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Abstract This study aims to determine the improvement

effect on the delay margin if fractional-order proportional

integral (PI) controller is used in the control of a single-

area delayed load frequency control (LFC) system. The

delay margin of the system with fractional-order PI control

has been obtained for various fractional integral orders and

the effect of them has been shown on the delay margin as a

third controller parameter. Furthermore, the stability of the

system that is either under or over the delay margin is

examined by generalized modified Mikhailov criterion.

The stability results obtained have been confirmed

numerically in time domain. It is demonstrated that the

proposed controller for delayed LFC system provides more

flexibility on delay margin according to integer-order PI

controller.

Keywords Delay dependent stability, Delay margin,

Fractional-order proportional integral (PI), Generalized

modified Mikhailov criterion, Load frequency control with

delay

1 Introduction

The voltage and frequency of the power systems vary

depending on the demand of consumers. Therefore, these

changes should be kept within a certain limits to supply

quality energy to consumers [1]. Especially, the frequency

is one of the dominant parameters in power quality. And it

becomes a primary control parameter in power systems.

Load frequency control (LFC) of conventional power

systems is performed with three different control loops

[2, 3], which loops are primary, secondary and tertiary

control loops. The primary control loop provides active

power balance, and the secondary control loop minimizes

the steady-state error in the control loop frequency formed

at the end of the primary control loop. The tertiary control

loop is the central loop that regulates the system fre-

quency error and includes measures performed by verbal

instructions in case primary and secondary loops are

insufficient. Linear models including primary and sec-

ondary control loops are suggested to analyze the fre-

quency control of the systems [3–5]. However, there is

also a time delay caused by phasor measurement units

(PMUs) as well as communication links. The time delay

affects performances of these control loops in the power

systems and it is approximately in the range of 5–15 s

[4, 6]. Also the time delay may reduce the damping

performance of the control system and even cause the

instability if it exceeds the delay margin [7–9]. In fact,

this value is the delay time which makes the system

marginally stable. Therefore, the time delay must be

considered for both analysis and design of a power sys-

tem. For this purpose, linear models including time delay

have been proposed [3–5].
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The proportional integral/ proportional integral deriva-

tive (PI/PID) controllers which are commonly used in the

industry [10] are also used for the LFC systems [5, 11–14].

In the analysis of LFC systems, time delay is taken into

account, and it is important to obtain the delay margin

where the system is marginally stable. Various methods are

used to determine the delay margin of a system with time

delay. These methods may be either frequency [15–18] or

time domain based methods [5]. The direct method is one

of the frequency domain based methods [15]. This method

transforms the transcendental characteristic equation to a

polynomial form by eliminating the exponential function,

and it facilitates calculation of delay margin. Delay margin

of delayed LFC system with integer-order PI controller has

been computed delayed LFC system for different controller

parameters for single and two areas [13].

Although the history of fractional calculus dates back to

three centuries ago, the usage of fractional-order con-

trollers in control systems has rapidly increased in the last

twenty years [19–24]. The research results show that

fractional-order controllers are more flexible than integer-

order controllers. Also, the fractional-order controllers are

used in LFC without time delay and their effectiveness is

proven [25–30]. In addition to these studies, analog and

digital implementation of fractional-order controller has

been recently studied [31–35]. Therefore, it is significant to

determine the effects on the systems theoretically before

the implementation of fractional controllers. So far, no

study has investigated effects of fractional-order PI con-

troller on the stability and performance of the delayed LFC

system.

The system stability is the most significant issue in all

control systems [36]. This statement is also available for

delayed LFC system. The instability in delayed LFC sys-

tem causes to collapse and this result reveals difficulties

which are hard to compensate [30]. Controller and system

parameters affect the stability in delayed LFC systems.

Since the delayed LFC system has a delay-dependent sta-

bility, the system stability should be analyzed in terms of

time delay, and controllers which are provided to extend

the value of delay margin should be proposed. For a fixed

time delay, the usage of fractional-order PI controller in the

delayed LFC system is provided with significant

improvement on system stability according to controller

parameters [24]. In this study, the improvement effect of

fractional-order PI on delay margin is investigated in a

single-area delayed LFC system. Although the single-area

power system is simple, the stability analysis is complex

because of a fractional integrator and time delay in the

system. Thus a single-area delayed LFC system is chosen

to show the effect of the fractional-order PI controller. In

addition, because of the similarity to microgrids [37–40],

this is a preliminary study for them.

