
T are the left and right singular

matrices derived by performing SVD on X, respectively.

The high-dimensional samples X can be converted to

low-dimensional samples X
0
as follows:

X
0 ¼ XVx 1 : rð Þ ð10Þ

where Vx 1 : rð Þ is the first r columns of Vx. The value of r

is the number of singular values, whose quadratic sum

exceeds 90% of the quadratic sum of all singular values

[34]. It is more efficient to perform K-means on the low-

dimensional samples X
0
than on the high-dimensional

samples X.

3.1.3 Overall procedure of improved K-means algorithm

According to the methods described in above subsec-

tions, the overall procedure of the improved K-means

algorithm is shown in Fig. 2, where Nmax is the number of

input variables to perform dimensionality reduction.
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3.2 Computation of final cumulants

After the K-means clustering, a number of clusters are

identified. In each cluster, the cumulant method is utilized

to solve PLF. Once the computation for all clusters is

completed, the law of total probability is applied to com-

bine the moments obtained in all clusters to obtain the final

cumulants of output random variables for the whole

samples.

Assuming y to be one of output random variables, its

final cumulants can be calculated as follows:

Step 1: The cumulants obtained using CM in each

cluster can be converted to the corresponding moments.

lir ¼
ki1 r ¼ 1

kir þ
Pr�1

j¼1

C
j
r�1l

i
jk

i
r�j r[ 1

8<
: ð11Þ

where lir is the r
th moment of y for the ith cluster; kr

i is the

rth cumulant of y for the ith cluster; C
j
r�1 is the binomial

coefficient, which is equal to the number of subsets of

j distinct elements of r-1 elements.

Step 2: The final moments for the whole samples can be

calculated according to the law of total probability.

lyr ¼
XK
i¼1

pil
i
r ð12Þ

where lyr is the rth moment for the whole samples.

Step 3: The final cumulants for the original whole

samples can be calculated as (13).

kyr ¼
ly1 r ¼ 1

lyr �
Pr�1

j¼1

C
j
r�1l

y
j k

y
r�j r[ 1

8<
: ð13Þ

where kyr is the r
th cumulant of the output variable y for the

whole samples.

3.3 Procedure of solving PLF using proposed

method

Figure 3 shows the flow chart of the proposed method,

where k is the current cluster. A five-step procedure is

described as follows.

Step 1: Apply the inverse Nataf transformation to gen-

erate wind speed and load samples. The wind power

samples can be obtained according to (3).

Step 2: Apply the improved K-means to cluster the wind

power and load samples into a number of clusters.

Step 3: In each cluster, the CM is used to solve proba-

bilistic load flow considering correlations of wind power

outputs and loads. The correlated samples are first trans-

formed to uncorrelated samples using the Cholesky

Input the samples of wind power outputs and loads

Perform dimensionality reduction

 Determine the appropriate value of K  

Select initial values

Assign every point to the nearest cluster, and 
update all cluster centers

 Are points in each 
cluster changed?

Output the clustering results

End

Calculate the Euclidean distance

N

Y

Y

N

Start

The number of input 
variables is larger than Nmax?

Fig. 2 Overall procedure of improved K-means algorithm

Start

 Select a cluster and CM for PLF is applied

k = K ?
(all clusters have been selected)

Compute the final cumulants of output 
variables for the whole samples

Obtain the PDFs of output variables by Gram-
Charlier series expansion

N

Y

 Generate samples of wind power and loads, given 
their PDFs and correlation coefficient matrix

End

Perform dimensionality reduction

 Determine the appropriate value of K

Select initial values

Perform the K-means algorithm

k = k +1

 Group samples into several clusters

Fig. 3 Flow chart of proposed method
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decomposition. Then, calculate the cumulants of uncorre-

lated samples [25]. Finally, the CM introduced in Section 2

are executed to calculate the cumulants of all output ran-

dom variables.

Step 4: Calculate the final cumulants of output random

variables using the method introduced in Section 3.2.

Step 5: Approximate the PDFs of output random vari-

ables using Gram-Charlier series expansion due to its good

tail behavior [22].

This paper solves PLF problems for a determined net-

work and does not consider equipment contingencies such

as N-1 contingency. If equipment contingencies are

required, the proposed method can be performed for each

contingency. Then, the results can be combined according

to the law of total probability.

