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Abstract The denoising and detection of transient distur-

bances are two important subjects for power quality mon-

itoring and analysis. To effectively denoise and detect

transient disturbances under noisy conditions, an improved

iterative adaptive kernel regression method is proposed in

this paper. The proposed method has advantages in that it

does not need to estimate the noise variance or a filter

threshold, and has both denoising and detection capabilities

for transient disturbances. Simulation results demonstrate

that the proposed method provides excellent denoising

effects, which can not only suppress noise effectively but

also preserve disturbance features of sudden change points

well. Additionally, it provides good detection and location

performance for single and combined transient distur-

bances, even under strong noise conditions. Finally, the

effectiveness of the proposed method is further verified by

using real disturbance data.

Keywords Transient power quality disturbance, Noise

variance, Filter threshold, Denoising, Sudden change point,

Detection, Location

1 Introduction

With the wide application of various types of electronic

devices and the increasing use of nonlinear, impact, and

unbalanced loads in recent years, the power quality (PQ) of

power grids is getting declining [1, 2]. PQ monitoring and

analysis, including data compression, denoising, detection,

feature extraction, and classification, have become impor-

tant aspects of power distribution networks for avoiding

damage to equipment and determining the causes of dis-

turbances [3, 4]. PQ issues in the power systems can be

divided into steady-state and transient problems [5].

Transient PQ disturbances (PQDs), including voltage sag,

voltage swell, voltage interruption, oscillation transient,

and impulsive transient [5], have strong impacts on both

the grid and customers, with potentially serious conse-

quences [6]. Therefore, significant researches on transient

PQD analysis are expected to increase in the immediate

future. This paper focuses on two aspects of transient PQD

analysis: denoising and detection.

In practice, PQ signals are often corrupted by white

noise introduced by monitoring devices and transmission

channels [2, 7]. Noise not only affects the extraction of

important features from PQ signals, but also degrades the

effectiveness of detection and classification methods [7].

Therefore, effective denoising of PQ signals is necessary

and often performed as an initial step in many PQ signal-

processing techniques [8]. An excellent transient PQD

denoising method should have a good smoothing effect and

strong ability to protect disturbance features at sudden
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change points. Otherwise, PQ signal denoising would be

meaningless. A number of papers based on different tech-

niques for PQ signal denoising, such as the wavelet

transform (WT), empirical mode decomposition (EMD),

mathematical morphology (MM), S-transform (ST), and

hyperbolic S-transform (HST), have been published in

recent years [8–15]. Among these techniques, WT is the

most popular method and many WT-based denoising

techniques have been proposed for PQ signal denoising

[9–12]. Although these WT-based denoising methods have

achieved some promising results, their denoising effect

highly depends on the choice of mother wavelet and

decomposition levels. The discrete WT exhibits varying

levels of spectra leakage in certain subbands. Additionally,

signals at boundaries are easily distorted. The performance

of MM is determined by the choice of a morphological

transform and the structural elements. If the type of mor-

phological transform or shape and size of structural ele-

ments are chosen unreasonably, the denoising results for

PQ signals will be seriously affected. When the structural

elements of the closed operation are wider than the

impulsive transients, the impulsive transients are treated as

noise and filtered out [13]. The ST [14] cannot effectively

preserve the disturbance features of sudden change points,

and requires huge computational resources. As an

improvement to the ST technique, HST can preserve the

features of sudden change points more effectively than ST

[15]. However, the HST still has the disadvantage of huge

computational demand. Reference [8] applied two EMD-

based denoising techniques to acquire denoised PQ signals

and satisfactory classification results under noisy condi-

tions. Although the EMD-based denoising techniques are

proved to have better denoising results than ST in [8], their

disadvantages were also made clear. The EMD leads to

endpoint contamination and mode mixing [16]. Recently,

[17] proposed an adaptive denoising method that can pro-

vide good denoising effects, but it has high computational

demand.

Most existing PQ signal denoising methods must either

estimate the noise variance or set a corresponding filter

threshold. However, the noise variance of real PQ signals is

typically unknown and difficult to estimate accurately. The

filter threshold, which is crucial for PQ signal denoising, is

also difficult to set accurately and automatically. If a large

filter threshold is set, oversmoothing will occur. Con-

versely, a small filter threshold will result in inefficient

denoising. Therefore, the practicality of these existing

denoising methods is greatly limited. Kernel regression

(KR) is an effective tool not only for the interpolation of

regularly and irregularly sampled images but also for the

restoration and enhancement of noisy sampled images.

Reference [18] proposed the iterative adaptive KR (IAKR)

method, which not only can suppress noise effectively but

also has a strong ability to preserve the details of images

such as the edges. However, there are almost no applica-

tions of IAKR in one-dimensional (1D) transient PQD

denoising. To effectively denoise transient PQDs under

strong noise conditions, an improved IAKR (IIAKR)

method is proposed in this paper. The proposed method,

which does not need to estimate the noise variance or filter

threshold, has superiority when compared with previous

methods.