For this purpose, the gain parameters of fractional-order

PI are as fixed and delay margin analysis is performed

according to the fractional integral order of fractional-order

PI. The delay margin analysis of delayed LFC system has

been realized by using the direct method. In addition, the

system stability has been determined graphically, by the

generalized modified Mikhailov (GMM) criterion given in

[41]. The results obtained are compared with results of the

integer-order controller.

After the introduction, mathematical model of the

fractional-order PI controller, block diagram of a time-

delay single-area LFC system with fractional-order PI

controller, and GMM criterion have been given in Sec-

tion 2. In Section 3, delay margin of the system have been

computed for different fractional integral orders by using

the direct method, and stability analysis of the delayed LFC

system with fractional-order PI controller has been per-

formed by using the GMM criterion. The results have been

validated with results of time domain simulations in Sec-

tion 4, and conclusions are presented in Section 5.

2 Materials and methods

2.1 Fractional-order PI controller

After fractional calculus was suggested for the first time

in 1695, Liouville, Riemann, and Holmgren have carried

out the first studies systematically about the fractional

calculus [42, 43]. Many approaches have been proposed for

the fractional-order integral and derivative operators in

these studies [42]. However, controllers defined by frac-

tional calculus have been applied intensively in control

systems in the last two decade. The controller types which

have the fractional-order integral or derivative operator are

called as fractional-order controllers.

The fractional-order PI controller, which is one of the

fractional-order controllers, is defined with the transfer

function expressed in the following form [44].

Gf
cðsÞ ¼ Kp þ

Ki

sa
Kp;Ki � 0 ð1Þ

where Ki is integral gain constant of controller; Kp is

proportional gain constant of the controller.

Here, a is fractional integral order and a real number

(0\ a\ 2), and Kp and Ki are the proportional and inte-

gral gains, respectively. If Kp or Ki is chosen as negative,

the controller could be a non-minimum phase. In this case a

minimum phase system can transform into non-minimum

phase. Therefore, Kp and Ki have been chosen as positive

real number. Figure 1 shows the illustration of the integer-

order and the fractional-order PI controller on the a-axis.
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Note that the integer-order controller is defined by two

points on the a-axis, whereas the fractional-order PI con-

troller can be defined by infinite number of points indicated

in the range of (0, 2) with bold line on the a-axis. This

means that fractional-order PI controller has more flexi-

bility than integer-order controller.

2.2 Single-area delayed LFC system with fractional-

order PI controller

In a power system, frequency depends on the active

power balance. The change in active power demand in the

system causes a change in the frequency affecting the

entire system.

Therefore, the purpose of the LFC system is to secure

the desired frequency against these changes [2, 3]. The

block diagram for a single-area delayed LFC system given

in [14] is modified for the single-area delayed LFC system

with fractional-order controller as shown in Fig. 2.

As can be seen in Fig. 2, the block diagram contains

primary and secondary control loops. DPm is change of

turbine output; DPv is change of governor output; k is

fractional order of the integrator; and ACE is an area

control error. Moreover, the power system is turned to a

fractional-order structure due to the usage of a fractional-

order controller. The transfer functions given in the block

diagram are defined as:

1) Fractional-order PI controller: Gf
cðsÞ ¼ Kp þ Ki=s

a

2) Governor: GgðsÞ ¼ 1=Tgsþ 1

3) Turbine: GchðsÞ ¼ 1=Tchsþ 1

4) Power system: GMðsÞ ¼ 1=Msþ D

In Fig. 2, the system parameters are assigned as similar

to those in [14].

Df ðsÞ
DPdðsÞ

¼ �RsaðTgsþ 1ÞðTchsþ 1Þ
sa½RðTgsþ 1ÞðTchsþ 1ÞðMsþ DÞ þ 1� þ bRðKpsa þ KiÞe�ss

ð2Þ

where s is the time delay; M is generator inertia constant;

R is governor speed regulation; Tch is time constant of

turbine; Tg is time constant of governor; b is frequency bias

parameter; Df is system frequency deviations; and D is

damping coefficient.

