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Abstract Fast and accurate forecasting of schedulable

capacity of electric vehicles (EVs) plays an important role

in enabling the integration of EVs into future smart grids as

distributed energy storage systems. Traditional methods are

insufficient to deal with large-scale actual schedulable

capacity data. This paper proposes forecasting models for

schedulable capacity of EVs through the parallel gradient

boosting decision tree algorithm and big data analysis for

multi-time scales. The time scale of these data analy-

sis comprises the real time of one minute, ultra-short-term

of one hour and one-day-ahead scale of 24 hours. The

predicted results for different time scales can be used for

various ancillary services. The proposed algorithm is val-

idated using operation data of 521 EVs in the field. The

results show that compared with other machine learning

methods such as the parallel random forest algorithm and

parallel k-nearest neighbor algorithm, the proposed algo-

rithm requires less training time with better forecasting

accuracy and analytical processing ability in big data

environment.

Keywords Electric vehicle (EV), Schedulable capacity,

Machine learning, Big data, Multi-time scale

1 Introduction

With increasing environmental concerns, electric vehi-

cles (EVs) and renewable energy sources are receiving

more and more attention all over the world [1]. According

to the data from International Energy Agency [2], the

number of global EV reached 3.1 million in 2017,

increasing by 57% over the previous year, while the

number of EV on the road is expected to reach 125 million

by 2030. China will be the first country to start replacing

traditional fuel vehicles with electric ones. At the same

time, in 2030 renewable energy in China will account for

15% of the total energy consumption [3].

Large-scale integration of EVs and renewable energy

into the grid poses great challenges in the operation of the

power system due to their uncertainty and intermittent

nature. Generally, large centralized energy storage systems

(ESSs) can mitigate these problems, however, this would

require expensive installations of large-capacity battery

banks, pumped hydro and other large systems [4, 5].

Large-scale mobile and distributed ESS, composed of

numerous on-board EV batteries can provide similar

solutions, if their duality as ‘loads’ and ‘sources’ can be

utilized and demand-side response technologies are applied

[6, 7]. This allows to increase the penetration of renewable

CrossCheck date: 19 September 2019

Received: 28 January 2019 / Accepted: 19 September 2019 / Published

online: 14 November 2019

� The Author(s) 2019

& Meiqin MAO

mmqmail@163.com

Shengliang ZHANG

slzhangmail@163.com

Liuchen CHANG

lchang@unb.ca

Nikos D. HATZIARGYRIOU

nh@power.ece.ntua.gr

1 Research Center for Photovoltaic System Engineering,

School of Electrical Engineering and Automation, Hefei

University of Technology, Hefei 230009, China

2 University of New Brunswick, Fredericton, NB E3B 5A3,

Canada

3 National Technical University of Athens, 15780 Athens,

Greece

123

J. Mod. Power Syst. Clean Energy (2019) 7(6):1651–1662

https://doi.org/10.1007/s40565-019-00573-3

http://orcid.org/0000-0002-8800-8730
http://crossmark.crossref.org/dialog/?doi=10.1007/s40565-019-00573-3&amp;domain=pdf
https://doi.org/10.1007/s40565-019-00573-3


power generation or improve the resiliency and stability by

forming microgrids [8, 9].

An important prerequisite for EVs to provide ancillary

services to utilities or efficient operation of microgrids is to

forecast the EV schedulable capacity (EVSC) in a fast and

accurate way. In this way, system operators can optimize

the schedule for the participation of EVs in ancillary

services.

In current literature, EVSC is generally obtained using

probabilistic EV models [10–15], including plug-in time

probability models based on binomial distributions [10],

plug-in location probability models [11] and the aggregated

queuing network model [12]. In [13–15], a Monte Carlo

method is used to simulate the behavior of different types

of EVs operating under realistic conditions, including start-

stop time, charging rate, charging time, etc. In other non-

probability models, the state of charge (SOC) of the EV

batteries is used to obtain EVSC for individual and

aggregated EVs [16, 17]. Several parameter hypotheses are

needed in most of these models, also due to the scarcity of

historical data.

With the development of communication and Internet of

Things technologies, real-time operation data of individual

EVs can be acquired from their battery management sys-

tem (BMS). The large amounts of actual operation data

such as SOC, times of EVs access to charging infrastruc-

ture, etc., enable to develop more accurate EVSC models.

Nevertheless, dealing with the processing and analysis of a

very large number of data poses great challenges. For

example, if we assume that half of the 100 million EVs

estimated on road in China by 2030 [2] will be involved in

power system scheduling operation, and the collection

interval of related information is one minute, the volume of

data will reach 1–2 petabyte each year. Therefore, this

paper treats the forecasting of EVSC based on real-time

operation data of individual EVs as an essentially big data

analysis problem.

Big data analysis and management are clear trends of

future smart grids. This is challenging for traditional

machine learning (ML) algorithms, since they are designed

for a single machine and are not suitable to deal with big

data [18]. Thus, more efficient ML algorithms for parallel

computing or for big data are required.