Several approaches have been proposed for the detection

of PQDs in recent years, including the discrete Fourier

transform (DFT), short-time Fourier transform (STFT),

Gabor-Wigner transform (GWT), Hilbert-Huang transform

(HHT), WT, ST, Kalman filter (KF), and strong trace filter

(STF) [19–26]. However, the DFT is not suitable for the

detection of transient PQDs [19, 20]. The STFT [21, 22]

has the limitation of a fixed window, so it is also inade-

quate for the analysis of transient signals. WT overcomes

the main drawback of STFT, but its capabilities are often

significantly degraded under noisy conditions [7, 20]. The

GWT [23] has disadvantages of cross-term interference and

heavy computational loads. Additionally, it must satisfy a

synchronized sampling constraint [6]. The HHT leads to

endpoint contamination during empirical mode decompo-

sition, and is easily influenced by noise superimposed on

signals [6, 24]. The ST [25] has the ability to detect dis-

turbances under noisy conditions, but its computational

demands are too high. Additionally, the Gaussian window

function of the ST is inflexible. The KF [26] is the most

popular parameter estimation method, but it cannot indi-

cate the exact locations of transient PQDs. Furthermore,

the KF trace has a delay in response to transient PQDs [6].

The STF [6], which is an enhancement of the KF, is also a

parameter estimation method.

The IIAKR method proposed in this paper also has the

capability to detect transient PQDs. To evaluate the

effectiveness of the proposed method, experiments are

performed with different types of transient PQDs under

different noisy conditions. The experimental results

demonstrate the effectiveness of the proposed method.

2 Basic principle of classic KR in 1D

In [18], the 1D data measurement model is defined as:

yi ¼ zðxiÞ þ ei i ¼ 1; 2; . . .;P ð1Þ

where yi is the measured data; xi is the coordinate of the

measured data; z(�) is the regression function; ei is the

independent and identically distributed zero-mean noise

value; P is the number of sampling points within the

kernel.
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While the specific form of z(xi) may remain unspecified,

if we assume that it is locally smooth to some order N, then

we can estimate the value of the function at any point x

given the data based on a generic local expansion of the

function about that point. Specifically, if x is near the

sample at xi, then we have the N-term Taylor series:

zðxiÞ � zðxÞ þ z0ðxÞðxi � xÞ þ 1

2!
z00ðxÞðxi � xÞ2

þ � � � þ 1

N!
zðNÞðxÞðxi � xÞN

¼ b0 þ b1ðxi � xÞ þ b2ðxi � xÞ2 þ � � � þ bNðxi � xÞN

ð2Þ

where b0= z(x), b1= z0(x), …, bN= z(N)(x)/N!.

If we assume the Taylor series is a local representation

of the regression function, then estimating b0 can yield a

local estimate of the regression function based on the data.

Specifically, bn (n =1, 2, …, N) will provide localized

information regarding the nth derivative of the regression

function. Since this method is based on local approxima-

tions, a logical step is to estimate bn (n =0, 1, …, N) from

the data while giving nearby samples higher weights than

samples at greater distances. A weighted least-squares

formulation capturing this idea in matrix form is equivalent

to solving the following optimization problem:

min
b

y� Abk k2Wx ¼ min
b

ðy� AbÞTWxðy� AbÞ
n o

ð3Þ

where

y ¼ ½y1; y2; � � � ; yP�T
b ¼ ½b1; b2; � � � ; bN �

T

�
ð4Þ

Wx ¼ diag K
x1 � x

h

� �
;K

x2 � x

h

� �
; . . .;K

xP � x

h

� �h i 1
h

ð5Þ

A ¼

1 ðx1 � xÞ ðx1 � xÞ2 � � �
1 ðx2 � xÞ ðx2 � xÞ2 � � �
..
. ..

. ..
. ..

.

1 ðxP � xÞ ðxP � xÞ2 � � �

2
6664

3
7775 ð6Þ

In (5), K(�) is a kernel function that penalizes distance

away from the local position where the approximation is

centered. The global smoothing parameter h controls the

strength of this penalty (smoothness of kernel estimation).

K is a symmetric function that attains a maximum value at

zero, satisfying:
R
R1

tKðtÞdt ¼ 0

R
R1

t2KðtÞdt ¼ C

8><
>:

ð7Þ

where C is a constant value. The choice of the specific form

of the function K is open and could be exponential,

Gaussian, or any other form complying with the above

constraints. It is known that for classic regression, the

choice of the kernel only has a small effect on estimation

accuracy. Therefore, preference is given to differentiable

kernels with low computational complexity, such as the

Gaussian kernel.

Since our primary interest is to compute an estimate of

the signal, the necessary computations are limited to those

that estimate b0, regardless of the estimator order N.