According to (2), the transcendental fractional-order

characteristic equation of the system is determined as:

Dðs; sÞ ¼ PðsÞ þ QðsÞe�ss ¼ 0

PðsÞ ¼ saðp4s
3 þ p3s

2 þ p2sþ p1Þ
QðsÞ ¼ q1s

a þ q0

8
><

>:
ð3Þ

where p1 ¼ RDþ 1, p2 ¼ RM þ RDTg þ RDTch, p3 ¼
RMTg þ RMTch þ RDTgTch, p4 ¼ RMTgTch, q1 ¼ bRKp,

q0 ¼ bRKi.

Fractional-order transcendental characteristic (3) will be

used for both computing delay margin and obtaining GMM

plot.

2.3 Generalized modified Mikhailov criteria

Using graphical methods based on frequency domain can

simplify the stability analysis of the fractional-order time

delay systems. The graphical procedures of Mikhailov use the

similar approach to the Nyquist for the relative-stability

problem [45]. While Nyquist approach is based on the (-1, 0)

point in the complex plane, Mikhailov approach is based on

the origin. The GMM stability criterion is a graph-based

method used to analyze fractional-order linear systems with

time delay [41]. This method is also used to analyze fractional-

order delayed non-linear systems [46]. Because the GMM

stability criterion provides closed curves in polar plane, the

stability analysis of the system will be simplified.

Consider a linear fractional-order system with delays

described by a transfer function:

TðsaÞ ¼
DN0ðsaÞ þ

Py2

j¼1

DNjðsaÞe�sjs

DD0ðsaÞ þ
Py1

i¼1

DDiðsaÞe�sis

¼ DNðsaÞ
DDðsaÞ

ð4Þ

where si is the time delay, and fractional-order polynomials

DDi(s
a) and DNj(s

a) with real coefficients have the form:

DDi
ðsaÞ ¼

Xn

k¼1

riks
aDk i ¼ 0; 1; . . .; y1

and

DNjðsaÞ ¼
Xm

k¼1

zjks
aNk j ¼ 0; 1; . . .; y2

where aDk and aNk are real non-negative numbers and

r0n= 0, z0m= 0. The system described by the transfer

function (4) is a commensurate order if aDk = ka
(k = 0,1,…,n) and aNk = ka (k = 0,1,…,m). Otherwise,

e-τ s Gg(s) Gch(s) GM(s)
f (s)PmPv

Pd (s)1/Rβ

ACE

Time delay

Fractional-order
controller

Turbine Power 
system         

(generator 
and load)

+G f(s)c + +

Fig. 2 Block diagram of one-area fractional-order delayed LFC

system

P PI

(a) Integer-order PI (b) Fractional-order PI

P PI

0 1 20 1

Fig. 1 Integer-order PI and fractional-order PI on a axis
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the system is a non-commensurate order. The fractional-

order characteristic function of the system (4) has the form:

DDðsaÞ ¼ DD0ðsaÞ þ
Xy1

i¼1

DDiðsaÞe�sis ð5Þ

By generalization of the Mikhailov theorem for the

fractional-order characteristic function (5), the following

theorem is obtained.

Theorem 1 [41] The fractional characteristic (5) of

commensurate order is stable if and only if:

D arg
0�x\1

DððjxÞaÞ ¼ n
p
2

ð6Þ

where n is the number of the system’s poles located in the left

half of the s-plane and p/2 is one quadrant of complex plane.

The plot of function DD((jx)a) is called Mikhailov plot. The

plot of DD((jx)a) runs in positive direction by n quadrants of

the complex planes when x grows from 0 to ??. DD((jx)a)

has the infinite number of roots due to the time-delay terms in

DD((jx)a). Therefore, it generates an infinite number of

spirals on complex plane and the origin of this plane is

missing as x grows to ??, and it is difficult to confirm the

condition of Theorem 1. To avoid this difficulty, the

following rational function has been proposed instead of

the fractional characteristic function (5):

wðsÞ ¼ DDðsaÞ
wrðsÞ

ð7Þ

where wr(s) is stable and can be chosen in the form:

wrðsÞ ¼ a0ðsþ cÞa c[ 0 ð8Þ

where a0 is the coefficient of the first term DD0(sa) in (5).