The parallel processing methods proposed in literature

can be divided into three groups. Group one refers to

parallel processing of traditional algorithms by using

Hadoop and Spark cluster technology [19–21]. Group two

is the combination of clustering or optimization algorithms

and traditional ML algorithms [22–24]. Group three is a

combination of group one and group two [25–27]. In group

one, the parallelization of the algorithm effectively

improves the computing speed and accuracy of load fore-

casting in parallel computing framework MapReduce and

Spark. For example, [19] analyses the forecasting time and

error for data sets with different sizes in different sizes of

Hadoop clusters. In group two, clustering algorithms on

large-scale data sets can be used to improve the perfor-

mance markedly [22, 23]. For group three, [25] and [26]

propose new hybrid algorithms, which combine the

improved particle swarm optimization and extreme learn-

ing machine, fuzzy C clustering and support vector

machines (SVM), respectively. The problems of over-fit-

ting and long training time caused by the increase of data

scale are faced by multi-distributed back propagation (BP)

neural networks [27].

Different from the algorithms above, [19] and [28]

propose ensemble learning algorithms of random forest

(RF) and gradient boosting decision tree (GBDT), respec-

tively. Ensemble learning algorithm integrates multiple

base learners into a strong learner to improve the fore-

casting accuracy. It is considered as one of the important

future research directions of ML [29]. Unlike traditional

multi-linear regression (MLR) algorithm [30], GBDT can

flexibly handle a certain number of different types of fea-

ture attributes, including continuous and discrete values

[31]. Thus, it is widely used in traffic and load forecasting.

However, since the output of the algorithm is the result of

multiple iterations, there is a strong inter-dependence

among regression trees, thus it is difficult to realize the

parallelization of the GBDT algorithm.

The parallel GBDT (PGBDT) algorithm is derived from

the GBDT algorithm and enables parallel computations. It

requires less iteration time than GBDT by parallel pro-

cessing of a large number of gradient and optimization

computations without affecting the prediction accuracy of

the model. Thus it is applicable to the big data scenario,

although it has not been used so far for EVSC forecasting

(EVSCF).

The application of big data analysis equipped with ML

algorithms has been mainly found in the field of load fore-

casting, but rarely for EVSCF. In [15] and [32], the application

of SVM, RF and decision tree (DT) algorithms are investi-

gated for EVSCF. It is found that SVM and RF have an

improved performance, when the forecasting curves of

EVSCF fluctuate less, while RF is more effective than SVM,

when there are large fluctuations [15]. DTs are heavily

dependent on their input data, which means that even small

variations in data may result in large changes in the structure

of the optimal DT. In this paper, in order to address this

problem, two new algorithms, suitable for big data analysis,

i.e., PGBDT and parallel k-nearest neighbors (PKNN), are

applied to theEVSCFproblemand the results are analyzed.

With the rapid growth of EVs, un-controlled charging of

a large number EVs may cause the phenomenon of ‘‘peak

peaking’’, i.e., increase the peak-to-valley difference of the

utility and affect the stable operation of power grid.
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EVSCF methods provide strong data support for load peak

shifting, frequency regulation, economic dispatch and

intelligent EV charging/discharging strategies. These dif-

ferent applications require the results of EVSCF for

the scheduling of renewable energy or load at different

time scales [33, 34]. For example, real-time load fore-

casting has a time horizon of several seconds to 10 minutes

and is used for frequency/voltage regulation, in order to

eliminate the effect of volatility of renewable energies [35];

ultra-short-term load forecasting has a time scale of one

hour or short-term load forecasting of several hours to tens

of hours for economic dispatch and peak shaving and

valley filling [36, 37]. Forecasting of renewable generation

is usually required for ultra-short-term 15 minutes to four

hours ahead and for short-term 24–72 hours ahead [38].

So far, time scaling of EVs for power system operation

has not been properly discussed. References [15] and [31]

deal only with real time and one-day-ahead time scales. In

this paper, ultra-short-term scaling of one hour is addi-

tionally incorporated for the first time in the EVSCF

models. In this way, EVs can be used for more power

system services such as real-time optimization,

peak shaving and valley filling, economic dispatch, etc.

Overall, the main contribution of this paper is the

development of EVSCF models for multi-time scales based

on the PGBDT algorithm which is used to forecast EVSC

faster and more accurately.

The results of real-time EVSCF based on a large amount

of real-time operation data from BMS of individual EVs

are used as historical data for training the EVSCF models

for ultra-short-term scale of one hour and one-day-ahead

scale of 24 hours. The PGBDT algorithm is initially pro-

posed and tested on a big data platform for multi-time scale

EVSCF models to prove its feasibility and effectiveness.

The rest of this paper is organized as follows. In Sec-

tion 2, the PGBDT algorithm is described. Section 3 dis-

cusses EVSCF models for multi-time scales. In Section 4,

the proposed models are validated and compared with

parallel random forest (PRF) and PKNN algorithms on a

big data platform. This is followed by conclusions in

Section 5.