4 Case study

The proposed method, namely the improved K-means

based cumulant method (IKCM), is tested on modified

IEEE 9-bus and 118-bus test systems [35], which are

integrated with additional wind farms. Table 1 lists the

particulars of wind farms. In addition, vci = 3 m/s, vr = 13

m/s, and vco = 25 m/s [33]. The wind farms are assumed to

be PQ buses, whose power factors are kept constant at 0.85

lag [13]. In these two cases, MCS with 20000 samples is

applied to solve PLF, and its results are treated as the

benchmark to assess the accuracy and efficiency of the

proposed method. In addition, the uncorrelated CM

(UCM), the correlated CM (CCM), the 2m?1 PEM and

LHS-based MCS are conducted for comparison purpose.

The UCM does not consider correlations of input random

variables. The CCM handles correlated input random

variables using the Cholesky decomposition. The 2m?1

PEM is proposed in [15]. Reference [6] proposed an LHS-

based PLF method and proved that it could obtain accurate

results by hundreds of simulations. In this paper, the LHS-

based MCS is conducted with 500 samples. The errors of

cumulants and PDFs obtained using IKCM, UCM, CCM,

2m?1 PEM and LHS are measured by the indices of

absolute percent error (APE) and average root mean square

(ARMS), as shown in (14) and (15), respectively. The

programs are developed using MATLAB and are executed

on a PC with 2.6 GHz Intel (R) Core (TM) i5 duo processor

and 8 GB DDR3 RAM.

APE ¼ ro � rMCSð Þ=rMCSj j � 100% ð14Þ

ARMS ¼ 1

Np

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XNp

i¼1

OMi �MCSið Þ2
vuut ð15Þ

where ro is the cumulant value obtained using different

methods except MCS; rMCS is the cumulant value obtained

using MCS; OMi denotes the value of the ith point on the

PDFs obtained using different methods except MCS; MCSi
denotes the value of the ith point on the PDFs obtained

using MCS; Np is the number of points on PDFs.

4.1 Case 1: modified IEEE 9-bus test system

4.1.1 Basic information

In modified IEEE 9-bus test system, all loads have

constant power factors. The active load demand at each bus

is modeled as a Gussian distribution, whose mean is pro-

vided in MATPOWER [35] and standard deviation is equal

to 10% of its mean. Weibull distributions are used to model

wind speeds. Table 2 lists the shape and scale parameters

of wind speeds [36]. The correlation coefficient between

loads is assumed to be 0.8, the correlation coefficient

between wind speeds is assumed to be 0.76, and the cor-

relation coefficient between the wind speed and load at the

same bus is assumed to be 0.2 [33]. The PDFs of active

load power and wind power at bus 7 are depicted by his-

tograms as shown in Figs. 4 and 5.

4.1.2 Performance of improved K-means clustering

According to (12), the relationship between WAR and

the number of clusters can be obtained, as shown in

Fig. 6.

It can be observed that the WAR declines slowly after

the number of clusters is more than 40. This implies that

the clustering performance will not significantly improve

when the number of clusters is above 40. Therefore, the

K value is suggested to be 40.

Table 1 Particulars of wind farms

Test system Bus No. Rated capacity

(MW)

IEEE 9-bus system 7, 9 60

IEEE 118-bus

system

17, 30, 59, 80, 92, 100 250

Table 2 Parameters of wind speeds (case 1)

Wind speed Shape parameter Scale parameter

W1 (bus 7) 1.732 6.611

W2 (bus 9) 2.036 7.933
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Table 3 shows the clustering results of the K-means

algorithm. After clustering, input random variable samples

are grouped into 40 clusters. The variance can reflect the

fluctuation of one random variable. For each cluster, the

variance of the random variable is calculated. As a result,

40 variance values corresponding to 40 clusters are

obtained. Among these 40 values, we choose the minimum,

the maximum and the mean value to present the fluctuation

level of each input random variable in each cluster. The

chosen values are labelled as Smin, Smax and Smean,

respectively. The column labelled S is the variance of a

specific input random variable for the original total sam-

ples. It can be observed that the variances after the

improved K-means clustering are much smaller than those

for the original whole samples.

4.1.3 Probabilistic results

Table 4 lists the results of different methods used to

solve PLF problems for this test system. The results are

aggregated into: VA which stands for voltage angles, VM

which stands for voltage magnitudes, PL which stands for

line active power flows, and QL which stands for line

reactive power flows, since it is difficult to present all

output variables individually. The columns labelled ‘‘er1’’,
‘‘er2’’, ‘‘er3’’ and ‘‘er4’’ are APE values of the first four

cumulants compared with those obtained using MCS. The

mean and maximum values of the APE values are shown to

demonstrate the scope of APE values for a class of

variables.

