
Wind power prediction based on variational mode decomposition
multi-frequency combinations

Gang ZHANG1 , Hongchi LIU1, Jiangbin ZHANG1,

Ye YAN1, Lei ZHANG1, Chen WU1, Xia HUA2, Yongqing WANG3

Abstract Because of the uncertainty and randomness of

wind speed, wind power has characteristics such as non-

linearity and multiple frequencies. Accurate prediction of

wind power is one effective means of improving wind

power integration. Because the traditional single model

cannot fully characterize the fluctuating characteristics of

wind power, scholars have attempted to build other pre-

diction models based on empirical mode decomposition

(EMD) or ensemble empirical mode decomposition

(EEMD) to tackle this problem. However, the prediction

accuracy of these models is affected by modal aliasing and

illusive components. Aimed at these defects, this paper

proposes a multi-frequency combination prediction model

based on variational mode decomposition (VMD). We use

a back propagation neural network (BPNN), autoregressive

moving average (ARMA) model, and least squares support

vector machine (LS-SVM) to predict high, intermediate,

and low frequency components, respectively. Based on the

predicted values of each component, the BPNN is applied

to combine them into a final wind power prediction value.

Finally, the prediction performance of the single prediction

models (ARMA, BPNN, LS-SVM) and the decomposition

prediction models (EMD and EEMD) are used to compare

with the proposed VMD model according to the evaluation

indices such as average absolute error, mean square error,

and root mean square error to validate its feasibility and

accuracy. The results show that the prediction accuracy of

the proposed VMD model is higher.

Keywords Wind power prediction, Variational mode

decomposition, Multi-frequency combination prediction,

Back propagation neural network, Autoregressive moving

average model, Least square support vector machine

1 Introduction

A power system is a complex dynamic system. The

power grid must maintain a balance between power gen-

eration, transmission, and usage. The output power of aCrossCheck date: 25 September 2018
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wind farm is volatile and intermittent; further, large-scale

access to wind power makes it difficult to establish effec-

tive generation plans. Accurately predicting the output

power of a wind power plant can relieve the peak load and

frequency modulation pressure on the power system and

make wind power safer and easier to utilize [1].

Existing wind power prediction methods include the

continuous [2–7], time series [8–10], Kalman filter

[11, 12], decomposition [13], neural network [14–20], and

combination prediction methods [21, 22]. The continuous

method is a relatively basic prediction method wherein

measured values of wind power at the latest point are

directly applied as prediction values of the next time point

[2–5]. This method is simple and suitable for prediction

within 3-6 hour time periods, but the prediction accuracy is

poor over lengthier amounts of time. The time series

method is a very effective time-domain analysis method

based on dynamic data parameters. The unsteadiness and

nonlinearity of wind power necessitates differential pro-

cessing which will lead to poor accuracy of low-order

model predictions, and high-order prediction model

parameters are not easy to estimate [23, 24].

The Kalman filter method involves constructing features

and state equations based on the statistical prediction of

wind power noise characteristics, but is difficult to apply

because of the inherent difficulty of estimating noise

[11, 12]. In the decomposition method, signal processing is

applied to obtain regular ‘‘subsequences’’ which are used to

mitigate the impact of the randomness and volatility of the

original wind power information [25, 26]. The neural net-

work is suitable for short-term wind power series fitting

due to its strong nonlinear fitting ability, which can help

realize short-term wind power prediction [17, 19]. The

several simple models described above can also be com-

bined via certain strategies to exploit their advantages

simultaneously. This is the so-called combined prediction

method. Much research has showed that the combined

prediction of multiple models can effectively avoid the

influence of larger error points in single prediction points to

improve overall prediction accuracy [27].

Decomposition prediction models based on empirical

mode decomposition (EMD) and ensemble empirical mode

decomposition (EEMD) have grown popular in recent

years [26, 28]. However, the EMD and EEMD suffer

‘‘endpoint effects’’ during the decomposition process

where divergence phenomena occur at the edge of the data.

During the iteration process, the endpoint effect causes

‘‘pollution’’ in the data. This gradually moves inwards. As

the iterations progress, the data sequence may grow

severely distorted with modal aliasing and spurious com-

ponents [29]. The variational mode decomposition (VMD)

method, which is completely theoretically distinct from

EMD and EEMD, has been successfully applied to similar

fields such as fault diagnosis research [30–32] and power

quality feature selection [33].