2 PGBDT algorithm

In the PGBDT algorithm [28], a training sample is

composed of a 1-dimensional target vector yi and a set of

K-dimensional input vectors xi ¼ ½x1i ; x2i ; . . .; xKi �. The

objective is to obtain f �ðxÞ that is, mapping x to yi in

training samples S ¼ fðyi; xiÞgni¼1 of known value yi and ith

set of feature attributes xi with the length K, while mini-

mizing the loss function Lðyi; f ðxiÞÞ as shown in (1):

f �ðxÞ ¼ argmin
f ðxÞ

Xn

i¼1

Lðyi; f ðxiÞÞ ð1Þ

where f ðxiÞ is the ith predicted value as the output of a

mapping function. The loss function Lðyi; f ðxiÞÞ used here

is the square error loss function of the regression problem

as shown in (2):

Lðyi; f ðxiÞÞ ¼ ðyi � f ðxiÞÞ2 ð2Þ

f �ðxÞ can be approximated by the additive form of f ðxÞ
as shown in (3):

f ðxÞ ¼
XM

m¼1

cmbm ð3Þ

where cm is a scaling factor; and bm is the least-squares

coefficient of the base learner for the mth iteration.

By defining the base learner as a J-terminal node

regression tree, the specific steps of PGBDT algorithm are

as follows.

Step 1: Initialize the model (3) by setting the initial and

maximum number of iterations m as one and M,

respectively, and the initial function f0ðxÞ as shown in

(4).

f0ðxÞ ¼ argmin
p

Xn

i¼1

Lðyi; pÞ ð4Þ

where p is a constant value for minimizing the loss func-

tion; and f0ðxÞ is a regression tree with only one node.

Step 2: Obtain the negative gradient of the loss function

as shown in (5), and fm�1ðxÞ is the model after (m-1)th

iteration.

rmi ¼ � oLðyi; f ðxiÞÞ
of ðxiÞ

� �

f ðxÞ¼fm�1ðxÞ
ð5Þ

The mth regression tree is constructed according to all

samples and their negative gradients [39], and its splitting

rule is to divide it into two regions according to the value

s of the kth feature attribute: Sleft k; sð Þ ¼ fxi xki � s
�� g and

Sright k; sð Þ ¼ fxi xki [ s
�� g. The minimization of the sum of

regional variances after splitting is shown in (6):

Gainðk; sÞ ¼ min
k;s

X

xi2Sleft
yi �

1

nleft

Xnleft

i¼1

yi

 !2

þ

2

4

X

xi2Sright
yi �

1

nright

Xnright

i¼1

yi

 !2
3

5
ð6Þ

where the training sample S with size n is divided into left-

dataset Sleft and right-dataset Sright according to splitting s,

the size of which are nleft and nright, respectively.
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Thus, its corresponding J-terminal node regions Rmj; j ¼
1; 2; . . .; J are obtained.

Step 3: Obtain the corresponding least-squares coeffi-

cient bmj of the mth regression tree as in (7).

bmj ¼ �rmieðxiÞ xi 2 Rmj ð7Þ

e xið Þ ¼ 1 xi 2 Rmj

0 xi 62 Rmj

�
ð8Þ

where �rmi is the average value of negative gradient of mth

regression tree; and eðxiÞ is an indicator function.

Step 4: Find the scaling factor cm of the mth regression

tree for solving the ‘‘linear search’’ by (9).

cm ¼ argmin
c

X

xi2Rmj

L yi; fm�1ðxiÞ þ c
XJ

j¼1

bmj

 !
ð9Þ

Step 5: Update the model fmðxÞ as (10).

fmðxÞ ¼ fm�1ðxÞ þ cm
XJ

j¼1

bmj ð10Þ

Step 6: If m\M, let m ¼ mþ 1 and repeat Step 2 to Step

5, otherwise output the final fMðxÞ.

After M iterations, the final model f ðxÞ is obtained as

(11):

f ðxÞ ¼ fMðxÞ ¼ f0ðxÞ þ
XM

m¼1

XJ

j¼1

cmbmj ð11Þ

From (11), it can be seen that the PGBDT algorithm is a

combined algorithm. It approximates the expected model

by iterating a series of regression trees to improve the

model accuracy and provides a strong predictive

performance and generalization ability. Each regression

tree can be parallelized by finding splits on each non-

terminal node of the regression tree in parallel, whose

splitting criteria depends on the minimization of variance

after splitting. Therefore, the whole model of PGBDT can

be parallelized by generating each regression tree in

parallel during its generation process.

3 EVSCF models for multi-time scales

3.1 Time scales used in the proposed EVSCF models

In this paper, three time scales for EVSCF are proposed,

i.e., real-time scale of one minute, ultra-short-term scale of

one hour and one-day-ahead scale of 24 hours. This allows

the provision of different ancillary services for power

system, as shown in Fig. 1. For the one-day-ahead EVSCF,

the forecasting is performed for every of the 24 hours in

advance. Considering the uncertainty of the one-day-ahead

scheduling, the schedule for the ultra-short-term scale of

one hour is formulated to reduce the forecasting errors,

which is performed one hour in advance. The real-time

EVSCF is carried out one minute in advance. Its time scale

is short and the precision is high and less affected by

uncertain factors. It can be used for frequency and voltage

regulation and further correction of scheduling errors. The

real-time scale interval is one minute and the time scales

for ultra-short-term and one-day-ahead are set to 60 min-

utes and 1440 minutes, respectively.