Therefore, the least-squares estimation can be simplified

as:

ẑðxÞ ¼ b̂0 ¼ eT1 ðATWxAÞ�1ATWxy ð8Þ

where e1 is a column vector with the first element equal to

one and the other elements equal to zero. It should be noted

that there is a fundamental difference between the case of

N = 0 and a high-order estimator (N[ 0) when computing

b0.

3 IIAKR method for disturbance denoising
and detection

3.1 Improved adaptive kernel regression

The kernel function in the classic kernel regression

method only depends on spatial sample locations, but the

adaptive kernel function in the adaptive kernel regression

method proposed in [18] depends on sample locations and

density, as well as the radiometric values of image data.

Therefore, the adaptive kernel regression method has a

greater ability to preserve image details, such as edges.

Adaptive kernel regression is structured similarly to (3)

and framed as an optimization problem as follows:

min
b

y� Abk k2Wadapt ¼ min
b

ðy� AbÞTWadaptðy� AbÞ
n o

ð9Þ

where y, A, and b in 2D image processing are defined in

[18], and are the same as those in (3) for the 1D case.

Wadapt is defined as:

Wadapt ¼ diag

Kadaptðx1 � x; y1 � yÞ
..
.

KadaptðxP � x; yP � yÞ

2
64

3
75
T

ð10Þ

where Kadapt(�) is an adaptive kernel function that penalizes

the spatial distance between the point of interest x and its

neighbors {xi}, as well as the radiometric distance between

the corresponding pixels y and {yi}, and is defined as:
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Kadaptðxi � x; yi � yÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðCiÞ

p
2ph2l2i

exp �ðxi � xÞTCiðxi � xÞ
2h2l2i

 !
ð11Þ

where li is a local density parameter (typically set as 1); Ci

is a symmetric covariance matrix based on differences in

local gray values. Because local edge structures are related

to gradient covariance, an estimate for this covariance

matrix can be obtained as follows:

Ĉi �

P
xj2wi

zx1 xj
� �

zx1 xj
� � P

xj2wi

zx1 xj
� �

zx2 xj
� �

P
xj2wi

zx1 xj
� �

zx2 xj
� � P

xj2wi

zx2 xj
� �

zx2 xj
� �

2
64

3
75 ð12Þ

where zx1ð�Þ and zx2ð�Þ are the first derivatives along x1 and

x2 directions, respectively; wi is a local analysis window

around the position of interest x.

Because the covariance in Ci describes the correlation

between different dimensions, rather than different sam-

ples, it is clear that this covariance is not suitable for

describing 1D transient PQ data. Therefore, the adaptive

kernel regression method cannot be directly applied to

transient PQD denoising and the following improvements

are required.

In 2D image processing, Ci is based on differences in

local gray values, whereas in the 1D case, it should be

based on differences in local sample values. Therefore, Ci

is redefined as:

Ci ¼
XH
k¼1

ðyi � yi�kÞ þ ðyi � yiþkÞ
" #2

ð13Þ

In (13), the estimated value of Ci is entirely determined

by local sample values ranging from yi-H to yi?H. For

transient PQDs, larger Ci values can be obtained at sudden

change points, but smaller Ci values will be obtained at

other points. The parameter H controls the radius of a local

analysis window and its value should be larger than one,

but smaller than 1/10 of the cycle length of the analyzed

signal. A larger H value should be chosen under strong

noise conditions while a smaller H value should be chosen

under weak noise conditions.

The Ci values are normalized as:

Ci ¼
Ci

max Ci; i ¼ 1; 2; � � � ; Lf g ð14Þ

where L is the total number of sampling points.

The adaptive kernel function in the 1D case is modified

as:

Kadaptðxi � x; yi � yÞ ¼ 1

2ph2l2i
exp �Ciðxi � xÞ2

2h2l2i

 !
ð15Þ

In (15), when the global smoothing parameter h is set to

a larger value, the denoised signal will be smoother, but the

accuracy of the estimated amplitudes of the sudden change

points will decrease. In contrast, if h is set to be smaller, the

denoised signal will be rougher, but the amplitude

estimates of the sudden change points will be more

accurate. Because h is a global smoothing parameter,

once the value of h is fixed, the smoothing effect on all

samples is the same. Therefore, a scheme must be

implemented to reduce the h value at sudden change

points to preserve transient PQD features and increase the

h value at other points to obtain a good smoothing effect

for effective noise suppression.

Because the sampling time interval for the input signal

is a fixed value, the local density parameter li in (15)

should be set to one for all samples, meaning li is not a

meaningful parameter. To effectively suppress noise and

preserve transient PQD features at sudden change points, li
is redefined in this paper, as shown in (16). In (16), if

Ci[CT, then a li value in the range of 0.25–1 can reduce

the h value to preserve transient PQD features at the ith

point which corresponds to a sudden change point. Other-

wise, we maintain normal smoothing with a li value of one
at other points.

li ¼
max 1

�
1þ Ci

CT

	 
� �a
; 0:25

� 

Ci [CT

1 Ci �CT

8<
: ð16Þ

where a is a parameter satisfying 0\ a\ 10, which con-

trols the attenuation rate of li; CT is the determinant

threshold.

