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Abstract A new hybrid adaptive autoregressive moving

average (ARMA) and functional link neural network

(FLNN) trained by adaptive cubature Kalman filter (ACKF)

is presented in this paper for forecasting day-ahead mixed

short-term demand and electricity prices in smart grids. The

hybrid forecasting framework is intended to capture the

dynamic interaction between the electricity consumers and

the forecasted prices resulting in the shift of demand curve in

electricity market. The proposed model comprises a linear

ARMA-FLNN obtained by using a nonlinear expansion of

the weighted inputs. The nonlinear functional block helps

introduce nonlinearity by expanding the input space to

higher dimensional space through basis functions. To train

the ARMA-FLNN, an ACKF is used to obtain faster con-

vergence and higher forecasting accuracy. The proposed

method is tested on several electricity markets, and the

performance metrics such as the mean average percentage

error (MAPE), and error variance are compared with other

forecasting methods, indicating the improved accuracy of

the approach and its suitability for a real-time forecasting.

Keywords Mixed demand and price forecasting, Cubature

Kalman filter, Price spikes, Smart grids

1 Introduction

For economic and reliable operation of power systems,

it is important to forecast demand and price simultaneously

over a range of time scales, from minutes to months, so that

market participants can maximize their revenues [1, 2]. In

the present scenario, forecasting techniques are increas-

ingly used for proper planning and reliability of almost all

deregulated power pools. However, in smart grids, demand

and price forecasting has a major role due to the chance for

electricity consumers to react to the market clearing price

(MCP), which may affect the demand curve and result in

the deviation of electricity prices from the initial forecast.

In smart grids, consumers concentrate on the daily demand

consumption based on electricity price changes, which in

turn can help market participants to fix up appropriate

bidding strategies for maximizing their revenues. For this

purpose, smart grids need to employ intelligent and adap-

tive control mechanism, which requires accurate demand

and generation forecasting for smooth operation in an

optimized way [3–5]. Due to this fact, the importance of

demand and price forecasting has been highlighted sepa-

rately in two subsections below:

1.1 Demand forecasting

Several data driven approaches have been proposed by

the authors for short-term demand forecasting [4]. The

traditional time series models for demand forecasting

include autoregressive moving average (ARMA) [6] and

autoregressive integrated moving average (ARIMA) mod-

els [7], autoregressive moving average with exogenous

variables (ARMAX) models [8] and generalized autore-

gressive conditional heteroscedastic (GARCH) models [9].

However, to overcome the deficiencies of the above
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statistical models in providing an accurate forecast, modern

intelligent learning algorithms find more suitability as

proposed by the researchers. The intelligent learning

techniques include artificial neural networks (ANNs)

[10, 11], support vector machines (SVMs) [12, 13], func-

tional link network [14], rule-based systems [15], and fuzzy

neural networks [16], etc. For proper planning and smooth

operation of power systems, accurate demand forecasting

will ensure the independent system operators (ISOs) to

effectively schedule the generation and transmission

resources which will be beneficial for the market

participants.

1.2 Price forecasting

Because of price volatility, MCP forecasting is becom-

ing a key issue in all the deregulated power pools taking

into account the accurate bidding strategy [17–22]. The

electricity price fluctuations are more erratic for which

complex neural architectures are required for accurate

forecasting. Although in most of the forecasting studies,

both electricity demand and price are forecasted separately,

there are few studies in which both lagged demand and

price values are used as inputs to forecast future electricity

prices. The model input comprising of both demand and

price signals leads to a bi-directional approach in which

reactions of the consumers to forecasting prices and sub-

sequent changes in the demand pattern of the target day are

taken into consideration, resulting in changes in the

observed prices [2, 4, 23]. This mixed approach leads the

consumers to manage their consumption based on the price

forecasts. The dynamic framework can be realized by

running alternatively the demand and price forecasting,

where the forecasted demand becomes the input to the

price forecasting paradigm and vice versa. The process is

expected to be much faster in comparison to complex

neural architectures as pointed out in the earlier researches

[1–4].

To overcome the issues faced in complex neural struc-

tures, a computationally simple and adaptive ARMA-

functional link neural architecture and an adaptive cubature

Kalman filter (ACKF) learning approach [22, 24, 25] is

presented in this work. The basis functions of the func-

tional link block provide an expanded nonlinear transfor-

mation to the input space, thereby increasing its dimension

that will be adequate to capture the nonlinearities and

chaotic variations in the demand and price time series.

The cubature Kalman filter (CKF) [25] uses a third-

degree spherical-radial cubature rule to provide better

numerical stability and low computational overhead for

mixed demand and price forecasting problem in smart grids

in comparison to unscented Kalman filter (UKF), and

extended Kalman filter (EKF). To validate its accuracy, the

performance comparison between the ACKF and robust

UKF (RUKF) [24] is presented in this paper. The proposed

models provide both simultaneous and mixed demand and

price forecast for the next day, considering the historical

and forecasted data samples.

2 Time series data pre-processing

Keeping in view of preprocessing of the data series, in

this work we have considered the single-period continu-

ously compounded return series, known as log-return ser-

ies. The return series has efficient statistical properties and

is easy to handle the price and demand signals [18, 20, 21].

The single-period continuously compounded return price

time series is defined as [18]:

Rt ¼ lnðPtÞ � lnðPt�1Þ ¼ ln
Pt

Pt�1

� �
ð1Þ

where Rt is the single-period log return at time t; Pt is the

electricity price at time t. Similar expression is used for

electricity demand return time series. For the case studies

in this work, we have considered the electricity price and

demand series from 1 January 2014 to 31 December 2014

of the Pennsylvania-New Jersey-Maryland (PJM) inter-

connection market [26]. Figure 1 shows the hourly elec-

tricity demand and price series and their corresponding

returns for PJM market in 2014. It can be seen that the

mean value of both demand and price return series is nearly

equal to zero and the variance over the period indicates the

return series to be more homogeneous.

Thus, for forecasting 24-hour ahead electricity price, the

considered return series is given by:

Pt ¼ wðRt�1;Rt�23;Rt�24;Rt�47; � � � ;Rt�167;Rt�168Þ ð2Þ

where w represents a nonlinear function of the return time

series inputs.

3 Electricity demand and price forecasting
methodologies

The return demand or price time series is used as inputs

to an ARMA and nonlinear functional expansion based low

complexity neural model. The process flow of the proposed

methodology is depicted in Fig. 2.