It can be observed from Table 4 that all APE values

obtained using IKCM are small, which indicates that the

cumulants obtained using IKCM are approximately the

same as those of MCS. The worst APE value of the pro-

posed method’s results is 59.29%, which occurs at the er4
of VM at bus 5. However, the actual error for this VM is

only - 3.66 9 10-11 p.u. This variable may mislead the

comparison on APE and should not be applied to assess the

performance of different methods. Compared with IKCM,

the 2m?1 PEM has smaller values of er1, but has much

larger values of er3 and er4. The CCM has much larger

values of er1, er2, er3 and er4 than IKCM. There are two

points to be pointed out about the CCM. First, the values of

er3 and er4 are much larger than the values of er1 and er2.
Second, the results of reactive quantities (VM and QL) are

worse than those of active quantities (VA and PL), which

can be significantly observed from the values of er3. The
UCM has large values of er2, er3 and er4. Compared with

60 70 80 90 100 110 120 130 140
Active load power at bus 7 (MW)

0

0.025

0.050

0.075

0.100
Pr
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ili
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Fig. 4 PDF of active load power at bus 7

0 10 20 30 40 50 60
Wind power at bus 7 (MW)
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Fig. 5 PDF of wind power at bus 7

0 40 80 120 160 200
Number of clusters

20

40

60
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W
A

R

Fig. 6 Relationship between WAR and number of clusters

Table 3 Comparison of variances of input variables

Input variable Smean

(MW2)

Smin

(MW2)

Smax

(MW2)

S for whole

samples (MW2)

Wind power

at bus 7

32.45 7.48 57.79 320.25

Wind power

at bus 9

34.68 15.44 49.88 349.94

Load at bus 5 42.78 16.14 66.02 80.04

Load at bus 7 39.65 17.83 61.91 100.48

Load at bus 9 40.03 20.13 66.37 157.09
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IKCM, LHS produces slightly larger errors. However, LHS

has much smaller er1 and er2 than CCM and UCM, and has

significantly smaller er3 and er4 than 2m?1 PEM. The

second, third and fourth cumulants can reflect the variance,

skewness and kurtosis of an output random variable,

respectively. Therefore, the large values of er2, er3 and er4
can result in distortions on PDF curves. The PDF curves of

output variables (VA at PV and PQ buses, VM at PQ buses,

PL and QL) are approximated using 7-order Gram-Charlier

series expansion.

Figures 7 and 8 show the PDFs of the VM at bus 9 and

the active power flow in line 7–8, respectively. From the

comparison in Figs. 7 and 8, the PDFs of IKCM can better

match MCS histograms than CCM, UCM and 2m?1 PEM.

The PDFs of LHS are close to those of IKCM.

Figure 9 shows the ARMS results of PDF curves of all

output random variables. The box plots corresponding to

IKCM are all below those corresponding to CCM, UCM,

2m?1 PEM and LHS, which indicates that the PDFs pro-

duced by IKCM can approximate those of MCS better.

Comparison between LHS and IKCM shows that the

ARMS values of the PDFs of LHS are also small, and that

the PDFs of LHS are close to those of IKCM. It should be

pointed out that in Fig. 9d, there are two exception values

in the box plots of IKCM. However, the actual ARMS

values are only 0.0995% and 0.1170%. It can be seen that

the CCM perform worse on reactive quantities than active

quantities. This characteristic can also be observed from

the results of cumulants and PDFs. The reason is that

reactive quantities generally have higher degree of non-

linearity than active quantities. Moreover, the computation

time of each method consumes and the number of deter-

ministic power flow (DPF) calculations conducted by each

method are shown in Table 5. It can be seen that the pro-

posed method spends much less time than LHS and

MCS.
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Fig. 7 PDFs of VM at bus 9

Table 4 Comparison of first four cumulants (case 1)

Variable Method er1 (%) er2 (%) er3 (%) er4 (%)