3.2 Real-time EVSCF model

3.2.1 Classification of EVs connected to grid

The proposed real-time EVSCF model is based on real-

time data of individual EVs, which are acquired from the

BMS of each EV.

In order to ensure the accuracy of real-time EVSCF

model, the selected time scale for the prediction model is

equal to the time interval of the real-time operation data

acquisition, which is one minute in this paper. Since the

SOC of the EV battery changes slightly within one minute,

EVSC in real time is calculated dynamically through the

real-time data acquisition and big data analysis method,

and can be regarded as the forecasted value of EVSC for

the next minute. To build the EVSCF model in real time, it

is necessary firstly to classify the individual EVs accessing

the utility network according to their levels of SOC so that

the aggregated charging or discharging capacity of EVs can

be obtained.

The participation of EVs in dispatch mainly depends on

the scheduling period from the grid side ts, the expected

remaining time to disconnect from the grid td;l and the

minimum charging time to reach expected SOC td;c from

individual EV users. The rules to classify EVs are as fol-

lows [15].

Fig. 1 Diagram of time scales in the proposed EVSCF
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1) If td;l\ts or td;l\td;c, EVd is not allowed to participate

in the scheduling plan.

2) If td;l � ts and td;l � td;c: � if SOCt
d\SOCmin

d , EVd is

allowed to be charged; ` if SOCmax
d \SOCt

d, EVd is

allowed to be discharged; ´ if SOCmin
d \SOCt

d\
SOCmax

d , EVd is allowed to be charged or discharged

according to the scheduling plan.

Note that EVd is the dth EV; SOCt
d is the SOC of

EVd at current time t; and SOCmin
d and SOCmax

d are the

minimum and maximum expected SOC for each EVd,

respectively.

3.2.2 Definition of charging/discharging rate

The charging/discharging rate vd;t is used to characterize

the users’ demands, as shown in (12). The value of vd;t is

related to the initial SOC, ending SOC and td;l of EVd.

vd;t ¼
SOCt

d � SOC
tþtd;l
d

td;l
ð12Þ

where SOC
tþtd;l
d is the SOC of EVd at time t þ td;l; vd;t\0

indicates that EVd is charging; and vd;t [ 0 indicates that

EVd is discharging.

3.2.3 Real-time EVSCF model

The real-time EVSCF model includes real-time

schedulable charge capacity (SCC) and schedulable dis-

charge capacity (SDC) of EVSC based on real-time oper-

ation data of EVs from BMS and group classification

above. In this paper, SCC and SDC of individual EVs are

obtained from (13) and (14), respectively:

SCCd;ts ¼ vd;ttsCd vd;t 2 vd;t; 0
� �

ð13Þ

SDCd;ts ¼ vd;ttsCd vd;t 2 0; �vd;t
� �

ð14Þ

where �vd;t and vd;t are the limits of charging/discharging

rate, respectively; SCCd;tsand SDCd;ts are SCC and SDC of

EVSCF of EVd at the scheduling period ts, respectively;

and Cd is the rated battery capacity of EVd.

According to the real-time SCC and SDC of individual

EVs as well as SCC and SDC of EVSCF of the cluster of

EVs, SCCall
ts

and SDCall
ts

are derived as in (15) and (16),

respectively:

SCCall
ts

¼
XN

d¼1

SCCd;ts ð15Þ

SDCall
ts

¼
XN

d¼1

SDCd;ts ð16Þ

where N is the total number of EVs connected to the grid.

3.3 Ultra-short-term and one-day-ahead EVSCF

models

3.3.1 Construction of training dataset and testing dataset

Feature selection is required before establishing the

training dataset and testing dataset for ultra-short-term and

one-day-ahead EVSCF models. The following feature

attributes of EVs are selected to train the model based

historical data and time attributes of operations for indi-

vidual EV.

1) The average values of SCC and SDC of EVSC at the

same time t of the previous month are SCC
all

t;mon and

SDC
all

t;mon, which are calculated as in (17) and (18),

respectively:

SCC
all

t;mon¼
1

l

Xl

k¼1

SCCk
t;mon ð17Þ

SDC
all

t;mon¼
1

l

Xl

k¼1

SDCk
t;mon ð18Þ

where l is the total number of days of the previous month;

SCCt,mon
k , SDCt,mon

k are the values of SCC and SDC of

EVSC at the same time t on the kth day of the previous

month, respectively.

2) The average values of SCC and SDC of EVSC at

the same time t last week are SCC
all

t;week and

SDC
all

t;week, which are calculated as in (19) and

(20), respectively, where SCCt,week
k , SDCt,week

k are

the values of SCC and SDC of EVSC at time t on

the kth day of last week:

SCC
all

t;week¼
1

7

X7

k¼1

SCCk
t;week ð19Þ

SDC
all

t;week¼
1

7

X7

k¼1

SDCk
t;week ð20Þ

3) The values of SCC and SDC of EVSC at the same time

t of the previous day are SCCt;day and SDCt;day.