Note that (8) is stable for c[ 0.

Theorem 2 [41]. The fractional characteristic function

(5) of commensurate or non-commensurate order is

stable if and only if:

D arg
�1�x\1

wðjxÞ ¼ 0 ð9Þ

The plot of function w(jx) is called GMM plot.

Equation (9) holds if and only if the GMM plot w(jx)

does not encircle the origin of the complex plane as x
grows to ± ?.

3 Computation delay margin and stability analysis
of delayed LFC system with fractional-order PI
controller

The delay margin of the system can be obtained by

using the characteristic equation of the system given in

Fig. 2. Systems without time delay is called as a delay free

system and their stability is determined by the roots of

P(s) ? Q(s) polynomial given in (3). Otherwise, the time

delay is effective on the stability of the system. Various

methods are used to find in the frequency and time domain

roots of transcendental polynomials as given in (3)

[15–18]. The frequency based direct method reduces the

complexity of characteristic equation from transcendental

to polynomial structure through the elimination of expo-

nential expression and simplifies the solution. In order to

compute the delay margin of the system, the critical fre-

quency xc where poles of the system intersect jx axis

should be obtained. If this value is not equal to zero, these

poles are complex conjugate. In this case, fractional-order

transcendental characteristic equation is provided for s1-

= jxc and s2 = –jxc. Characteristic equations are given

for two polar values as shown below:

PðjxcÞ þ QðjxcÞe�jxcsc ¼ 0

Pð�jxcÞ þ Qð�jxcÞejxcsc ¼ 0

(

ð10Þ

If the exponential expression is eliminated in (10), the

following is obtained:

WðxcÞ ¼ PðjxcÞPð�jxcÞ � QðjxcÞQð�jxcÞ ¼ 0 ð11Þ

which is turned into a fractional polynomial depending on

xc only:

WðxcÞ ¼ m5x
6þ2a þ m4x

4þ2a þ m3x
2þ2a

þm2x
2a þ m1x

a þ m0 ¼ 0
ð12Þ

where m5 ¼ p2
4; m4 ¼ p2

3 � 2p2p4; m3 ¼ p2
2 � 2p1p3;

m2 ¼ p2
1 � q2

1; m1 ¼ �2q0q1 cos ap=2ð Þ; m0 ¼ �q2
0.

Positive real roots of W polynomial (12) give the fre-

quency where the system intersects the jx-axis. The delay

margin is obtained from the following expression for this

frequency:

sc ¼
1

xc

arccos Re � PðjxcÞ
QðjxcÞ

� �� �

ð13Þ

sc ¼
1

xc

arccos
xa

cðn5x3
c þ n4x2þa

c þ n3x2
c þ n2xa

c þ n1xc þ n0Þ
d2x2þa

c þ d1xa
c þ d0

þ 2kp
xc

k¼ 0; 1; 2

ð14Þ

where n5 ¼ �p4q0 sin ap=2ð Þ; n4 ¼ p3q1;

n3 ¼ p3q0 cos ap=2ð Þ; n2 ¼ �p1q1; n1 ¼ p2q0 sin ap=2ð Þ;
n0 ¼ �p1q0 cos ap=2ð Þ; d2 ¼ q2

1; d1 ¼ �q0q1 cos ap=2ð Þ;
d0 ¼ q2

0.

Delay margin values for a = 0.8, 1, and 1.2 are obtained

for system parameters by utilizing (14) as shown in

Tables 1, 2, and 3, respectively.

Delay margin values in Tables 1, 2 and 3 marked as the

bold and italic will be used as simulation parameters in
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Sect. 4. These time delays ensure that system poles are on

the jx-axis. The system is marginal stable for these delay

times and they are representing a specific boundary.

However, there is no information about system stability at

the outside of this boundary. This means that the system is

stable for delays either greater or lower than these values.