If we assume that the number of cycles of the input

PQDs is M, then Ci can be divided into 4M data segments

that do not overlap and have a fixed length of 1/4 of a

cycle. If a data segment is defined as Sr (r = 1, 2, …, 4M),

then CT is expressed as:

CT ¼ medianðmaxfSr; r ¼ 1; 2; � � � ; 4MgÞ
0:3

ð17Þ

where median(�) indicates obtaining an intermediate value

that decreases with an increase in the signal-to-noise ratio

(SNR). Therefore, the obtained CT value also decreases

with an increase in SNR.

The flow chart representation of the improved adaptive

kernel regression method is presented in Fig. 1. In this flow

chart, the input noisy PQ signal is utilized to estimate the

Ci values based on (13) and (14). The Ci values are

then utilized to estimate the adaptive kernel function

Kadapt(xi - x, yi - y) (i = 1, 2, …, L) based on (15)–(17).

Finally, the optimization problem is established based on

(9) and solved by utilizing (8) to obtain the reconstructed

(denoised) PQ signal b̂0.
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3.2 IIAKR method

The flow chart representation of the IAKR method for

image processing is presented in [18]. Therefore, it is not

described in this section. In this paper, the IIAKR method

for transient PQD denoising and detection is proposed. The

flow chart of the proposed method is presented in Fig. 2,

where u is the iteration number.

In Fig. 2, the initial input b̂ð0Þ0 for the first iteration is the

input transient PQD. In the next iteration, the input, which

is the denoised (reconstructed) transient PQD generated by

the previous iteration, is utilized to calculate a more reli-

able reconstructed transient PQD. This process continues

for u iterations. The output b̂ðuÞ0 , which is considered to be

the most reliable reconstructed transient PQD, is the final

denoising result. The output C
ðuÞ
i is then utilized to perform

transient PQD detection.

Let C ¼ C
ðuÞ
i . In this paper, the specific steps for tran-

sient PQD detection and location are defined as follows.

Step 1: Estimate the threshold k adaptively.

The threshold k is crucial for transient PQD detection. It

is known to be poor practice to artificially set a fixed k
value or different k values for voltages with different levels

of noise. Therefore, a scheme for automatically estimating

the appropriate threshold k is defined as:

k ¼ median Sf g=d ð18Þ

where S is a matrix that stores the maximum amplitude of

each 1/4 cycle of C; d is a constant variable in the range of

0–1. It has been found that a d value of 0.3 is typically

reasonable, and this value is utilized in all the test cases

presented in Section 4.2.

Step 2: Quantify the signal C by utilizing (19) to obtain

the signal C0. According to the sharp information in C0, the
detection and time localization of transient disturbances

can be realized.

C0ðiÞ ¼ CðiÞ CðiÞ� k
0 CðiÞ\k

�
ð19Þ

Parameters descriptions:

1) The choice of order N affects the bias and variance of

estimates [18]. In general, smaller values of N result in

smoother reconstructed estimates (large bias and small

variance). Conversely, overfitting occurs in regression

when utilizing larger N values, resulting in more

complex computations, small bias, and large estima-

tion variance (transient PQD features are better

preserved). The value of N must be a positive integer

and is typically set to 2. The users can choose an

optimal order according to their specific application

environment.

2) The number of sampling points within the kernel

P must be odd, greater than 3, and less than 1/10 of the

cycle length of the input signal. For a transient PQD in

a low-SNR environment, a larger P value results in a

better denoising effect (smoother disturbances), but its

value should not be overly large. On the other hand, a

smaller P value results in better preservation of

disturbance features in high-SNR environments.

3) While increasing the number of iterations reduces the

estimation variance and increases the bias [18], it also

leads to decreased capacity for preserving transient

Establish the optimization problem as given in (9), and solve this 
problem using (8) to obtain β0

Use (13) and (14) to estimate Ci

Use (15)-(17) to estimate Kadapt(xi x, yi y)

Input noisy PQ signal

Start

Output the denoised PQ signal β0

End

Fig. 1 Flow chart of improved adaptive kernel regression method

Output Ci
(u) and the denoising transient PQD β0

(u)

Input β0
(J ) and set J = J +1

Establish the optimization problem as given in (9), and solve 
this problem using (8) to obtain β0

(J )

Use (13) and (14) to estimate Ci
(J )

Use (15)-(17) to estimate Kadapt(xi x, yi y)

J = u?
N

Y

Use Ci
(u) to detect transient PQDs

J =0

Start

End

(J )

Fig. 2 Flow chart of IIAKR method for transient PQD denoising and

detection

648 Yan WANG et al.

123



PQD features at sudden change points. Therefore,

approximately 1–6 iterations are typically utilized and

the minimum mean-squared error (MSE) of the

reconstructed estimate can be obtained. An example

of this observation is shown in Fig. 3. Figure 3a shows

a voltage swell with SNR of 30 dB. By utilizing the

IIAKR method with N = 2, P = 21, H = 5, h = 0.3,

a = 2, d = 0.3, and different iteration numbers, the

analysis results of Fig. 3a are shown in Fig. 3b and c.