The block diagram of the combined adaptive ARMA

and functional link neural network (ARMA-FLNN) archi-

tecture is shown in Fig. 3, where FEB refers to the func-

tional expansion block of the ARMA model. This model is

an adaptive pole-zero frameworks, where the ARMA

model alone is described by a recursive difference equation

of the form:
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yðkÞ ¼
Xp
i¼1

aiyðk � iÞ þ
Xn
i¼1

bixðk � iÞ þ c1eðk � 1Þ ð3Þ

where x(k) and y(k) are the input and output of the model

respectively; e(k-1)is the random white Gaussian noise of

zero mean and variance of r2; c1 is the error coefficient to

be obtained from the learning algorithm; n is the total

number of state variables. Besides the moving average

(MA) (the second part of (3)), the first part represents the

estimated past output samples y(k-i) (i=1, 2, …, p) and the

price return series described in (2). The coefficients ai and

bi in (3) are to be adjusted iteratively by suitable learning

algorithm.

To obtain a non-linear time series model, a nonlinear

FLNN is added to the MA part of the model with activation

function tanh(�), and the recursive part comprises the

feedback of the delayed estimated output in the form as:

yðkÞ ¼
Xp
i¼1

aiyðk � iÞ

þ tanh b0 þ
Xm
i¼1

biwiðxðk � iÞÞ þ c1eðk � 1Þ
 !

ð4Þ

where m represents the total number of nonlinear

expansions. The output from the FLNN is given by wi,

which is expanded using three terms [xi, cospxi, sinpxi].
However, more trigonometric expansions can be added for

each variable in the form [xi, cospxi, sinpxi, cos2pxi,
sin2pxi, …, cosppxi, sinppxi], where p is the total number

of expansions. When p is chosen as 1, one expansion [xi,

cospxi, sinpxi] is adequate to produce accurate forecast.

Fig. 1 Forward and return series of electricity demand and price of

PJM market in 2014

Historical load and price data Data preprocessing

Adaptive ARMA-FLANN

Forecasting error

Estimated weight parameters from ACKF (iterative)

Return series

Forecasting

Fig. 2 Process flow of proposed methodology

Fig. 3 Nonlinear ARMA-FLNN
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Thus, the equivalent pole-zero model of the nonlinear

ARMA-FLNN is obtained as:

yðkÞ ¼

Pm
i¼1

b0 þ biwiðxðk � iÞÞ½ � þ c1eðk � 1Þ

1� Aðk; zÞ ð5Þ

where Aðk; zÞ ¼
Pp
i¼1

aiz
�i; z is the delay operator.

The aggregated weight vector to be updated is repre-

sented as:

W ¼ ½b0; b1; � � � ; bi; � � � ; bm; a1; a2; � � � ; ap; c1� ð6Þ

The corresponding input vector associated with the

weight vector W is:

D ¼ ½w1;w2; � � � ;wm; yðk � 1Þ; yðk � 2Þ; � � � ; yðk � pÞ;
eðk � 1Þ�T

ð7Þ

The nonlinear ARMA-FLNN model output at the kth

iteration is obtained as:

yðkÞ ¼ WðkÞDðkÞ ð8Þ

The error between the desired output and the estimated

one is given by:

eðkÞ ¼ dðkÞ � yðkÞ ð9Þ

For training the weights of the nonlinear ARMA, the

following discrete-time equations in the matrix form, i.e.,

state equation (10) and output equation (11), are used:

Wk ¼ f ðWk�1Þ þ xk ð10Þ
yk ¼ hðWkÞ þ tk ð11Þ

where Wk stands for all the weights associated with linear

and nonlinear functional blocks, and the estimated output is

yk at the kth instant, respectively; xk and tk represent the

process and measurement correlated zero-mean white

Gaussian noise. Further, the following relations of the

process and measurement noise covariances are obtained

as:

Eðxkx
T
i Þ ¼

Qk i ¼ k

0 i 6¼ k

�
ð12Þ

EðtktTi Þ ¼
Rk i ¼ k

0 i 6¼ k

�
ð13Þ

where Qk and Rk are the model noise and measurement

noise covariance matrices, respectively. For example, with

only one nonlinear block, 8 past return price inputs and 5

inputs from the autoregressive (AR) block, the total

number of weights to be updated is 8 9 3 ? 5 ? 1 = 30.

Thus, the state vector at the kth instant is written as:

Wk ¼ ½b0; b1; � � � ; b24; a1; a2; � � � ; a5; c1�T ð14Þ

The corresponding estimated output is:

yðkÞ ¼ tanhðb0 þ b1w1 þ � � � þ b24w24Þ
þ a1yk�1 þ a2yk�2 þ � � � þ a5yk�5 þ c1ek�1

ð15Þ

For estimating the parameters of the above ARMA-

FLNN model, a relatively new Gaussian approximation

filter known as the CKF is proposed in this paper, which

uses a third-degree radial-spherical rule in generating a set

of 2n cubature points weighted equally for capturing the

mean and covariance. Also, it has been reported in the

literature that CKF is relatively easy to tune, and results in

lower computational overhead and improved numerical

stability, in comparison to the UKF for parameter

estimation in large systems.

Unlike the UKF, the CKF is a nonlinear Bayesian esti-

mator that uses a third-degree spherical-radial cubature rule

to generate 2n cubature points. Assuming an initial error

covariance matrix P0, the computational steps are sum-

marized as follows:

1) Time update

The error covariance matrix Pk-1 is factorized by using

Cholesky matrix decomposition formulation as:

Pk�1¼Sk�1S
T
k�1 ð16Þ

where Sk-1 is the Cholesky decomposition matrix of Pk-1.

The cubature points are evaluated by:

Xi;k�1 ¼ Sk�1ni þ Ŵk�1 i ¼ 1; 2; � � � ; 2n ð17Þ

where Ŵk�1 refers to the estimated value of Wk-1; ni is the

number of cubature points given by the following

expression:

ni ¼
ffiffiffi
n

p
1i i ¼ 1; 2; � � � ; n

�
ffiffiffi
n

p
1i i ¼ nþ 1; nþ 2; � � � ; 2n

�
ð18Þ

where 1i is the ith column vector of an n� n identity

matrix.

The cubature points are then propagated through the

ARMA-FLNN state model to compute the predicted state

as:

Xp

i;kjk�1
¼ f ðXi;k�1Þ ð19Þ

�Wkjk�1 ¼
1

2n

X2n
i¼1

Xp

i;kjk�1
ð20Þ

where Xp
i;kjk�1

is the predicted state of Xi;k�1; �Wkjk�1 is the

average value of Xp

i;kjk�1
.

The propagated covariance is calculated as:
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Pkjk�1 ¼
1

2n

X2n
i¼1

ðXp

i;kjk�1
� �Wkjk�1ÞðXp

i;kjk�1
� �Wkjk�1ÞT

þ Qk�1 ð21Þ

where Qk-1 denotes the model noise covariance matrix at

the time step k-1.