According to different time attributes, the following four

feature attributes are selected as inputs at the training stage:

current time t (a total number of 1440 time slots, repre-

sented by 0 to 1439), indication of rush hour, holiday or

working time.

In summary, through the correlation analysis, the data

set with length q is divided into two parts: training dataset
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with length p and testing dataset with length q-p. The next

step is to construct EVSCF models for ultra-short-term and

one-day-ahead scales, as follows.

3.3.2 Ultra-short-term and one-day-ahead EVSCF models

Ultra-short-term and one-day-ahead EVSCF models

with PGBDT proposed in this paper differentiate only in

the time scales. Both are trained as follows:

1) Input training dataset A including the feature attributes

and actual value of EVSC yt�p, A ¼
fðyt�p; ht�p;wt�pÞgpt¼1 comprises 10 feature attributes

of the training dataset with length p; ht�p ¼
½x1t�p; x

2
t�p; . . .; x

6
t�p� is a 6-dimensional vector with

the historical data of EVSC; and wt�p ¼
½x7t�p; x

8
t�p; x

9
t�p; x

10
t�p� is a 4-dimensional vector with

the time attributes of EVSC.

2) Set the parameters of the PGBDT algorithm including

the number of iterations I and maximum depth d.

3) Train the model represented by (21) by the training

dataset A:

yt�p ¼ f ðht�p;wt�pÞ ð21Þ

4) Substitute testing dataset B into the model, and obtain

the predicted value of EVSCF yet as (22):

yet ¼ f ðht�p;wt�pÞ ð22Þ

B ¼ fðyt; ht;wtÞgqt¼pþ1 has 10 feature attributes of the

testing dataset with length q–p.3.3.3 Evaluation indexes

In order to evaluate the performance of the proposed

PGBDT algorithm for the ultra-short-term and one-day-

ahead EVSCF models, the mean absolute percentage error

(MAPE) and root mean square error (RMSE) are chosen as

evaluation indexes. The expressions are shown in (23) and

(24), respectively:

MAPE ¼ 1

n

Xn

i¼1

ðyi � yei Þ=yi
�� ��� 100% ð23Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðyi � yei Þ=yi½ �2
s

� 100% ð24Þ

where yi and yei are the actual and forecasted EVSC values,

respectively. If yi is 0, it is replaced with the historical

average of EVSC. The smaller the value of MAPE, the

more accurate the predicted value is. RMSE is sensitive to

outliers and can amplify the prediction errors. It can be

used to evaluate the stability of the algorithm.

3.4 Implementation of EVSCF models with PGBDT

algorithm and big data analysis

3.4.1 Real-time EVSCF framework based on big data

Equations (12)–(16) form the real-time EVSCF model.

Although the proposed model looks simple, it is difficult to

apply, since it needs to process the large amount of related

data of EVs in real time. In this paper, Hadoop is used to solve

the storage problem of big data by the Hadoop distributed file

system (HDFS) [40]. Moreover, Spark designed for large-

scale data processing is used. The Spark streaming can pro-

cess stream data with a minimum interval of 500 ms. In this

paper, the real-time processing interval is 60 s, which enables

parallel computation to meet real-time requirements.

Parallel processing on Spark is shown in Fig. 2a. When

EVs are connected to the grid, their operation information

can be acquired and processed through the following

functions. The Map function calculates the real-time EVSC

of individual EVs. The ReduceByKey function combines

the value (the output of Map function) of each key (the

number of EVs). Real-time EVSCF values are obtained

from the real-time EVSCF model. This is used as historical

data for ultra-short-term and one-day-ahead EVSCF mod-

els, as discussed in the following sections.

3.4.2 Framework of EVSCF models based on PGBDT

The structure of EVSCF models based on PGBDT algo-

rithm for multi-time scales is shown in Fig. 2. The real-time

EVSCFmodel is built, as shown in Fig. 2a, and the historical

data of the real-time EVSCF is combined with the time

attributes to generate the training dataset and testing dataset.

According to the different prediction periods, the training

dataset and testing dataset are updated in order to apply

rolling forecasting. Finally, one-day-ahead and ultra-short-

term EVSCF models based on the PGBDT algorithm are

trained, tested and evaluated, as shown in Fig. 2b.

4 Study cases

4.1 Big data platform configuration

Combining the advantages of Hadoop and Spark, a big

data platform is constructed to test the proposed method.

The hardware of configured big data platform consists of

two IBM servers, which can communicate on the same

network through Gigabit gateway. Based on Ubuntu 64-bit

operation systems, a computer cluster containing four

machines is set up, one of which is selected as the master
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node and the rest three as the slave nodes. The configura-

tion parameters of the big data platform are shown in

Table 1.

With the big data platform, the real-time data of 521

EVs are used to test the EVSCF models proposed in Sec-

tion 3. These data are acquired from BMS of each EV with

one-minute resolution, (17 GB in total) in the period from

Nov. 1, 2015, 00:00 to Apr. 30, 2016, 23:59 [15].