Mean Max Mean Max Mean Max Mean Max

VA IKCM 0.13 0.34 0.04 0.06 0.32 0.70 6.06 10.68

CCM 0.89 2.26 2.59 3.47 44.84 50.62 39.07 56.61

UCM 0.89 2.26 21.88 23.90 46.72 58.50 76.78 80.17

2m?1 PEM 0.01 0.03 0.49 0.55 52.30 60.14 182.98 330.88

LHS 0.28 0.84 0.51 0.90 9.29 16.40 14.48 20.49

VM IKCM 0.01 0.01 0.22 0.34 6.44 14.99 13.59 59.29

CCM 0.05 0.08 4.42 6.22 157.13 305.96 64.70 93.03

UCM 0.05 0.08 28.34 61.27 165.10 477.64 85.65 190.82

2m?1 PEM 0.00 0.00 2.42 4.42 64.47 192.03 289.63 892.59

LHS 0.00 0.01 0.51 0.95 43.66 128.37 145.17 750.09

PL IKCM 0.05 0.13 0.02 0.03 0.57 2.49 17.50 36.40

CCM 0.28 0.69 5.34 10.97 35.42 55.30 58.22 140.90

UCM 0.28 0.69 29.48 69.38 61.25 139.98 170.57 470.08

2m?1 PEM 0.00 0.00 0.17 0.33 43.45 64.05 537.64 1088.21

LHS 0.40 1.56 0.65 1.23 9.06 22.38 29.70 71.33

QL IKCM 0.71 1.51 0.20 0.41 5.83 27.29 10.51 48.69

CCM 3.67 9.15 4.04 6.49 113.03 345.44 61.54 100.08

UCM 3.67 9.15 36.14 107.65 170.13 1034.79 125.36 349.20

2m?1 PEM 0.01 0.03 1.69 6.87 77.73 278.20 394.61 1308.17

LHS 0.69 2.01 0.67 1.92 28.09 127.52 36.37 149.98
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An additional experiment is conducted to examine the

performance of the proposed method with more clusters,

where the proposed method with 60 clusters is imple-

mented on this test system. The results indicate that the

proposed method with 60 clusters is more accurate than 40

clusters. For example, the er1, er2, er3 and er4 of QL in line

1–4, which are obtained using 40 clusters, are 1.45%,

0.41%, 8.64% and 18.18%, respectively. These values

obtained using 60 clusters are 1.22%, 0.30%, 5.96% and

15.97%, respectively. It can be seen that more clusters will

produce more accurate results. Obviously, more clusters

will require more computation time.

It can be concluded that the proposed method has higher

computational accuracy than CCM, UCM, 2m?1 PEM and

LHS, and is more efficient than LHS and MCS. In addition,

more clusters can achieve higher accuracy at the expense of

efficiency.

4.2 Case 2: modified IEEE 118-bus test system

The modified IEEE 118-bus test system is used to

examine the feasibility of the proposed method for a large

system with multiple wind farms. Weibull distributions are

used to model wind speeds. Table 6 lists the shape and

scale parameters of wind speed distributions [36]. The

correlations of wind speeds at buses 17 and 30, buses 59

and 80, and buses 92 and 100 are set to be 0.88, and others

are set to be 0.48. All loads have constant power factors.

The active load demand at each bus is modeled as Gussian

distribution, whose mean is provided in MATPOWER [35]

and standard deviation is equal to 10% of its mean.

The relationship between WAR and the number of

clusters for case 2 can be obtained using (12). The number

of clusters is suggested to be 40. In this test system, there

are 105 input random variables, including 6 wind power

outputs and 99 load demands. Therefore, the dimension-

ality reduction based on SVD is applied in the K-means

process, where the first six singular values are selected and

their sum is equal to 92.13% of the quadratic sum of all

singular values. The computation times of the traditional
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K-means and the improved K-means with SVD are 3.08 s

and 0.92 s, respectively. It can be seen that the K-means

algorithm achieves an efficiency improvement through the

dimensionality reduction based on SVD.

Table 7 presents the results of cumulants. Figures 10 and

11 show the PDFs of the PL in line 100–101 and the QL in

line 79–80. It is of note that the proposedmethod has slightly

large er3 and er4 values for very few system variables. The

reason is that the Cholesky decomposition algorithm used to

handle correlations has some errors for high-order cumulants

when input random variables are non-normal distributions.

The final PDFs of these output random variables obtained

using the proposed method still have low ARMS values as

shown in Fig. 12. The comparison between Table 8 and

Table 5 shows that the 2m?1 PEM does not have the obvi-

ous advantage of computational efficiency over the proposed

method when solving PLF problems for this large test sys-

tem. This is because the 2m?1 PEM conducts 211 load flow

simulations for this large test system due to 105 input ran-

dom variables. According to the results for this IEEE

118-bus test system, the same conclusion that the proposed

method has higher computational accuracy than CCM,

UCM, 2m?1 PEM and LHS, and spends much less time than

LHS and MCS, can be achieved.