In this study, we established a multi frequency com-

bined prediction model based on the idea of decomposi-

tion—multi model prediction—integration for wind power

prediction. We used a wind farm in Northern Shaanxi as

the research object. We first decomposed its original wind

power sequence into modal components of different fre-

quencies (according to different intrinsic mode functions

(IMFs)) by VMD, then classified the IMFs per their fluc-

tuations into high, intermediate, and low frequency

sequences. We used a back propagation neural network

(BPNN), autoregressive moving average (ARMA) model,

and least squares support vector machine (LS-SVM) to

predict the high, intermediate, and low frequency modal

components, respectively. Finally, we applied the BPNN to

integrate the prediction results into an overall wind power

prediction value. Comparing with the real data from

Shaanxi Province, the proposed method outperformed both

the single model and traditional decomposition prediction

model.

2 Methodologies

2.1 VMD method

2.1.1 VMD principle

The VMD method is a relatively new variable scale

signal processing method [34] which can decompose a

complex signal into the K amplitude modulation and fre-

quency modulation (AM-FM) component signal of a preset

scale. K can be set in advance; when chosen properly, K

effectively suppresses mode aliasing. Wiener filtering is

applied for denoising. This has excellent performance. The

estimated K center angle frequency xk is obtained by set-

ting the limited bandwidth parameter a by the center angle

frequency initialization method. Each mode function uk is

then obtained according to the different central angular

frequency xk, and each mode function is a single compo-

nent AM-FM function [35].

The band-limited intrinsic mode function (BIMF) and

the Carson’s principle of the BIMF bandwidth estimation

are defined as follows:

1) BIMF is:

uk tð Þ ¼ Ak tð Þ cos uk tð Þ½ � ð1Þ

where uk tð Þ is non-monotonic decreasing; envelope

Ak tð Þ� 0; Ak tð Þ and instantaneous angular frequency do not
change faster than uk tð Þ.
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2) The BIMF bandwidth estimation under Carson’s

principle is:

BWAM�FM ¼ 2 Df þ fFM þ fAMð Þ ð2Þ

where Df is the instantaneous frequency; fFM is the

instantaneous frequency deviation rate; and fAM is the

maximum frequency of the envelope Ak tð Þ.

When acquiring the BIMF components by the VMD

method, the decomposition of the signal is used to solve the

variational model while signal decomposition is performed

by finding the optimal solution to the constraint variational

model. The central frequency and bandwidth of each BIMF

component are constantly alternately updated throughout

this process. Finally, the frequency band of the signal is

decomposed adaptively and K (the number of preset scales)

narrow-band BIMF components are obtained. The follow-

ing framework is used to estimate the frequency bandwidth

of the IMF components.

1) The marginal spectrum is obtained by Hilbert trans-

formation for each modal function uk;

2) The spectrum of the modal function is shifted to the

respective estimated center frequencies via exponen-

tial correction;

3) The bandwidth of each modal function is obtained by

Gaussian smoothing [35].

The objective function of the variational constraint

problems is:

min
ukf g; xkf g

XK

k¼1

jjot d tð Þ þ j

pt

� �
� uk tð Þ

� �
e�jxktjj22

( )
ð3Þ

where uk ¼ u1; u2; . . .; ukf g is the modal function set; xk ¼
x1;x2; . . .;xkf g is the central frequency set; ot is the partial

derivative of the function for time t; d tð Þ is the unit pulse

function; j is the imaginary unit; � indicates the convolution.

2.1.2 VMD parameter determination

1) Modal number

The parameter K (number of modalities) should be

determined before theVMD is used to decompose. If the

K value is too small, multiple components of the signal

in a modality may appear simultaneously, or certain

components become unpredictable. Conversely, if K is

too large, the same component will appear in multiple

modes and themode center frequency obtained from the

iterations will overlap [34]. To remedy this, we adopt

the method of [36] to determine the number of modal

K. The steps are as follows:

a) Estimate the initial value of the modal number

K through the signal spectrogram;

b) Judge whether the center frequency of each mode

is overlapped when the mode number is K;

c) If the center frequency is overlapped, the number

of modes is reduced to conduct VMD decompo-

sition until there is no overlap of center frequency

and output K;

d) If the center frequency is not overlapped, the

modal number is added to conduct VMD decom-

position until the center frequency is overlapped

and K-1 is output.

2) Penalty factor

The penalty factor changes the constrained varia-

tional problem into a non-constrained variational

problem. Taking into consideration avoiding modal

aliasing and ensuring a certain rate of convergence, the

penalty factor of standard VMD is 2000. This has

strong adaptability [36].