4.2 Processing time analysis of different real-time

EVSCF data scales

In this paper, the speed-up factor Sspeedup is defined as an

evaluation index for measuring the parallelization degree

of the big data platform, as shown in (25):

Sspeedup ¼ Ts=Tc ð25Þ

where Ts and Tc are the running time of single machine and

cluster machines for processing big data, respectively.

With the proposed big data platform and the real-time

operation data of EVs, real-time EVSCF is performed.

Table 2 shows the values of Sspeedup for the processing

methods by single machine and cluster machines. The

achieved EVSCF increases from 0.5 GB to 17 GB.

It can be seen from Table 2 that with the increasing data

size of real-time EVSCF, the speed-up factor increases

from 11 to 66. The acceleration effect is obvious, reflecting

the ability of the proposed method to process large-scale

data.

4.3 Simulation results and discussions

4.3.1 Real-time EVSCF

The real-time EVSCF is performed using the operation

data of EVs connected to the grid from Nov. 1, 2015, 00:00

to Apr. 30, 2016, 23:59 with one-minute resolution,

(a)

(b)

Fig. 2 Structure of EVSCF models for multi-time scales

Table 1 Big data platform configuration parameters

Master/slave node IP address Software version

Master 192.168.16.135

Hadoop-2.7.0, Spark-1.6.0-

bin-hadoop-2.7.0

Slave1 192.168.16.198

Slave2 192.168.16.199

Slave3 192.168.16.229

Table 2 Processing time for different data size of real-time EVSCF

Data scale (GB) Tc(s) Ts(s) Sspeedup

0.5 22 246 11

1.0 37 643 17

5.0 109 2808 25

17.0 196 13030 66
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including a total number of 262080 data points. The pre-

dicted results of both SCC and SDC are shown in Fig. 3. It

can be seen that there is a drop in the curves of both SCC

and SDC during the course Feb. 7, 2016 to Feb. 13, 2016

(time: 141120–151200 minutes), which is explained by the

Chinese Spring Festival.

Figure 4 depicts SCC and SDC curve form Apr. 24,

2016 to Apr. 30, 2016. The daily trend of EVSCF is

basically the same, because the travel time of EV buses is

nearly the same every day. Since EVs will leave or access

the grid at any time, the values of EVSCF always change

and reflect the volatility of EVSC.

Figure 5 shows the results of real-time EVSCF for the

specific day of Apr. 30, 2016. From Fig. 5, it is expected

that the maximum values of SCC and SDC during this day

are 167.557 kWh and 117.155 kWh, respectively, and the

minimum values are zero. Figure 5 shows that the values of

real-time EVSCF for the time periods from 05:00 to 08:59

(time: 301–540 minutes) and 16:00 to 18:59 (time:

961–1140 minutes) are close to zero, which reflects the

intermittency of EVSC. For EVs, this happens during rush

hours when EVs have completed charging and are

disconnected from the grid. Therefore, during these peri-

ods, there are few EVs participating in grid scheduling.

In summary, EVSC for EVs is lower during the daytime,

close to 0 during rush hours and higher during the night.

The time characteristics of EVSC are consistent with the

operation frequency of buses. The probability of access to

grid at night is much higher than at daytime, which results

in higher EVSC for EV buses at night. Based on this

characteristic, charging of EVs can be shifted, not only

reducing the peak power, but also being charged at low

electricity prices. Operation regularity also provides the

basis for EVSC predictability. The analysis results of big

data show the characteristics of EVSC, namely, volatility,

intermittent and predictability.

4.3.2 Ultra-short-term EVSCF

For ultra-short-term and one-day-ahead EVSCF models,

the real-time historical EVSC data from Nov. 1, 2015,

00:00 to Apr. 23, 2016, 23:59 are used for training data-

sets, while the historical EVSC data from Apr. 24, 2016,

00:00 to Apr. 30, 2016, 23:59 are used for testing datasets.

Therefore, ultra-short-term EVSCF is set an hour in

advance to forecast the next hour, rolling to the 168th hour

(7 9 24 hours).

To demonstrate the effectiveness of the proposed

method, the results from the PRF and PKNN algorithms

[32, 41] are compared with the results of the PGBDT

algorithm proposed in this paper. Taking into account the

accuracy and processing time, the set of parameters for

different algorithms are selected, as shown in Table 3.

The errors of SCC and SDC in MAPE and RMSE and

the training time for ultra-short-term EVSCF obtained by

the three ML algorithms are shown in Table 4. It can be

seen that PGBDT has the best performance in both accu-

racy and traning time, and the MAPE of SCC by PGBDT

are 6.52% and 24.01% lower than those of PRF and PKNN,

Fig. 3 Real-time EVSCF during Nov. 2015 to Apr. 2016

Fig. 4 Real-time EVSCF of a week during Apr. 24, 2016 to Apr. 30,

2016

Fig. 5 Real-time EVSCF of Apr. 30, 2016
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respectively. Similarly, MAPE of SDC by PGBDT are

6.50% and 24.52% lower than those of PRF and PKNN,

respectively. The training times of SCC by PGBDT are

3.23 s and 13.48 s faster than those of PRF and PKNN,

respectively. Overall, the prediction accuracy and training

time of PKNN are much inferior to those of PGBDT.