2) Measurement update

Use Cholesky factorization scheme to decompose the

error variance matrix Pkjk�1 to obtain Skjk�1.The cubature

points are recalculated as:

W i;kjk�1 ¼ Skjk�1ni þ Ŵkjk�1 i ¼ 1; 2; � � � ; 2n ð22Þ

The forecasted measurement is then computed by

propagating the cubature points through the nonlinear

system as:

yi;kjk�1 ¼ hðW i;kjk�1Þ ð23Þ

ykjk�1 ¼
1

2n

X2n
i¼1

yi;kjk�1 ð24Þ

The estimated covariance is then computed as:

Py

kjk�1
¼ 1

2n

X2n
i¼1

ðyi;kjk�1�ykjk�1Þðyi;kjk�1 � ykjk�1ÞT þ Rk�1

ð25Þ

Pxy

kjk�1
¼ 1

2n

X2n
i¼1

ðW i;kjk�1�Wkjk�1Þðyi;kjk�1 � ykjk�1ÞT

ð26Þ

where Py

kjk�1
stands for the innovation covariance matrix;

Pxy
kjk�1

stands for cross-covariance matrix; Rk-1 is the

measurement error covariance matrix at the time step k-1.

Then, the Kalman gain is calculated as:

Kk ¼ Pxy
kjk�1

ðPy
kjk�1

Þ�1 ð27Þ

The forecasting error and the state parameter vector are

obtained as:

ek ¼ dk � �ykjk�1 ð28Þ

Ŵk ¼ �Wkjk�1 þ Kkðyk � �ykjk�1Þ ð29Þ

The error covariance matrix Pk is updated as:

Pk ¼ Pkjk�1 � KkP
y

kjk�1
KT

k ð30Þ

However, when the noise statistics are not known

initially or they change abruptly, it is required to update the

values of Qk and Rk recursively. The formula for updating

the noise covariances is given by:

Q̂k ¼ ð1� lÞQ̂k�1 þ lðKke
2
kK

T
k Þ ð31Þ

l ¼ ð1� bÞ=ð1� bkÞ 0:95� b� 0:99 ð32Þ

In a similar way, the measurement covariance matrix is

updated as:

R̂k ¼ lR̂k�1 þ e2k �
1

2n

X2n
i¼1

ðyi;kjk�1��ykjk�1Þðyi;kjk�1

� �ykjk�1Þ
T ð33Þ

Besides the process and measurement error covariances,

the state estimation covariance matrix may deviate from its

value Pkjk�1in (16) when the estimated system state is not

equal to the actual system state. Thus, the propagated

covariance is modified by using a fading factor kk as:

kk [ 1 when
trðgVk � eRkÞ

tr½Pxy

kjk�1
� [ 1

kk � 1 when
trðgVk � eRkÞ

tr½Pxy
kjk�1

� � 1

8>>><
>>>:

ð34Þ

Vk ¼
w0w

T
0 k\2

qVk�1 þ wkw
T
k

1þ q
k� 2

8<
: ð35Þ

where trð�Þ refers to the sum of diagonal elements of the

corresponding matrix; g is a forgetting factor whose value

is taken 0.97; e is chosen as 0.9; w0 and wk represent the

process error covariances at the beginning and kth iteration;

the value of q is chosen as 0.98. Thus, the new state error

covariance matrix is rewritten as:

Pkjk�1 ¼
kk
2n

X2n
i¼1

ðXp

i;kjk�1
� �Wkjk�1ÞðXp

i;kjk�1
� �Wkjk�1ÞT

þ Qk�1

ð36Þ

The estimated modified covariance is then computed

as:

Py
kjk�1

¼ kk
2n

X2n
i¼1

ðyi;kjk�1 � �ykjk�1Þðyi;kjk�1 � �ykjk�1ÞT þ Rk�1

ð37Þ

Pxy

kjk�1
¼ kk

2n

X2n
i¼1

ðW i;kjk�1 � �Wkjk�1Þðyi;kjk�1 � �ykjk�1ÞT

ð38Þ
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4 Differential evolution (DE) for initial learning
phase

For better accuracy and convergence, the weights of the

ARMA-FLNN are optimized using a differential evolution

technique in the initial training phase, where only few

electricity price samples or patterns are used.

Since DE [27, 28] is quite time consuming, for a real-

time price forecasting, the robust CKF estimators are used

for the remaining training phase. DE is a population-based

meta-heuristic optimization technique that uses three

steps—mutation, crossover and selection—to evolve the

final solution starting from a randomly generated popula-

tion with a size of Np and dimension D (number of ARMA-

FLNN weights). Gmax is the maximum number of genera-

tions used in the initial phase of the training. Although

there are several mutation strategies, DE/best/2/bin is used

here to generate mutant vector from the target vector. From

the ACKF algorithm, the objective function is obtained as:

f ðUi;GÞ ¼
1

K

XK
k¼1

e2k ð39Þ

where K is the iteration number used for the minimization

of the objective function; ek is the error at the kth instant.

5 Model identification and performance metrics

The order of the ARMA model has been determined

based on the autocorrelation function (ACF) and partial

autocorrelation function (PACF) plots. The autocorrelation

of lag k for the original price series is given in (40), where

the subscript d signifies the day of forecast. The ACF and

PACF plots for original and return price series of PJM

market are shown in Fig. 4. The time lag has been con-

sidered to be 1 based on the ACF plots. After the loga-

rithmic return, i.e. the first order difference, it is observed

that ACF dies out immediately after lag 2, which signifies

suitability of the model inputs considering first order dif-

ference of the price series.

ACFk ¼

PT�k

t¼1

ðPt;d � �PdÞðPtþd;k � �PdÞ

PT�k

t¼1

ðPt;d � �PdÞ2
ð40Þ

where T is the study period; Pt,d is the price at time t in a

particular day; �Pd is the mean value of price.

The mean absolute percentage error (MAPE) and root

mean square error (RMSE) are considered here to measure

the accuracy of the forecast results [18].