2.2 Prediction methods for each frequency

component

The BPNN [37], ARMA model [38] and LS-SVM [39]

are very mature. In addition, the three methods are widely

used in the study of wind power prediction [10, 15, 40].

Therefore, we use these three methods to predict the high,

intermediate and low frequency components respectively.

3 Proposed prediction model

In the proposed model, the VMD is first applied to

perform modal decomposition of the input wind power and

divide modal components into high frequency, intermedi-

ate frequency, and low frequency modal sequences. The

BPNN is used to predict high frequency components. The

ARMA is then used to predict the intermediate frequency

while LS-SVM predicts low frequency components;

Finally, we used the BPNN to integrate the predicted

components. A flow chart of the proposed model is shown

in Fig. 1.

Due to the uncertainty of wind speed, if the wind speed

does not satisfy the cut-in characteristics, the wind power is

zero. We use MAE, MSE, and RMSE to evaluate the multi-

frequency combined prediction performance of the pro-

posed method without using the evaluation index which

has actual value in the denominator. The formulas for these

three indices are as follows:

MAE ¼ 1

S

XS

s¼1

Ys � Fsj j ð4Þ
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MSE ¼ 1

S

XS

s¼1

Ys � Fsð Þ2 ð5Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

S

XS

s¼1

Ys � Fsð Þ2
vuut ð6Þ

4 Example validation

We conducted a case study on wind power prediction to

validate the proposed model. There are 144 wind power

points per day in the given wind farm; the data is massive

and the changes are complex. We selected 13248 wind

power points from June 1, 2009, to August 31, 2009 as

research samples, among which 11952 wind power points

from June 1, 2009, to August 23, 2009 were used as sample

data for the fitting and the selection of parameters. We then

used the selected model to predict 1152 wind power points

from August 24, 2009, to August 31, 2009.

4.1 Decomposition of raw wind power data

4.1.1 Modality quantity determination

According to the decomposition principle of VMD sta-

ted in Section 2.1, we first determined the number of

modalities by studying the sample. Figure 2 shows the

spectrum of the sample after Fast Fourier Transform (FFT).

The full spectrum map is easily observable due to the large

amount of data, but is indeed symmetrical, so we were able

to analyze only half of it.

Figure 2 has three major band components. The initial

value of the modal number was taken as 6 because of the

symmetrical characteristic of the spectrum map. When

K = 6 and K = 7 are used to decompose the wind power

data separately, the iteration curves of the modal center

frequencies of the two different K values are as shown in

Fig. 3.

Through the comparison we can see that when K = 7,

the ends of the two iterated curves of the label are very

close. In other words, central frequency aliasing appears.

Therefore, the mode number was finally determined to be

6.

4.1.2 Decomposition of wind power data

The VMD decomposition method we adopted in this

study improves the modal aliasing and spurious compo-

nents that occur when EMD and EEMD are used to

decompose. ‘‘Modal aliasing’’ means that the modal

function of the specific time scale cannot be separated

effectively after the decomposition of the original signal.

Modal aliasing makes different modal components appear

in the same decomposition result, or decomposes the same

modal component into multiple decomposition results.

Mathematically, modal aliasing is the coupling of all modal

components which fail to meet orthogonality requirements.

The direct result of modal aliasing is the appearance of

illusive components. An illusive component has no real

meaning; it is only an arbitrary calculation. When the

number of modes is K = 6, the original wind power is

decomposed and its modal decomposition and frequency

spectrum are as shown in Fig. 4.

Figure 4 shows that the spectrum distribution is such

that the modal components are not coupled with each other

and satisfy orthogonality. That is, there is no modal alias-

ing. Therefore, the illusive component has also been

greatly improved. The decomposed modes in this fig-

ure can be split into three categories: the first four cycles of

Data input

VMD mode decomposition

ARMA

High frequency

Evaluation of results
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Modal component classification and prediction
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Low frequencyIntermediate frequency

BPNN forecast result integration
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Fig. 1 Multi-frequency combination prediction method
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Fig. 2 Sample spectrum diagram
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short modal components IMF1, IMF2, IMF3, and IMF4 are

high frequency data, and the longest IMF6 is low frequency

data; the remaining IMF5 is intermediate frequency data.

4.2 Prediction of VMD components

4.2.1 Prediction of high frequency components

We used the BPNN to predict high frequency compo-

nents after training via three-input and one-output model.