In order to quantitatively evaluate the reliability of

PGBDT, PRF and PKNN algorithms, the cumulative proba-

bility curves of 168 hours of ultra-short-term EVSCF are

obtained, as shown in Fig. 6. As can be seen, PGBDT has

more than 92% of its results meeting the requirements of

MAPE within 8%, which means that PGBDT has good

generalization ability for 92% of new samples. At the same

level of error, the data volumeof PRF is about 50%,while that

of PKNN is less than 20%. This reflects that the reliability of

PGBDT is the highest among the three algorithms.

Figure 7 shows the actual value and predictive values of

SDC for different algorithms for a typical day of Apr. 30

from 00:00 to 24:00. It can be seen that the curve of

PGBDT values is consistent with the curve of actual val-

ues, and the other two curves have large deviations during

the two selected periods. The amplitude of SDC changes

more than 70% in two hours and within 10% in two hours,

respectively.

To further evaluate the performance in different time

periods, 24 hours are divided into three periods according

to the operation practice of EVs, including peak hours of

EVSC (00:00–02:59, 20:00–23:59), flat hours of EVSC

(03:00–04:59, 09:00–15:59, 19:00–19:59), valley hours of

EVSC (05:00–08:59, 16:00–18:59). The histograms of the

evaluation indexes are shown in Figs. 8 and 9. As can been

seen from Figs. 8 and 9, the errors between PGBDT and

PRF are slightly different in peak hours. But in flat hours

and valley hours, due to multiple iteration errors, the results

from PGBDT are stable and much better than that of PRF

and PKNN.

4.3.3 One-day-ahead EVSCF

One-day-ahead EVSCF is performed one day in advance

for the next day. For example, in one-day-ahead 24-hour

Table 3 Set of parameters for different algorithms

Algorithm Set of parameters

PGBDT Number of iterations I = 4; maximum depth d = 8

PRF Number of trees T = 40; number of bins B = 64;

Maximum depth d = 5

PKNN Number of nearest neighbors k = 100

Table 4 Prediction errors and training time of ML algorithms for

ultra-short-term EVSCF

Algorithm Training time (s) MAPE (%) RMSE (%)

SCC-PGBDT 6.59 3.79 4.79

SCC-PRF 9.82 10.31 16.09

SCC-PKNN 20.07 27.80 41.10

SDC-PGBDT 6.11 3.37 3.96

SDC-PRF 9.53 9.87 16.44

SDC-PKNN 20.78 27.89 37.15

Fig. 6 Cumulative probability curves of ultra-short-term EVSCF

Fig. 7 Forecasting errors of SDC by three algorithms on Apr. 30, 2016, 00:00–24:00
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EVSCF model, predicting that EVSC of Apr. 24, 2016

needs a training dataset from Nov. 1, 2015 to Apr. 23,

2016, predicting that EVSC of Apr. 25, 2016 needs a

training dataset from Nov. 2, 2015 to Apr. 24, 2016, etc, in

a rolling way, EVSC of Apr. 30, 2016 is predicted. Table 5

shows the forecasting errors of SCC and SDC in MAPE

and RMSE and the training time based on PGBDT, PRF

and PKNN algorithms for one-day-ahead EVSCF. Similar

to the results of Table 4, PGBDT is the best among all the

algorithms. Comparing with the results in Tables 4 and 5, it

can be seen that the smaller the time scale of EVSCF is, the

smaller the forecasting errors in MAPE are. The value of

RMSE does not vary with the prediction time scale, and

only depends on the complexity of the data and the amount

of outlier data.

5 Conclusion

This paper investigates the EVSCF using big data

analysis and ML algorithms. EVSCF models are estab-

lished for multi-time scales based on actual operation data

of EVs. Real-time EVSCF is achieved using the con-

structed big data platform, where the speed of Hadoop and

Spark is 66 times faster than traditional methods. The

proposed models are tested and compared with PRF and

PKNN, exhibiting superior performance. The simulation

results containing real operation data of EVs connected to

the grid with one-minute resolution. It shows that for one-

hour ultra-short-term EVSCF model, the PGBDT algo-

rithm has the highest accuracy for SCC and SDC, with the

forecasting errors in MAPE of 3.79% and 3.37%, and

reduced training time by 30% and 60%, respec-

tively, compared with those obtained by PRF and by

PKNN. The performance of PGBDT-based EVSCF model

for one-day-ahead 24 hours is much better than PRF and

PKNN, proving its reliable forecasting performance and

generalization ability. The simulation results also prove

that the proposed PGBDT-based EVSCF models can take

advantage of the analytical ability of ML under a big data

environment and provide powerful support for EV partic-

ipation in grid scheduling and ancillary services.