MAPE ¼ 1

T

XT
t¼1

Ft � Atj j
At

 !
� 100% ð41Þ

where Ft is the forecasted value at time t; At is the actual

quantity at time t. In a similar way, the RMSE is obtained

as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT
t¼1

At � Ftð Þ2
vuut ð42Þ

For robust forecast, another performance metric which is

not very common in forecasting literature is the mean

absolute scaled error (MASE) [1, 29]. The scaled MASE is

defined as:

MASET ;l ¼
1

T

XT
t¼1

Ft � Atj j
1

T�l

PT
t¼lþ1

ðAt � At�lÞ
ð43Þ

where l is the length of the cycle. In this work, hourly

prices have been considered with l = 1 and T = 168 to

obtain the weekly MASE. For a robust and accurate

forecast, the value of MASE should be less than one. To

check the model uncertainty, variance of forecast errors is

also computed. If the variance becomes small, then the

model is said to be less uncertain and the forecast results

are more accurate. The variance of error in a time span T is

defined as:

r2e ¼
1

T

XT
t¼1

Ft � Atj j
1
T

PT
t¼1

At

�MAPE

0
BBB@

1
CCCA

2

ð44Þ

6 Numerical results and discussion

The proposed methodology for forecasting day-ahead

demands and prices has been implemented using PJM

market data from 1 January 2014 to 31 December 2014

[26]. Two types of strategies have been proposed for the

forecasting models which are provided in the next two

subsections. The first strategy is to forecast the electricity

demand and price separately, while the second strategy is

to use mixed price and demand forecasting.

6.1 Day-ahead independent forecasting of electricity

demand and price

The training and testing datasets span over the years

2013 and 2014, taking into account the considered weeks

of forecast. The inputs to all the proposed models comprise
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the return time series with the lags as observed from the

ACF plots. Figure 4 shows the sample ACF and PACF of

forward and return series of electricity prices of PJM

market (2014). It is noted that the two blue lines in Fig. 4a-

c indicate 95% confidence interval (default).

The price return series indicate that the mean value of

the series is nearly equal to zero. Further, the variance

within each of the set of observations is observed to be

equal, which reveals the price return series to be homo-

geneous. In Fig. 4, it is seen that there exists strong cor-

relation of the price return series at lags 24, 48, 72 and 96,

based on which the input to the proposed model is taken at

the time lags of t - 23, t - 24, t - 47, t - 48, t - 71,

t - 72, t - 95, and t - 96 hours, respectively. However,

the time lags of 23, 47, 71, and 95 have been considered to

obtain better forecasting accuracy based on the observa-

tions from the ACF plots for the weeks of forecast under

consideration.

The ARMA model is identified with the orders of MA

and AR based on the ACF and PACF plots, respectively

excluding the effect of price spikes which are present in the

month of January, 2014 in PJM market. It is clear from

Fig. 4 that the ACF certainly follows damped sine wave

considering 168 lags. However, after lag 96, there does not

exist any significant correlation as observed from the ACF

of the return price series for the whole year.

Considering the price series in the year 2014 for PJM

market, it is observed that there exist seasonal variations of

demands and prices based on which different periods have

been chosen to evaluate the performance of the proposed

models. The corresponding first and last weeks of each

month in the year 2014 are taken into consideration for

forecasting with the implementation of the proposed

methodologies.

For initializing the weights of the ARMA-FLNN model,

the DE algorithm is applied for 50 patterns of both demand

and price. In this hybrid approach, the number of patterns

of 8 input samples is 100; the number of population

Np = 5; dimension D is equal to 8� 3þ 5þ 1 = 30 lagged

terms; K = 20; and Gmax = 100. Table 1 represents the

obtained weekly MAPEs by applying AUKF, ACKF, DE-

AUKF, and DE-ACKF techniques respectively in the year

2014 for PJM electricity market. It is clear from the results

that the ACKF technique performs better in comparison to

AUKF method for demand and price forecasting. However,

the average demand forecast error is observed to be nearly

1% with the implementation of all the proposed techniques,

which is comparable with the demand forecasting errors in

the earlier research works. Additionally, with the applica-

tion of DE algorithm, it can be said that despite the

improvement in demand and price forecasting accuracy,

very few significant improvements in precision are

achieved. However, if DE is included in the filter then the

computation time will be more. It is observed that the

ACKF learning approach produces MAPE very close to the

DE-ACKF with a small execution time of 0.15 s in a
Fig. 4 ACF and PACF plots for price forward and return series for

PJM market in 2014
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processor, in comparison to nearly 6 min in the latter case.

Thus, the ACKF algorithm has been primarily focused for

the rest of the studies.

Table 2 represents the obtained MAPEs in the last week

of each month, taking into account the demand and price

forecasting by applying the ACKF algorithm. It is seen

from Table 2 that the average MAPEs obtained with ACKF

technique in the first and last weeks in each month of the

year 2014 for price forecasting are 6.07% and 5.46%

respectively. Further, the demand forecasting accuracy is

observed to be around 1% in both the test weeks, which

signifies good forecast performance. The best and worst

price forecast results are observed to be in the last weeks of

June and January 2014, which are 3.84% and 13.05%,

respectively.

Figure 5 represents the price forecast results of these

corresponding two weeks with the implementation of

ACKF model. From the obtained forecast results in the

months of January, February and March 2014, it can be

pointed out that during the periods of price spike, the

Table 1 Comparison of weekly (1st week in each month of 2014) MAPEs with proposed models for PJM market

Month MAPE (%)

AUKF ACKF DE-AUKF DE-ACKF

Demand Price Demand Price Demand Price Demand Price

January 0.98 12.20 0.94 11.70 0.92 11.60 0.90 11.10

February 0.90 7.59 0.83 7.12 0.87 7.14 0.78 7.03

March 0.97 9.40 0.91 9.13 0.83 9.10 0.90 9.03

April 1.15 6.62 1.02 6.42 1.08 6.28 0.98 6.34

May 1.00 4.94 0.97 4.26 0.93 4.52 0.83 4.21

June 1.04 4.44 0.97 4.29 0.98 4.37 0.92 4.27

July 1.86 8.91 1.19 8.54 1.77 8.68 1.18 8.46

August 0.98 4.10 0.89 4.01 0.92 3.93 0.81 3.68

September 1.38 4.48 1.08 4.23 1.11 4.31 1.01 4.40

October 1.18 4.38 1.12 4.33 1.14 4.26 1.09 4.29

November 2.50 5.87 2.13 5.11 2.48 5.38 2.04 5.06

December 1.06 4.88 1.06 4.76 1.00 4.83 0.97 4.73

Average 1.23 6.40 1.08 6.07 1.15 6.08 1.02 5.94

Table 2 Comparison of weekly (last week in each month of 2014)

MAPEs with ACKF technique for PJM market

Month MAPE (%)

Demand Price

January 0.73 13.05

February 0.95 6.61

March 1.08 7.60

April 1.04 4.74

May 1.50 4.32

June 0.94 3.84

July 1.01 4.20

August 0.98 4.06

September 1.15 4.25

October 1.05 5.12

November 1.14 4.47

December 0.97 3.96

Average 1.04 5.46

Fig. 5 Weekly price forecast results of PJM market in 2014
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forecasting accuracy gets decreased as depicted in Tables 1

and 2.