Figure 3b shows the MSE values of the reconstructed

voltage swell in different iterations. Figure 3c shows

the amplitude errors (AEs) between the original and

reconstructed signal at the 900th point (corresponding

to the end point of the swell) in different iterations.

Detailed explanation of AE will be given in Sec-

tion 4.1. It can be observed in Fig. 3b and c that the

minimum MSE is obtained in the fifth iteration and

that the AE of the 900th sample increases with an

increase in the number of iterations. Therefore, it is

illustrated that the appropriate range of u is 1–6. Since

the appropriate iteration number is small, the compu-

tational complexity of the proposed algorithm is

relatively low.

4 Results and discussion

To test the effectiveness of the IIAKR method for

denoising and detecting transient disturbances, experiments

are performed utilizing simulated and real transient data.

Transient disturbances, including voltage sag, voltage

swell, voltage interruption, impulsive transient, and oscil-

latory transient, are simulated utilizing MATLAB based on

the mathematical models reported in [13] and [27]. All the

simulated disturbances are created in eight cycles of a

voltage waveform with a fundamental frequency of 50 Hz

and sampling frequency fs of 15 kHz (300 sampling points

each cycle and a sampling interval of Dt = 1/fs).

To simulate transient PQDs in noisy environments, ideal

disturbance waveforms with diverse levels of white

Gaussian noise are considered. The definition of SNR is

given in (20) (unit: dB), where Ps and Pn refer to the

average power of the ideal signal and the noise signals,

respectively.

SNR ¼ 10 lg
Ps

Pn

	 

ð20Þ

4.1 Denoising experiment for transient disturbances

SNR and MSE are typically utilized to evaluate the

effectiveness of PQD denoising methods. However, these

two indicators alone cannot accurately reflect the capability

of methods to preserve disturbance features at sudden

change points. Therefore, to better evaluate the effective-

ness of the proposed method, the AEs between the original

and reconstructed transient disturbances at the start and end

points corresponding to the sudden change points are

considered as an indicator in this study. The definition of

AE is given in (21), where Ao and Ar refer to the original

and reconstructed amplitude, respectively:

AE ¼ Ao � Arj j ð21Þ

Oscillatory transient, voltage interruption, and voltage

sag with SNR value of 25 dB are simulated and denoised

by utilizing the IIAKR method. The denoised results are
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(a) Noisy voltage swell with SNR of 30 dB
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(c) Reconstructed amplitude errors of the 900th sample in 
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Fig. 3 Results of applying IIAKR method with different iteration

numbers

Transient power quality disturbance denoising and detection… 649

123



shown in Fig. 4a–c. The SNR values of the reconstructed

signals in Fig. 4a–c rise to 35.0792 dB, 36.0230 dB, and

37.3386 dB, respectively, and the corresponding MSE

values are 1.572 9 10-4, 9.37 9 10-5, and 7.5 9 10-5,

respectively. For the oscillatory transient, the AE values at

the start time (0.04073 s) and end time (0.06000 s) are

0.0812 p.u. and 0.0304 p.u., respectively. For the voltage

interruption, the AE values at the start time (0.04007 s) and

end time (0.08000 s) are 0.007922 p.u. and 0.02424 p.u.,

respectively. For the voltage sag, the AE values at the start

time (0.02007 s) and end time (0.06 s) are 0.0101 p.u. and

0.0350 p.u., respectively. Figure 4 reveals that although

the transient PQD signals are badly corrupted by noise, the

reconstructed signals after applying the proposed method

show good characteristics in terms of feature preservation

and effective noise suppression.

To further demonstrate the excellent denoising perfor-

mance of the IIAKR method, its performance is compared

with that of the wavelet method in [9]. Figure 5a shows a

voltage swell with SNR of 30 dB and the denoised results

after applying the proposed method and wavelet method in

[9]. Figure 5b shows an impulsive transient with SNR of

30 dB and the corresponding denoised results after

A
m

pl
itu

de
 o

f n
oi

sy
 

si
gn

al
 (p

.u
.)

-1

0

1

A
m

pl
itu

de
 o

f 
de

no
is

ed
 si

gn
al

 (p
.u

.)

Time (s)
0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Time (s)
0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Time (s)
0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

2

-2

-1

0

1

2

-2

A
m

pl
itu

de
 o

f n
oi

sy
 

si
gn

al
 (p

.u
.)