4.3 Discussion about stability of proposed method

The proposed method is based on the clustering algo-

rithm. Theoretically, the result of clustering is the local

Table 5 Comparison of computation time (case 1)

Method Number of DPF Computation time (s)

MCS 20000 120.07

IKCM 40 2.23

CCM 1 0.88

UCM 1 0.77

2m?1 PEM 11 0.94

LHS 500 4.46

Table 6 Parameters of wind speeds (case 2)

Wind speed Shape parameter Scale parameter

W1 (bus 17) 2.027 7.647

W2 (bus 30) 1.513 8.135

W3 (bus 59) 1.526 5.612

W4 (bus 80) 1.946 9.872

W5 (bus 92) 1.619 6.124

W6 (bus 100) 1.690 8.522

Table 7 Comparison of first four cumulants (case 2)

Variable Method er1 (%) er2 (%) er3 (%) er4 (%)

Mean Max Mean Max Mean Max Mean Max

VA IKCM 0.09 0.17 0.05 0.11 0.15 0.66 0.43 2.16

CCM 0.60 1.18 8.82 12.03 23.14 47.21 64.93 96.58

UCM 0.60 1.18 58.18 68.88 79.40 92.00 93.89 106.11

2m?1 PEM 0.00 0.01 0.23 0.64 15.39 51.18 97.75 338.40

LHS 0.10 0.21 0.81 2.72 5.01 13.36 2.39 11.04

VM IKCM 0.01 0.01 0.59 1.31 6.06 40.35 17.66 163.22

CCM 0.07 0.14 18.40 40.71 81.79 221.30 82.96 120.81

UCM 0.07 0.14 39.53 54.11 84.11 190.21 89.87 116.30

2m?1 PEM 0.00 0.00 4.05 15.55 107.40 841.54 1681.23 13432.02

LHS 0.00 0.00 1.00 2.53 39.89 287.79 216.51 1878.25

PL IKCM 0.20 4.51 0.05 0.21 4.45 106.31 13.64 394.90

CCM 1.37 28.63 7.69 26.27 32.16 87.26 74.51 354.55

UCM 1.37 28.63 38.92 248.66 59.43 293.62 124.98 2404.25

2m?1 PEM 0.00 0.07 0.16 1.20 23.17 114.68 881.86 25466.93

LHS 0.35 7.11 2.61 9.56 31.15 1125.82 53.84 1509.69

QL IKCM 0.72 14.04 0.29 1.76 3.10 47.44 5.93 55.66

CCM 5.65 96.93 9.76 59.06 91.56 2547.54 101.59 1580.87

UCM 5.65 96.93 38.21 243.48 80.55 606.22 137.32 2420.75

2m?1 PEM 0.01 0.18 1.32 26.49 59.89 2169.29 593.86 6721.76

LHS 0.33 6.13 2.59 8.45 15.44 270.66 56.91 1335.39
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optimal solution, which is influenced by the initial cluster

centers. In order to examine the stability of the proposed

method, probabilistic power flow for the modified IEEE

118-bus test system is conducted 100 times with random

initial cluster centers. The APE values of the first four

cumulants of each type of variables obtained in each sim-

ulation are summed and averaged. In Table 9, the columns

labelled with er1,mean, er2,mean, er3,mean and er4,mean are the

mean values of APE values of the first four cumulants for

100 simulations. It can be seen that the errors in Table 9

are approximately equal to the corresponding values of the

proposed method in Table 7, which demonstrates that the

proposed method can achieve stable and accurate results.

5 Conclusion

A novel PLF method considering large-scale wind

power integration is proposed in this paper. In the process

of the proposed method, an improved K-means algorithm is

used to cluster the samples of input random variables, and

the law of total probability is applied to combine the results

obtained in each cluster. From the case studies on modified
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IEEE 9-bus and 118 bus test systems, some conclusions are

drawn as follows:

1) To solve PLF considering large-scale wind power

integration, the proposed method can achieve higher

accuracy than traditional CM, 2m?1 PEM and LHS,

and higher efficiency than LHS and MCS. In other

words, the proposed method can achieve a better

performance with consideration of both computational

efficiency and accuracy.

2) More clusters will produce more accurate results at the

expense of time. The suggested number of clusters

should be determined in advance.

3) The traditional CM considering the correlation of

input random variables generally has significant errors

for reactive quantities.

4) The 2m?1 PEM has accurate results for the first two

cumulants but not for the third and fourth cumulants,

which results in significant errors in PDFs of output

variables.

In conclusion, as the proposed method has been tested

on the small and large test systems, it can provide an

accurate and efficient tool for power system planning and

operation with large-scale wind power.
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