Huge price spikes appear in January 2014 as a result of

which the forecasting accuracy becomes 11.7% and

13.05% in the first and last weeks of January respectively.

In comparison to the month of January the prices series

appears to be less volatile for other months in 2014.

However, significant spikes around 300 and 400 $/MWh

are observed in February and March as shown in Fig. 1.

However, from April to December 2014, consistent

MAPE of around 4.5% is achieved in the first and last

weeks of each of these months. Additionally, in the first

week of July, because of volatile characteristics of price,

the forecasting error becomes 8.54%. In contrast to the

above analysis, it can be pointed out that the MAPEs

obtained from all the models for price forecasting show a

lower accuracy level in comparison to the demands con-

sidering particularly the spike periods. Further, in our

proposed models, the demand forecast errors are observed

to be less than 1% in most of the cases which are highly

comparable with the numerous research works signifying

the demand forecast accuracy in the range of 1% to 2% for

the deregulated electricity markets.

In addition to the usual error metrics MAPE and MASE,

another error measure RMSE is also obtained for all the

periods under consideration to have a better comparison.

Table 3 represents the obtained MASE and RMSE in dif-

ferent periods of price forecast for PJM market in the year

2014 with the inclusion of ACKF methodology. The

obtained average MASE is 0.610 which signifies better

forecasting accuracy keeping in view of the fact that for

robust and accurate forecast, the value of MASE should be

less than one as suggested by the authors in [1]. Further, the

average RMSE is found to be 0.037 which signifies accu-

rate price forecast with the proposed ACKF algorithm in

comparison to the earlier research techniques.

Additionally, two other days in January, keeping in view

of the worst and the best forecasting, have been taken into

consideration for comparing the prices in each hour of the

corresponding day, as depicted in Table 4. It is observed

from the table that huge price spikes exist on 28 January

2014 in comparison to all other days under study. As a

result, high values of the performance measures MAPE,

MASE and RMSE appear in the last week of January 2014

in comparison to all other test periods. However, it is

clearly seen that the actual values of electricity prices in the

last week of June are captured more accurately in com-

parison to the weekly forecast during 25-31 January. This

is because of the fact that low price spikes appear in June in

comparison to those in the month of January. This signifies

better forecasting accuracy with the ACKF technique, thus

giving the designer the choice to adopt the procedure to

obtain a fast and robust forecast of prices.

Although DE-ACKF shows slightly more significant

forecasting accuracy in comparison to ACKF, keeping in

view of the faster speed of operation of the models, ACKF

can be chosen by the designers over DE-ACKF technique

to obtain a good forecasting.

6.2 Mixed electricity demand and price forecasting

To analyze the interdependency effect of demand and

price, historical demand and price values are considered as

inputs to price and demand forecasting models on alternate

basis. For analysis purpose, New South Wales (NSW)

(2010) [30] and New England electricity market (NEM)

(2009) [31] along with PJM (2014) electricity markets are

taken into consideration for the proposed study. Based on

the ACF, the time lagged days for demand or price as input

features, along with the lagged price or demand, have been

taken into consideration for forecasting, respectively. For

instance, the considered sample input vectors comprise of

Table 3 Comparison of weekly MASE and RMSE of price forecast

in each month of 2014 for PJM market

Month Week Error measures with ACKF method

MASE RMSE

January 1st week 0.812 0.078

Last week 0.844 0.083

February 1st week 0.668 0.031

Last week 0.590 0.044

March 1st week 0.760 0.057

Last week 0.701 0.050

April 1st week 0.710 0.041

Last week 0.586 0.030

May 1st week 0.644 0.035

Last week 0.635 0.026

June 1st week 0.558 0.023

Last week 0.436 0.021

July 1st week 0.695 0.066

Last week 0.544 0.026

August 1st week 0.437 0.026

Last week 0.420 0.023

September 1st week 0.457 0.023

Last week 0.550 0.026

October 1st week 0.565 0.027

Last week 0.577 0.035

November 1st week 0.672 0.035

Last week 0.565 0.030

December 1st week 0.586 0.034

Last week 0.631 0.026

Average 0.610 0.037
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the elements as: P(t - 23), P(t - 24), P(t - 47),

P(t - 48), P(t - 71), P(t - 72), D(t - 23) and D(t - 24)

for price forecasting; D(t - 23), D(t - 24), D(t - 47),

D(t - 48), D(t - 71), D(t - 72), P(t - 23) and P(t - 24)

for demand forecasting. P(�) and D(�) represent the price

and demand at different time lags correspondingly. Based

on the obtained results for individual demand and price

forecasting for PJM market, ACKF methodology has been

applied for joint demand and price forecasting for the NSW

and NEM markets, taking into account the lower accuracy

difference and fast computation time in comparison to the

DE-ACKF algorithm. The obtained results are compared

with those obtained in reference [4]. In addition to the test

periods in [4], two other volatile weeks are also included in

the case study to analyze the effect of enormous price

spikes. Huge MCP spikes ranging from 200 to 6000 $/

MWh are observed in the year 2010 in NSW market,

whereas the annual average is indicated to be 30 $/MWh.

Figure 6 indicates the price forecast result in the first week

of June for NSW market in 2010. It can be observed for the

MCP spike around 150 $/MWh in this week. Table 5

represents the obtained results taking into account the price

forecast for these two markets in different periods.

Although better forecasting accuracy is not obtained for the

considered period, the obtained MAPE of 13.2% is com-

parable with that of 15.7% depicted in reference [4].

Figure 7a represents the forecast results of the NSW

market (2010). Huge price spike of 4065 $/MWh is

observed on 22 January which shows a momentous dif-

ference in comparison to an annual average of 30 $/MWh.