-1

0

1

A
m

pl
itu

de
 o

f 
de

no
is

ed
 si

gn
al

 (p
.u

.)

2

-2

-1

0

1

2

-2

A
m

pl
itu

de
 o

f n
oi

sy
 

si
gn

al
 (p

.u
.)

-1

0

1

A
m

pl
itu

de
 o

f 
de

no
is

ed
 si

gn
al

 (p
.u

.)

2

-2

-1

0

1

2

-2

(a) Oscillatory transient

(b) Voltage interruption

(c) Voltage sag

Fig. 4 Denoising results for disturbances with SNR of 25 dB

utilizing IIAKR method
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applying the two compared methods. As shown in Fig. 5a,

the amplitudes of the denoised voltage swell at 0.008733 s

and 0.06133 s (start and end time of the swell) are sharply

reduced when utilizing the wavelet method, but are accu-

rately preserved by the proposed method. As shown in

Fig. 5b, the impulsive transient beginning at 0.03327 s and

ending at 0.03333 s is largely filtered out by the wavelet

method, but is accurately preserved by the proposed

method. Figure 5 illustrates that the proposed method

achieves better denoising performance than the wavelet

method.

By changing the SNR value of the noisy signals in

Fig. 5, new noisy voltage swells and impulsive transients

with SNR values ranging from 50 to 20 dB are created and

analyzed by utilizing the proposed method (N = 2, P = 21,

H = 5, h = 0.3, a = 2, d = 0.3, u = 1 for SNR of more

than 30 dB, and u = 3 for SNR of no more than 30 dB)

and wavelet method (the mother wavelet is sym8, threshold

rule is Heursure, decomposition level is 3, and tuning

factors a and m are 0.3 and 3, respectively). SNR and MSE

comparisons between the two methods are listed in

Table 1. Comparisons of the AE at the start and end times

of swells and pulses are listed in Tables 2 and 3. It should

be noted that the results of the proposed method in

Tables 1, 2 and 3 are not optimal and better results can be

obtained if parameters are adjusted appropriately.

Table 2 Comparisons of AE values when applying the two methods to voltage swells with different levels of noise

SNR (dB) Amplitude of the voltage swell at the start time (0.008733 s) Amplitude of the voltage swell at the end time (0.06133 s)

Original IIAKR AEIIAKR WT AEWT Original IIAKR AEIIAKR WT AEWT

50 0.7364 0.7226 0.0138 0.5508 0.1856 0.7718 0.7581 0.0137 0.6205 0.1513

45 0.7364 0.7180 0.0184 0.5496 0.1868 0.7718 0.7636 0.0082 0.6212 0.1506

40 0.7364 0.7263 0.0101 0.5487 0.1877 0.7718 0.7728 0.0010 0.6206 0.1512

35 0.7364 0.7361 0.0003 0.5481 0.1883 0.7718 0.7636 0.0082 0.6147 0.1571

30 0.7364 0.7086 0.0278 0.5463 0.1901 0.7718 0.7577 0.0141 0.6136 0.1582

25 0.7364 0.6768 0.0596 0.5354 0.2010 0.7718 0.7329 0.0389 0.6409 0.1309

20 0.7364 0.6279 0.1085 0.5346 0.2018 0.7718 0.6268 0.1450 0.6201 0.1517

Table 1 Comparisons of SNR and MSE values when applying the two methods to voltage swells and impulsive transients with different levels

of noise

SNR (dB) Voltage swell Impulsive transient

SNR (dB) MSE SNR (dB) MSE

IIAKR WT IIAKR WT IIAKR WT IIAKR WT

50 53.6591 39.8057 3.9199 9 10-6 9.5195 9 10-5 52.3055 38.9209 2.9385 9 10-6 6.4059 9 10-5

45 52.0336 39.6846 5.6993 9 10-6 9.7886 9 10-5 50.8013 38.8415 4.1548 9 10-6 6.5242 9 10-5

40 48.0896 39.3004 1.4133 9 10-5 1.0694 9 10-4 48.3370 38.5356 7.3278 9 10-6 7.0002 9 10-5

35 43.2453 38.4161 4.3117 9 10-5 1.3109 9 10-4 43.9876 37.6651 1.9948 9 10-5 8.5540 9 10-5

30 40.2952 36.5463 8.5000 9 10-5 2.0163 9 10-4 40.7580 36.2861 4.1960 9 10-5 1.1751 9 10-4

25 35.4397 33.1745 2.6010 9 10-4 4.3825 9 10-4 35.7849 32.7473 1.3190 9 10-4 2.6542 9 10-4

20 30.5152 28.9407 8.0000 9 10-4 1.2000 9 10-3 31.0441 28.3178 3.9290 9 10-4 7.3603 9 10-4

Table 3 Comparisons of AE values when applying the two methods to impulsive transients with different levels of noise