In the three-input and one-output model, the number of

input layer nodes is 3 and the number of output layer nodes

is 1. We set the number of iterations to 1000, the learning

rate to 0.1, and the expected error to 0.0004. The number of

hidden layer nodes of high-frequency components are as

shown in Table 1.

Based on the above analysis, we then predicted IMF1-

IMF4 components with the well-trained model. Predictions

of IMF1-IMF4 are shown in Fig. 5.

From the above figures, we can see that the error of

IMF1 is largest compared with other components because

IMF1 has the strongest volatility. The volatility and error

of IMF2-IMF4 is smaller than IMF1. The error of IMF4 is

smallest among all the high frequency prediction results.

Overall, the BPNN’s strong self-learning and adaptive

capabilities make it well-suited to predicting high fre-

quency components with strong volatility and short

periods.

4.2.2 Prediction of intermediate frequency components

As mentioned above, we used the ARMA model to

predict the intermediate frequency components.

We use the AIC criterion to select the minimum value as

the optimal model. The optimal model of IMF5 is ARMA

(5,3). We used this ARMA model to predict the interme-

diate frequency component as shown in Fig. 6a.

In Fig. 6a, ARMA (5,3) is used to predict the interme-

diate frequency component IMF5 with mild fluctuation and

the results show relatively small error, which indicates that

ARMA has strong nonlinear wave data learning ability and

is suitable for the prediction of intermediate frequency

components.

4.2.3 Prediction of low frequency components

As mentioned above, we predict low frequency com-

ponents by LS-SVM, and the differential evolution algo-

rithm showed a regularization parameter of 98.98 and

kernel parameter of 5.492. The predictions are shown in

Fig. 6b.

In Fig. 6b, the LS-SVM is used to predict the low-fre-

quency component IMF6 with moderate fluctuations and

the result shows small error. That is to say, the LS-SVM

has a fast learning speed and good generalization and is

suitable for the prediction of low frequency components.

4.2.4 Combination of each prediction components

We used the BPNN to combine the component predic-

tion values described above. We first took each component

sample data as input and the actual wind power sample

value as output to train the model. We then took the pre-

dicted values of each component as inputs to determine the

final wind power prediction value. The number of hidden

layer nodes of the BPNN is 6. The final wind power pre-

diction is shown in Fig. 7.

4.3 Multi model prediction and comparison

The results of the above-mentioned evaluation indices

which we used to ensure a comprehensive comparison are

shown in Table 2.

We found that the error of the single prediction model is

larger than the multi-frequent combination prediction
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model. In the multi-frequency prediction models, the dif-

ferent decomposition methods markedly affect the error:

the EEMD is better than EMD, and the VMD based on the

different principle is better than the former two. The pro-

posed VMD-based multi-frequency combination prediction

model outperformed the other models.

5 Conclusion

This paper proposed a multi-frequency combination

prediction model based on VMD. The proposed model

decomposes the original wind power under completely

different principles from EMD or EEMD and improves

modal aliasing and illusive component problems which

otherwise would arise in the modal decomposition process.

We apply the frequency spectrum of the sample values to

preliminarily determine the number of decompositions

before conducting VMD, then decompose the original

samples around this number. We check for overlap in the

center frequency iteration curve to select the appropriate

number of decompositions, then generate high frequency,

intermediate frequency, and low frequency components

accordingly. After that, different methods are used to pre-

dict the components with different frequency.

Based on the prediction results of each components, we

then combine these prediction values into a BPNN by taking

each component sample data as an input, using the actual

wind power sample value as an output to train themodel, and

then substituting into the predicted value of each component

to ultimately obtain a final wind power prediction value.
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Table 1 Number of hidden layer nodes of high frequency

components

Component IMF1 IMF2 IMF3 IMF4

Hidden layer nodes 6 4 6 3
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Finally, we adopt the MAE, MSE, and RMSE as the evalu-

ation indices to compare the prediction performance of the

proposed model, single prediction model (BPNN, ARMA,

LS-SVM), andmulti-modal predictionmodel based onEMD

and EEMD decomposition. The results show that the pro-

posed model outperformed the others.

During the prediction process, we find that VMD miti-

gated modal aliasing and illusive component problems very

effectively. However, due to the limited value precision of

the decomposition number K, it has not been completely

eliminated. In addition, the threshold and weight value of

the BPNN will be initialized in each training process. In

other words, the same model may yield different results.

Multiple training models are necessary to obtain a better

number of hidden layer nodes. This makes for a cumber-

some workload. These problems do result in increased

errors in the prediction process of each component which

will affect the final prediction results.
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