However, the obtained MASE of 0.95894 indicates an

acceptable forecast, keeping in view of the fact that for

satisfactory forecasting, MASE should be less than 1 as

proposed by the researchers. Figure 7b represents the

demand forecasting during the same period and the per-

formance accuracy of 1.93% appears to be accurate in

comparison to the MAPEs obtained in earlier works for

load forecasting. From Table 5, it is clear that irrespective

of huge price spikes in the test weeks, the obtained forecast

results are within the acceptable range. The obtained

average MAPEs for the weekly period of March to

December is significantly comparable with the result out-

lined in [4]. However, in general, the classification strategy

can be adopted to overcome the difficulties in forecasting,

Table 4 Comparison of hourly electricity prices in two different days for PJM market in 2014

Time

(hour)

Actual price on

28 January ($/MWh)

Forecasted price on

28 January ($/MWh)

Actual price on

28 June ($/MWh)

Forecasted price on

28 June ($/MWh)

1 234.88 196.62 29.02 29.68

2 187.84 215.06 27.42 27.31

3 193.22 181.14 25.54 25.89

4 235.60 195.09 24.84 24.66

5 266.73 244.73 24.61 25.09

6 379.13 296.27 24.99 26.58

7 588.99 468.07 25.30 27.50

8 931.98 737.59 26.91 27.70

9 910.49 941.82 29.63 29.77

10 805.92 844.04 31.47 34.36

11 667.31 747.27 34.67 36.30

12 661.41 622.84 41.07 38.39

13 513.90 623.37 41.82 42.84

14 513.44 489.01 42.76 45.62

15 443.71 483.09 44.94 47.19

16 432.55 440.00 50.64 50.77

17 514.31 494.66 52.51 51.01

18 695.09 668.40 48.79 43.97

19 927.25 835.71 44.23 41.28

20 914.15 827.21 39.58 39.15

21 698.74 830.06 37.06 37.61

22 593.40 643.28 36.02 34.56

23 452.04 522.67 30.80 28.86

24 310.26 389.92 29.25 27.73
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taking into account the exact value of prices at certain

instances as suggested by the researchers.

Additionally, it is observed for a distinct price cluster at

25 $/MWh in 1-7 September of NSW market in 2010.

Figure 8a represents the weekly forecasted results in the

considered period. The MAPE, MASE and RMSE are

found to be 4.50%, 0.84305, and 0.037837 respectively,

which indicate significant accuracy level of forecasting.

For instance, Fig. 8b shows the forecasted price values on 1

September 2010 spanning over 24 hours. It can be observed

that the actual prices form a group at 25 $/MWh, and are

captured in an accurate manner keeping in view of the

application of proposed ACKF algorithm. The same cir-

cumstances also arise for the period 2-4 September 2007,

and it is observed for significant acceptable forecasting at

each hour considering this period. This very specific

‘‘point-mass’’ non-linear effect is very difficult to model as

suggested by different researchers. However, with the

application of the proposed ACKF technique, the obtained

error measures indicate significant forecast accuracy. This

particular scenario can be considered as a possibility for

future research taking into account the price forecasting

strategy for different volatile markets.

Further, in comparison to individual price forecasting

results depicted in Tables 1, 2 and 3 for PJM electricity

market, another case study is performed keeping in view of

the mixed demand and price forecasting, considering some

Fig. 7 Weekly forecast results of NSW market in 2010

Fig. 6 Weekly price forecast result of NSW market in 2010

Table 5 Comparison of different error measures with joint demand and price forecasting for NSW (2010) and NEM (2009) markets

Period Market MAPE (%) MASE RMSE Obtained MAPEs in [4]

Demand Price Demand Price Demand Price Demand Price

21–27 January NSW (2010) 1.90 23.8 0.49167 0.95894 0.013404 0.185850 – –

NEM (2009) 1.63 4.30 0.44964 0.62067 0.011965 0.030669 – –

1–7 February NSW (2010) 1.10 33.8 0.38637 0.97663 0.008841 0.180440 – –

NEM (2009) 1.60 4.08 0.40792 0.70552 0.011992 0.029143 – –

1–7 March NSW (2010) 1.22 6.76 0.39228 0.88743 0.008271 0.049878 2.54 9.85

NEM (2009) 1.73 5.16 0.49401 0.78063 0.012635 0.034074 1.74 7.41

1–7 June NSW (2010) 1.50 13.2 0.36012 0.72142 0.010174 0.088999 2.27 15.70

NEM (2009) 1.91 4.02 0.48467 0.60424 0.014086 0.027103 1.60 8.84

1–7 September NSW (2010) 1.46 4.50 0.37575 0.84305 0.009960 0.037837 2.61 7.75

NEM (2009) 1.64 6.25 0.35856 0.79818 0.009960 0.039294 2.03 8.04

1–7 December NSW (2010) 1.22 3.60 0.45172 0.84730 0.009468 0.023711 1.81 6.76

NEM (2009) 2.44 4.75 0.53844 0.73704 0.016482 0.029543 2.36 9.21

Average 1.64 6.03 – – – – 2.12 9.19
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of the test periods in the year 2014. The input vector to the

proposed ACKF model is arranged considering two dif-

ferent scenarios S1 and S2. In S1 and S2, the input vectors

are considered to be [P(t - 23), P(t - 24), P(t - 47),

P(t - 48), P(t - 72), D(t - 23), D(t - 24), D(t - 48)]

and [D(t - 23), D(t - 24), D(t - 47), D(t - 48),

D(t - 72), P(t - 23), P(t - 24), P(t - 48)] respectively.

Table 6 represents the obtained forecast results considering

the price and demand data of PJM market in 2014. Based

on the achieved error measures, it is observed that signif-

icant accuracy in joint demand and price forecasting is

possible, which is quite comparable with the separate

demand and price forecasting strategy.

Based on the average values of different error measures

depicted in Table 6, it can be said that although the sepa-

rate forecasting strategy shows better accuracy in com-

parison to mixed approach, significant difference is not

achieved. Keeping in view of the smart grid environment, it

is highly desired to focus primarily on the reaction of the

consumers. To achieve this, both demand and price are to

be considered as model inputs for acceptable forecasting as

pointed out by the researchers. Thus, the mixed approach

using ACKF algorithm can be used as a fast, efficient, and

robust forecasting strategy.

The effectiveness of ACKF method is studied further

using the worst fluctuating demand data of New York

energy (NYISO) market [32] in NYC zone for the month of

July 2004. The obtained results are depicted in Table 7.

The obtained MAPEs are observed to be with significant

accuracy and is in the acceptable range in comparison to

the MAPE of 2.11% presented in [2].