SNR (dB) Amplitude of the impulsive transient at the start time (0.03327 s) Amplitude of the impulsive transient at the end time (0.03333 s)

Original IIAKR AEIIAKR WT AEWT Original IIAKR AEIIAKR WT AEWT

50 - 0.5552 - 0.5715 0.0163 - 0.8007 0.2455 - 0.5659 - 0.5801 0.0142 - 0.8105 0.2304

45 - 0.5552 - 0.5713 0.0161 - 0.802 0.2468 - 0.5659 - 0.5775 0.0116 - 0.8124 0.2323

40 - 0.5552 - 0.5650 0.0098 - 0.7986 0.2434 - 0.5659 - 0.5870 0.0211 - 0.8091 0.2290

35 - 0.5552 - 0.5715 0.0163 - 0.7952 0.2400 - 0.5659 - 0.5932 0.0273 - 0.8065 0.2264

30 - 0.5552 - 0.6024 0.0472 - 0.8033 0.2481 - 0.5659 - 0.6181 0.0522 - 0.8175 0.2374

25 - 0.5552 - 0.5989 0.0437 - 0.8019 0.2467 - 0.5659 - 0.5916 0.0257 - 0.8161 0.2360

20 - 0.5552 - 0.6665 0.1113 - 0.7895 0.2343 - 0.5659 - 0.8395 0.2736 - 0.7985 0.2184
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In Tables 1, 2 and 3, IIAKR represents the proposed

method, while WT represents the wavelet method. In

Tables 2 and 3, original represents the true amplitude of the

ideal disturbance signal; AEIIAKR and AEWT represent the

AE values of the IIAKR and WT method, respectively.

As shown in Table 1, the proposed method achieves

approximately 3–14 dB better SNR values and smaller

MSE values compared with the wavelet method. As shown

in Tables 2 and 3, when the SNR is larger than 20 dB, the

AE values of the reconstructed transient PQDs at the start

and end times are approximately 0.0003–0.0596 p.u. when

utilizing the proposed method, but 0.1309–0.2481 p.u.

when utilizing the wavelet method. If the SNR is as low as

20 dB, the AE values increase when utilizing the proposed

method, because the original transient PQD features are

almost entirely buried by noise. However, the proposed

method achieves much smaller AE values than the wavelet

method, even if the SNR decreases to 20 dB. Tables 2 and

3 indicate that the proposed method has a stronger capa-

bility to preserve the characteristics of sudden change

points for transient PQDs under different SNR conditions.

Therefore, the results in Tables 1, 2 and 3 clearly demon-

strate the effectiveness of the proposed method.

The adaptive denoising method [17] can effectively

suppress noise and preserve transient PQD features at

sudden change points. Therefore, the denoising perfor-

mance of proposed method is also compared with that of

the adaptive denoising method. Figure 6a presents an

impulsive transient that begins at 0.03007 s and ends at

0.0304 s, where the SNR value is 20 dB. When utilizing the

adaptive denoising method and proposed method, the

denoised results for Fig. 6a are presented in Fig. 6b and c,

respectively. The SNR values of the denoised signals in

Fig. 6b and c rise to 30.4570 dB and 31.5819 dB, respec-

tively, and the corresponding MSE values are 0.0018 and

3.489 9 10-4, respectively. Figure 6 demonstrates that the

proposed method achieves slightly better denoising results

compared with the adaptive denoising method. However,

based on the results in Table 4, the computation time of the

proposed method is only slightly longer than that of the

wavelet method, but much shorter than that of the adaptive

denoising method. Compared with the wavelet method and

adaptive denoising method, the proposed method provides

both good denoising results and short computation time

and has significant advantages.
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Fig. 6 Denoising results after applying proposed method and adap-

tive denoising method

Table 4 Computation time of different methods

Sampling length Computation time (s)

Adaptive denoising method WT Proposed method (3 iterations)

1280 7.6310 0.254424 0.253339

2560 53.5619 0.267070 0.499669

3200 102.0748 0.271487 0.604981
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4.2 Detection experiment for transient disturbances

The proposed method not only has a good denoising

effect, but also has good capability for transient PQD

detection. To demonstrate the effectiveness of the proposed

method for transient PQD detection, simulated single and

combined transient disturbances are considered in this

section.

1) Single transient disturbance detection

By utilizing MATLAB, single transient PQDs,

including the impulsive transient, voltage interruption,

voltage sag, voltage swell, and oscillatory transient

with SNR values ranging from 40 to 20 dB, are

generated. These noisy transient PQDs are detected by

utilizing the proposed method and the detection results

for the transient PQDs with SNR of 20 dB are

presented in Fig. 7, where the red dashed line is the

estimated threshold k. One can clearly see a spike in

C in Fig. 7a and the two main spikes in C in Fig. 7b–d,

which represent the occurrence of transient PQDs.

However, there are many spikes in C in Fig. 7e.