If GMM criterion is used to test stability of the system, a

rational function should be defined as given in (15) and

(16). Therefore, the GMM plot can be obtained by using

the characteristic equation of the fractional-order LFC

system.

wðs; sÞ ¼ Dðs; sÞ
wrðsÞ

ð15Þ

wrðsÞ ¼ a0ðsþ cÞa c[ 0 ð16Þ

Since all roots of polynomial, a0 ¼ p4s
3 þ p3s

2 þ p2sþ
p1 is in the left half s-plane for the given values, the

stability analysis is performed depending on the enclosing

of the origin by the GMM plot. In this analysis, the values

Table 1 Delay margin values for a = 0.8 and different controller gains

Kp sc(s)

Ki = 0.05 Ki = 0.1 Ki = 0.15 Ki = 0.2 Ki = 0.4 Ki = 0.6 Ki = 1.0 Ki = 1.2

Kp = 0 79.226 33.015 19.681 13.580 5.374 2.975 1.179 0.737

Kp = 0.05 79.546 33.154 19.763 13.640 5.396 2.985 1.176 0.733

Kp = 0.1 79.625 33.177 19.771 13.638 5.394 2.980 1.165 0.722

Kp = 0.2 78.720 32.774 19.527 13.467 5.315 2.921 1.108 0.676

Kp = 0.4 72.592 30.165 17.957 12.361 4.817 2.575 0.842 0.521

Kp = 0.6 59.389 24.631 14.605 9.997 3.719 1.719 0.521 0.378

Kp = 1.0 0.581 0.559 0.537 0.516 0.438 0.372 0.267 0.224

Kp = 1.2 0.383 0.373 0.363 0.352 0.313 0.275 0.210 0.181

Table 2 Delay margin values for a = 1 and different controller gains

Kp sc(s)

Ki = 0.05 Ki = 0.1 Ki = 0.15 Ki = 0.2 Ki = 0.4 Ki = 0.6 Ki = 1.0 Ki = 1.2

Kp = 0 30.915 15.201 9.960 7.335 3.382 2.042 0.923 0.623

Kp = 0.05 31.875 15.681 10.279 7.575 3.501 2.122 0.970 0.662

Kp = 0.1 32.751 16.119 10.571 7.794 3.610 2.194 1.012 0.697

Kp = 0.2 34.226 16.856 11.062 8.162 3.792 2.313 1.079 0.749

Kp = 0.4 35.834 17.658 11.594 8.559 3.980 2.426 1.118 0.772

Kp = 0.6 34.922 17.195 11.278 8.312 3.826 2.281 0.947 0.639

Kp = 1.0 0.596 0.586 0.575 0.564 0.516 0.463 0.361 0.314

Kp = 1.2 0.389 0.383 0.378 0.372 0.347 0.321 0.268 0.241

Table 3 Delay margin values for a = 1.2 and different controller gains

Kp sc(s)

Ki = 0.05 Ki = 0.1 Ki = 0.15 Ki = 0.2 Ki = 0.4 Ki = 0.6 Ki = 1.0 Ki = 1.2

Kp = 0 14.753 8.054 5.598 4.288 2.158 1.363 0.645 0.442

Kp = 0.05 15.528 8.487 5.902 4.530 2.295 1.461 0.712 0.500

Kp = 0.1 16.279 8.938 6.203 4.768 2.429 1.558 0.777 0.557

Kp = 0.2 17.719 9.717 6.782 5.222 2.685 1.741 0.899 0.663

Kp = 0.4 20.298 11.169 7.817 6.063 3.141 2.066 1.110 0.843

Kp = 0.6 22.257 12.264 8.595 6.647 3.479 2.301 1.250 0.955

Kp = 1.0 0.607 0.609 0.611 0.613 0.614 0.603 0.536 0.487

Kp = 1.2 0.393 0.392 0.390 0.389 0.381 0.371 0.343 0.325
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between 0 and 1000 rad/s are assigned to x for obtaining

the GMM plot. The GMM plot is drawn for time delays

either greater or smaller than the delay margins for a = 0.8

and a = 1.2 in Figs. 3 and 4, respectively.

As shown in Figs. 3 and 4, the system becomes unsta-

ble for the time delays which are greater than the delay

margins. On the other hand, it becomes stable for the

delays below the delay margin since the plot does not

encircle the origin. The system is marginally stable for the

values of delay margin as expected and in this case, GMM

plot intersects the origin according to these results given in

the Tables 1 and 3, the delay margin increases at low Kp–Ki

gains. Conversely, for the bigger value than a = 1, the

delay margin relatively increases at high controller gains.