Further, the price spikes have been considered for the

Queensland market of Australia to check the stability of the

proposed ACKF algorithm, and the obtained forecasting

results are compared with the results in [33]. The price

Fig. 8 Forecast results of NSW market in 2010

Table 6 Comparison between mixed and separate price forecasting

strategies (PJM market in 2014)

Period Forecasting

strategies

Error measures

MAPE

(%)

MASE RMSE

25–31

January

Mixed forecast (S1) 14.13 0.894 0.091

Mixed forecast (S2) 14.28 0.872 0.095

Separate forecast 13.05 0.844 0.083

1–7 February Mixed forecast (S1) 9.25 0.849 0.055

Mixed forecast (S2) 8.66 0.746 0.051

Separate forecast 7.12 0.668 0.031

1–7 May Mixed forecast (S1) 5.87 0.763 0.033

Mixed forecast (S2) 5.01 0.651 0.030

Separate forecast 4.26 0.644 0.035

1–7 August Mixed forecast (S1) 5.01 0.658 0.030

Mixed forecast (S2) 4.90 0.640 0.024

Separate forecast 4.01 0.437 0.026

1–7

November

Mixed forecast (S1) 7.23 0.756 0.046

Mixed forecast (S2) 6.95 0.743 0.045

Separate forecast 5.11 0.672 0.035

Average Mixed forecast (S1) 8.30 0.784 0.051

Mixed forecast (S2) 7.96 0.730 0.049

Separate forecast 6.71 0.653 0.042

Table 7 Obtained MAPEs for demand and price with proposed

ACKF method for NYISO market in July 2004

Period MAPE (%)

Demand Price

1–7 July 1.37 5.82

8–14 July 1.58 6.08

15–21 July 1.18 5.02

22–28 July 1.76 4.47

Average 1.47 5.34
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spikes are observed to be much more than the normal price

which is around 20-30 $/MWh. Such abnormal prices or

price spikes are because of unanticipated incidents such as

transmission network contingencies, transmission conges-

tion and generation contingencies. These price spikes are

highly unpredictable for which they have reasonable

impact on usual price forecasting. However, forecasting or

classification of such price spikes can reduce the effect of

risk management. To test the accuracy of the proposed

model, the same test periods have been taken into con-

sideration, as depicted in [32]. Table 8 represents the

obtained results of price forecast with the application of

ACKF technique.

The training dataset comprises the period from January

to June 2003, while the period from July to October has

been considered for the test dataset. It is clear from Table 8

that the price peaks are captured with greater accuracy in

comparison to those obtained in [32].

To check the suitability of the proposed ACKF algo-

rithm, the ACF of the estimated model errors as shown in

Fig. 9 is examined. It is clear from Fig. 9 that there does

not subsist any significant autocorrelation taking into

account the residues in the considered test period. Based on

the earlier researches, on time series models, it can be

pointed out that the only difference between the actual and

the forecasted values should be random (white) noise. If the

error follows a specific pattern, the model is said to be

uncertain.

However, the ACF of residues shown in Fig. 9 for the

considered test period does not show any significant

autocorrelation which indicates the appropriateness of the

proposed methodology.

Additionally, for forecasting strategy, day-light saving

time (DST) issue must be focused while fixing up the

strategy for the market participants. Typically, regions

using DST adjust their clocks forward one hour close to the

start of spring and adjust them backward in the autumn to

standard time. In case of DST, the extra hour can be filled

up with the values obtained by averaging the nearby val-

ues, thus making the data series rearranged, and the pre-

diction results are unlikely to be sensitive to such changes.

Further, in short-term forecasting strategy, the medium-

term and long-term seasonality are usually disregarded, but

the daily and weekly patterns are observed minutely taking

into account the holidays. Based on the earlier researches,

it can be said that the demand patterns on Tuesday, Wed-

nesday, Thursday and Friday are almost matching for all

the markets.

Therefore, forecast of price and demand of the holiday

to be forecasted for either of these four days come from the

historical data series on the same condition. The same

norm has to be followed for the data series of a holiday

falling on Saturday or Monday. Further, because of the

interdependency characteristics of demand and price, the

strategy for price forecast has to be considered based on the

same rules. By following the specific patterns, accurate

forecast can thus be achieved.

Table 8 Comparison of price forecast errors in different periods of Queensland electricity market (2003)

Date Time Actual price ($/MWh) Forecasted price ($/MWh) MAPE (%) Result in [32] (%)

5 July 18:30 93.70 91.40 2.45 5.01

24 July 18:00 103.90 112.30 8.08 15.50

26 July 19:00 161.40 194.55 20.54 31.11

27 July 18:00 144.03 102.88 28.57 22.35

28 July 19:00 196.01 161.72 17.50 26.76

29 July 18:00 123.72 116.35 5.95 16.82

30 July 19:00 107.97 126.52 17.18 30.84

31 July 19:00 1760.06 1141.66 35.13 49.42

2 August 18:30 85.35 80.77 5.36 4.31

8 September 18:30 89.75 85.10 5.18 15.07

8 October 18:30 89.51 84.67 5.40 0.44

Average 13.76 19.78

Fig. 9 Sample ACF of model errors of NSW market in 2010
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7 Conclusion

This paper presents a hybrid ARMA-FLNN model for

short-term electricity demand and price forecasting in future

smart grids. The linearARMAand nonlinear low complexity

functional link network are used jointly to capture the vari-

ous aspects of nonstationary demand and price data using

log-return historical time series. Instead of using normal

back-propagation learning algorithm, a robust ACKF is used

to tune the hybrid network parameters. To verify the fore-

casting ability of the filter and the hybrid ARMA-FLNN

model, several case studies are used for the PJM and other

electricity markets with various levels of price spikes. The

forecasting results clearly proved the superiority of the

robust ACKF over the robust UKF, in producing lower

performance metrics during the periods of high spikes. On

the other hand, the demand forecasting accuracy of nearly

1% is much better than the contemporary load forecasting

techniques provided by some of the well-known neural

networks. The competitiveness of the proposed approach is

well analyzed in comparison to approaches in [2, 4, 32].

Additionally, the mixed approach forecasting strategy can

effectively produce demand and price scheduling rules tak-

ing into account the future smart grid environment.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted

use, distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

[1] Weron R (2014) Electricity price forecasting: a review of the

state-of-the-art with a look into the future. Int J Forecast

30(4):1030–1081

[2] Amjady N, Daraeepour A (2009) Mixed price and load fore-

casting of electricity markets by a new iterative prediction

method. Electr Power Syst Res 79(9):1329–1336

[3] Wu L, Shahidehpour M (2014) A hybrid model for integrated

day-ahead electricity price and load forecasting in smart grid.