Oscillation identification can be performed when the

number of spikes in each cycle is greater than one and

time localization of the oscillations can be performed

based on the first and last spikes. According to the

estimated threshold k and (19), the background noise

can be easily filtered out, thereby reducing C to C0.
The detection and time localization of transient PQDs

can be realized by using the obtained C0. The true
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Table 5 Results for time localization of disturbances in Fig. 7

Disturbance SNR (dB) Start point of disturbances (Dt) End point of disturbances (Dt)

True value Detected value Error True value Detected value Error

Impulsive transient 40 721 721 0 722 722 0

30 721 721 0 722 722 0

20 721 721 0 722 722 0

Voltage interruption 40 586 586 0 1510 1510 0

30 586 586 0 1510 1510 0

20 586 587 1 1510 1509 1

Voltage sag 40 721 721 0 1840 1840 0

30 721 721 0 1840 1840 0

20 721 719 2 1840 1839 1

Oscillatory transient 40 611 611 0 900 901 1

30 611 611 0 900 900 0

20 611 612 1 900 900 0

Voltage swell 40 331 331 0 1170 1171 1

30 331 330 1 1170 1171 1

20 331 330 1 1170 1171 1
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values, detected values, and errors of the start and end

points of different transient PQDs with different SNR

values, are listed in Table 5. As shown in Table 5, the

time location errors of the proposed method are 0–2Dt,
which reveals that the proposed method can accurately

detect and locate the single transient PQDs in different

SNR environments, even if the SNR value decreases to

20 dB.

2) Combined transient disturbance detection

Considering the space limitations for this paper,

transient PQD detection experiments are performed

utilizing only four types of combined transient PQDs

with SNR of 25 dB, namely sag with swell (no

overlap), sag with swell (overlap), interruption with

oscillation (overlap), and interruption with oscillation

(no overlap). The detection results when applying the

proposed method are presented in Fig. 8, where the red

dashed line is the estimated threshold k. The results for
time localization of the combined transient distur-

bances in Fig. 8 are listed in Table 6. The results in

Fig. 8 and Table 6 demonstrate that the proposed

method is effective for detecting and locating com-

bined transient PQDs, even under strong noise

conditions.

4.3 Analysis of real data

The feasibility of the proposed method is also evaluated

based on real transient disturbance data. Figure 9a presents

a real transient disturbance with two small oscillations

starting at approximately 0.02969 s and 0.07409 s, as well

as a sag starting just after the first oscillation. When uti-

lizing the wavelet method (the mother wavelet is sym8,

threshold rule is Heursure, decomposition level is 3, and

tuning factors a and m is 0.3 and 3, respectively), the

denoising result for Fig. 9a is presented in Fig. 9b. When

utilizing the proposed method with N = 2, u = 2, h = 0.3,

P = 11, H = 7, a = 2, and d = 0.3, the denoising and
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Fig. 9 Denoising and detection results for real disturbance data

Table 6 Results for time localization of combined disturbances in Fig. 8

Combined disturbance Disturbance component Start point of disturbances (Dt) End point of disturbances (Dt)

True value Detected value Error True value Detected value Error

Sag with swell (no overlap) Sag 353 352 1 800 800 0

Swell 1151 1151 0 1899 1899 0

Sag with swell (overlap) Sag 353 352 1 1240 1241 1

Swell 1151 1151 0 1899 1900 1

Interruption with oscillation (no overlap) Interruption 317 316 1 770 770 0

Oscillation 1301 1300 1 1900 1900 0

Interruption with oscillation (overlap) Interruption 471 470 1 2110 2110 0

Oscillation 711 710 1 1200 1200 0
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detection results for Fig. 9a are presented in Fig. 9c and d,

respectively. Compared with Fig. 9b, c reveals that the

proposed method provides a superior denoising effect,

which not only makes the denoised signal smoother (as

shown in the locally enlarged figures) but also accurately

preserves transient disturbance characteristics. The red

dashed line in Fig. 9d is the estimated threshold k calcu-

lated based on (18). One can observe that the sharp infor-

mation can be easily preserved according to the threshold.

Figure 9d clearly identifies the occurrences of transient

PQDs, which facilitates automatic signal processing by a

computer.

5 Conclusion

The main purpose of this paper is to introduce a novel

method to denoise and detect transient disturbances. The

IAKR method is an effective image denoising tool that can

not only suppress noise effectively, but also preserve the

details in images, such as edges. Based on deep research of

this method, the IIAKR method is proposed for transient

PQD denoising and detection, which has the advantage of

avoiding estimating noise variance and a filter threshold.

Experimental results demonstrate that the proposed

method is effective in transient PQD denoising and can

accurately preserve transient disturbance characteristics at

sudden change points, even under strong noise conditions.

Additionally, it yields good detection and location results

for single and combined transient disturbances in different

SNR environments. The proposed method has great

potential for transient disturbance denoising and detection

in PQ monitoring and analysis.
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