The delay time is given as 5–15 s in the LFC systems

[4, 6]. If the delay margin is taken as 5 s for these systems,

the stable controller gains are expanded as the fractional

integral order gets lower. This means that the stability of

the system becomes more flexible according to integer-

order controller with low gain values. In addition to that,

the usage of fractional-order controller in LFC system is

more robust than integer-order controller.
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Kp = 1 and Ki = 0.6
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The delay margin surface according to Tables 1, 2, and

3 for a = 0.8, 1, and 1.2 are shown in Figs. 5, 6, and 7

respectively.

In Figs. 5, 6, and 7, this surface represents a stability

boundary. In this case, the system is marginally stable for a

point at the surface, it is stable for a point under the sur-

face, and it is unstable for a point above the surface.

4 Numerical results

In this section, time domain simulation results of the

single-area delayed LFC system with fractional-order PI

controller is presented in order to verify the results
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obtained in the previous section. The load change is

DPd= 0.1 p.u. in all simulations, and this load is started up

at t = 5 s.

The time response of the system for a = 0.8, Kp= 1,

Ki= 0.6, and delay margin sc = s2 = 0.372 s, which is

given as italic in Table 1, is obtained in Fig. 8. Addition-

ally, time domain simulations obtained for sc[ s1 = 0.3 s

and sc\ s3 = 0.4 s values are also given in the same

figure.

As expected, the system is marginally stable when the

time delay is equal to delay margin, it is stable when the

time delay is smaller than delay margin and it is unsta-

ble when the time delay is larger than delay margin.

Similarly, the time responses of the system for a = 0.8,

Kp = 0.2, and Ki = 0.4, and delay margin sc = s2-

= 5.315 s, which is given as bold in Table 1, sc[ s1 = 5 s

and sc\ s3 = 6 s are obtained in Fig. 9.

Note that similar results are also obtained in the case of

equal, smaller, and larger values of delay margin. Also,

time domain simulations are given in Figs. 10 and 11 for

Table 2 and they are given in Figs. 12 and 13 for Table 3

in a similar way.

The simulations prove the results obtained analytically.

Finally, the time response of the system for values a = 1.2,

Kp= 1, Ki= 0.6, and sc = 0.603 s that make the system

marginally stable is given in Fig. 14, and about one period

of time response is also given in this figure.

The critical frequency xc, which was obtained with the

solution of (11), is the undamped oscillation frequency and

this value is xc= 2.2607 rad/s. And the period of oscilla-

tion is calculated as Tc= 2.779 s. In Fig. 14, it is shown that

the period of the time response has been correctly calcu-

lated from (11).

5 Conclusion

In this study, the fractional-order PI controller has been

proposed for controlling a single-area delayed LFC system.

In this case, we aim to present the effects of the fractional

integral order on the delay margins for controller gains, and

they have been computed by using the direct method. The

delay margin surfaces have also been obtained for different

fractional-orders by using delay margin values. These

results have shown that fractional integral order provides

much more flexibility about system stability. That is, the

fractional-order controller makes the system more robust

than integer-order controller in term of delay margin

parameter. Clearly, this allows formation of different delay

margin surfaces for different a values and presents poten-

tial of solving stability problems caused by time delay.

In addition, the GMM criterion has been used to test

whether the system is stable for delays either above or

below the delay margins. The system which is analyzed in

this paper has been determined as stable for the values

below delay margins. Finally, the results obtained have

been confirmed by the time domain simulations.

Also, the following observations and comments can be

made from the results:

1) The direct method can be used as an effective tool to

compute the delay margin and the frequency of

undamped oscillations for fractional-order delayed

systems.

2) For the fractional-order system which is analyzed, the

delay margin increases at low Kp–Ki gains. Con-

versely, for the bigger value than a = 1, the delay

margin relatively increases at high controller gains.

3) The GMM criterion is found to be quite effective for

stability analysis of the fractional-order delayed power

system.

As a result, the fractional-order PI controller has an

obvious effect on the delay margins depending on the

fractional integral order, which is the third controller

parameter. If effective calculation methods or tools are

determined, it is planned to carry out a delay-marginal
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analysis of the two and multi-area LFC system as a next

study.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted

use, distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.
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