IET Gener Transm Distrib 8(12):1937–1950

[4] Motamedi A, Zareipour H, Rosehart WD (2012) Electricity

price and demand forecasting in smart grids. IEEE Trans Smart

Grid 3(2):664–674

[5] Hernandez L, Baladron C, Aguiar JM et al (2014) A survey on

electric power demand forecasting: future trends in smart grids,

microgrids and smart buildings. IEEE Commun Surv Tutor

16(3):1460–1495

[6] Huang SJ, Shih KR (2003) Short-term load forecasting via

ARMA model identification including non-Gaussian process

considerations. IEEE Trans Power Syst 18(2):673–679

[7] Lee CM, Ko CN (2011) Short-term load forecasting using lifting

scheme and ARIMA models. Expert Syst Appl

38(5):5902–5911

[8] Huang CM, Huang CJ, Wang ML (2005) A particle swarm

optimization to identifying the ARMAX model for short-term

load forecasting. IEEE Trans Power Syst 20(2):1126–1133

[9] Hao C, Li FX, Wan QL et al (2011) Short term load forecasting

using regime-switching GARCH models. In: Proceedings of

IEEE power and energy society general meeting, Detroit, USA,

24–29 July 2011, pp 1–6

[10] Hao Q, Srinivasan D, Khosravi A (2014) Short-term load and

wind power forecasting using neural network-based prediction

intervals. IEEE Trans Neural Netw Learn Syst 25(2):303–315

[11] Li S, Wang P, Goel L (2016) A novel wavelet-based ensemble

method for short-term load forecasting with hybrid neural net-

works and feature selection. IEEE Trans Power Syst

31(3):1788–1798

[12] Ceperic E, Ceperic V, Baric A (2013) A strategy for short-term

load forecasting by support vector regression machines. IEEE

Trans Power Syst 28(4):4356–4364

[13] Nicholas S, Sankar R (2009) Time series prediction using sup-

port vector machines: a survey. IEEE Comput Intell Mag

4(2):24–38

[14] Ren Y, Suganthan PN, Srikanth N et al (2016) Random vector

functional link network for short term electricity load demand

forecasting. Info Sci 367–368:1078–1093

[15] Arora S, Taylor JW (2013) Short-term forecasting of anomalous

load using rule-based triple seasonal methods. IEEE Trans

Power Syst 28(3):3235–3242

[16] Chaturvedi DK, Sinha AP, Malik OP (2015) Short term load

forecast using fuzzy logic and wavelet transform integrated

generalized neural network. Int J Electr Power Energy Syst

67:230–237

[17] Tan ZF, Zhang JL, Wang JH et al (2010) Day-ahead electricity

price forecasting using wavelet transform combined with

ARIMA and GARCH models. Appl Energy 87(11):3606–3610

[18] Lei W, Shahidehpour M (2010) A hybrid model for day-ahead

price forecasting. IEEE Trans Power Syst 25(3):1519–1530

[19] Dong Y, Wang JZ, Jiang H et al (2010) Short-term electricity

price forecast based on the improved hybrid model. Energy

Convers Manag 52(8–9):2987–2995

[20] Amjady N, Daraeepour A, Keynia F (2010) Day-ahead elec-

tricity price forecasting by modified relief algorithm and hybrid

neural network. IET Gener Trans Distrib 4(3):432–444

[21] Amjady N, Daraeepour A (2009) Design of input vector for day-

ahead price forecasting of electricity markets. Expert Syst Appl

36(10):12281–12294

[22] Guan C, Luh PB, Michel LD et al (2013) Hybrid Kalman filters

for very short-term load forecasting and prediction interval

estimation. IEEE Trans Power Syst 28(4):3806–3817

[23] Khotanzad A, Zhou EW, Elragal H (2002) A neuro-fuzzy

approach to short-term load forecasting in a price-sensitive

environment. IEEE Trans Power Syst 17(4):1273–1282

[24] Bisoi R, Dash PK (2014) A hybrid evolutionary dynamic neural

network for stock market trend analysis and prediction using

unscented Kalman filter. Appl Soft Comput 19(6):41–56

[25] Arasaratnam I, Haykin S (2009) Cubature Kalman filter. IEEE

Trans Autom Control 54(6):1254–1269

[26] PJM electricity market data (2014) http://www.pjm.com.

Accessed 11 March 2017

[27] Qin AK, Huang VL, Suganthan PN (2008) Differential evolu-

tion algorithm with strategy adaptation for global numerical

optimization. IEEE Trans Evol Comput 13(2):398–417

[28] Wang Y, Cai ZX, Zhang QF (2011) Differential evolution with

composite trial vector generation strategies and control param-

eters. IEEE Trans Evol Comput 15(1):55–66

[29] Ren Y, Suganthan PN, Srikanth N (2016) A novel empirical

mode decomposition with support vector regression for wind

1254 S. K. DASH, P. K. DASH

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.pjm.com


speed forecasting. IEEE Trans Neural Netw Learn Syst

27(8):1793–1798

[30] NSW electricity market data (2010) https://www.aemo.com.au.

Accessed 15 March 2017

[31] ISO New England (2009) http://www.iso-ne.com. Accessed 15

March 2017

[32] NYISO electricity market data (2004) http://www.nyiso.com.

Accessed 15 March 2017

[33] Lu X, Dong ZY, Li X (2005) Electricity market price spike

forecast with data mining techniques. Electr Power Syst Res

73(1):19–29

Sujit Kumar DASH received the B.E. degree in Electrical

Engineering from VSSUT, Burla (Formerly UCE), M.Tech degree

in Industrial Engineering & Management from Indian Institute of

Technology, Kharagpur, India and Ph.D. degree from Siksha ‘O’

Anusandhan (SOA) Deemed to be University, Bhubaneswar. He is

currently an Associate Professor in the Department of EEE at Institute

of Technical Education and Research (ITER), Faculty of Engineering,

SOA. His research interests include Energy Management, Forecasting

and Classification of time series, Computational Intelligence, Renew-

able Energy, Electrical Power System, and Smart Grid.

Pradipta Kishore DASH received the M.Eng. degree in Electrical

Engineering from Indian Institute of Science, India in 1964, the Ph.D.

degree in electrical engineering from the Sambalpur University, India

in 1972, and D.Sc. degree in electrical engineering from the Utkal

University, India in 2003. He is currently director of research in the

Multidisciplinary Research Cell of the Siksha ‘‘O’’ Anusandhan

University, India. He has published more than 500 papers in

International Journals and Conferences. His research interests include

renewable energy, micro and smart grid, machine intelligence, signal

processing and control, power quality.

Short-term mixed electricity demand and price forecasting using adaptive… 1255

123

https://www.aemo.com.au
http://www.iso-ne.com
http://www.nyiso.com

	Short-term mixed electricity demand and price forecasting using adaptive autoregressive moving average and functional link neural network
	Abstract
	Introduction
	Demand forecasting
	Price forecasting

	Time series data pre-processing
	Electricity demand and price forecasting methodologies
	Differential evolution (DE) for initial learning phase
	Model identification and performance metrics
	Numerical results and discussion
	Day-ahead independent forecasting of electricity demand and price
	Mixed electricity demand and price forecasting

	Conclusion
	Open Access
	References