Acknowledgement This work was supported by National Natural

Science Foundation of China (No. 51577047) and International Col-

laboration Project supported by Bureau of Science and Technology,

Anhui Province (No. 1604b0602015).

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted

use, distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

[1] Mahmud K, Town GE, Morsalin S et al (2018) Integration of

electric vehicles and management in the internet of energy.

Renew Sustain Energy Rev 82(3):4179–4203

[2] International Energy Agency (2018) Global EV outlook 2018.

https://webstore.iea.org/global-ev-outlook-2018. Accessed 30

May 2018

[3] Wang B, Wang Q, Wei Y et al (2018) Role of renewable energy

in China’s energy security and climate change mitigation: an

index decomposition analysis. Renew Sustain Energy Rev

90:187–194

[4] Abapour S, Nojavan S, Abapour M (2018) Multi-objective

short-term scheduling of active distribution networks for benefit

maximization of DisCos and DG owners considering demand

response programs and energy storage system. J Mod Power

Syst Clean Energy 6(1):95–106

Fig. 8 Comparison of MAPE in different time periods

Table 5 Prediction errors and training time of ML algorithms for

one-day-ahead EVSCF

Algorithm Training time (s) MAPE (%) RMSE (%)

SCC-PGBDT 8.19 4.11 4.15

SCC-PRF 11.63 11.00 19.45

SCC-PKNN 20.64 29.18 47.94

SDC-PGBDT 8.59 3.97 3.99

SDC-PRF 14.78 10.35 21.09

SDC-PKNN 21.25 28.02 62.44

Fig. 9 Comparison of RMSE in different time periods

1660 Meiqin MAO et al.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://webstore.iea.org/global-ev-outlook-2018


[5] Feng X, Gu J, Guan X (2018) Optimal allocation of hybrid

energy storage for microgrids based on multi-attribute utility

theory. J Mod Power Syst Clean Energy 6(1):107–117

[6] Tushar MHK, Zeineddine AW, Assi C (2018) Demand-side

management by regulating charging and discharging of the EV,

ESS, and utilizing renewable energy. IEEE Trans Ind Inf

14(1):117–126

[7] Zhu J, Gu W, Jiang P et al (2018) Integrated approach for

optimal island partition and power dispatch. J Mod Power Syst

Clean Energy 6(3):449–462

[8] Poudel S, Dubey A (2018) Critical load restoration using dis-

tributed energy resources for resilient power distribution system.

IEEE Trans Power Syst 34(1):52–63

[9] Wang M, Mu YF, Jiang T et al (2018) Load curve smoothing

strategy based on unified state model of different demand side

resources. J Mod Power Syst Clean Energy 6(3):540–554

[10] Han S, Han S, Sezaki K (2011) Estimation of achievable power

capacity from plug-in electric vehicles for V2G frequency reg-

ulation:case studies for market participation. IEEE Trans Smart

Grid 2(4):632–641

[11] Agarwal L, Peng W, Goel L (2014) Probabilistic estimation of

aggregated power capacity of EVs for vehicle-to-grid applica-

tion. In: Proceedings of 2014 international conference on

probabilistic methods applied to power systems (PMAPS),

Durham, UK, 7–10 July 2014, pp 1–6

[12] Lam AYS, Leung KC, Li VOK (2016) Capacity estimation for

vehicle-to-grid frequency regulation services with smart charg-

ing mechanism. IEEE Trans Smart Grid 7(1):156–166

[13] Guoqing W, Youbing Z, Jun Q et al (2014) Evaluation for V2G

available capacity of battery groups of electric vehicles as

energy storage elements in microgrid. Trans China Electrotech

Soc 29(8):36–45

[14] Leugoue E, Zhang J, Ndjansse SRD (2018) The research of V2G

technology real-time charge and discharge capacity prediction.

In: Proceedings of IOP conference series: earth and environ-

mental science, vol 146. p 012066

15] Mao M, Yue Y, Chang L (2016) Multi-time scale forecast for

schedulable capacity of electric vehicle fleets using big data

analysis. In: Proceedings of 13th international symposium on

power electronics for distributed generation systems, Vancouver,

Canada, 27–30 June 2016, pp 1–7

[16] Kumar KN, Sivaneasan B, Cheah PH et al (2014) V2G capacity

estimation using dynamic EV scheduling. IEEE Trans Smart

Grid 5(2):1051–1060

[17] Zhang H, Hu Z, Xu Z et al (2017) Evaluation of achievable

vehicle-to-grid capacity using aggregate PEV model. IEEE

Trans Power Syst 32(1):784–794

[18] Guo Y, Yang Z, Feng S et al (2018) Complex power system

status monitoring and evaluation using big data platform and

machine learning algorithms: a review and a case study. Com-

plexity: 1-21

[19] Wang D, Sun Z (2015) Big data analysis and parallel load fore-

casting of electric power user side. Proc CSEE 35(3):527–537

[20] Xu Y, Cheng Q, Li Y et al (2017) Mid-long term load fore-

casting of power system based on big data clustering. Proc CSU-

EPSA 29(8):43–48
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