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Abstract Controlled islanding is considered to be the last

countermeasure to prevent a system-wide blackout in case

of cascading failures. It splits the system into self-sustained

islands to maintain transient stability at the expense of

possible loss of load. Generator coherence identification is

critical to controlled islanding scheme as it helps identify

the optimal cut-set to maintain the transient stability of the

post-islanding systems. This paper presents a novel

approach for online generator coherency identification

using phasor measurement unit (PMU) data and dynamic

time warping (DTW). Results from the coherence identi-

fication are used to further cluster non-generator buses

using spectral clustering with the objective of minimizing

power flow disruptions. The proposed approach is vali-

dated and compared to existing methods on the IEEE

39-bus system and WECC 179-bus system, through which

its advantages are demonstrated.

Keywords Coherence identification, Constrained spectral
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1 Introduction

The expansion of power grid due to regional intercon-

nections and the increase in diversity of the transmission

structure owing to ever increasing market competition have

made safety and stability of the system operation crucial.

Not only disturbances caused by natural calamities such as

hurricanes and earthquakes but also operational mistakes

may trigger cascading failures, which may result in system-

wide blackouts and pose a significant threat to properties

and lives [1].

Controlled islanding is a practical approach to prevent

system-wide instabilities and blackouts. It splits a power

system into smaller subsystems, referred to as islands. The
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objective is to form stable islands by selecting an optimal

set of lines to disconnect while minimizing generation/load

imbalance, maintaining voltage stability, ensuring genera-

tors coherency, and restraining out-of-step oscillations. The

stability of each island depends on the coherency of gen-

erators. Therefore, correct and adaptive identification of

generators coherency is essential. Moreover, the coherency

between groups of generators varies over time, due to

changing network topology and operating conditions,

necessitating real-time coherency determination [2]. With

the increasing deployment of phasor measurement units,

online measurement-based coherency identification has

become feasible.

There is substantial literature on generator coherency

identification. A model based continuation method was

discussed in [3], which demonstrated that generator

coherence changes with system network topology and

operating conditions. Another model-based eigenvalue

analysis approach was presented in [4]. However, both

approaches required precise knowledge of system models,

parameters, and states, which are generally difficult to

obtain in practice. The slow coherency-based analysis

proposed in [5] was an offline model-based approach.

Variations in system’s conditions and topology may change

the grouping of coherent generators. This behavior is

associated with the generators loose coherency character-

istic, and one coherent generator group may split into sub-

groups, or multiple coherent groups may join a bigger

coherent group [6]. For this reason, identifying coherent

generator groups during real-time operation, based on the

current system conditions, is preferred as compared to

defining it offline. In addition, the slow coherency-based

analysis is based on the linearized electromechanical model

of a given system, which may fail under certain conditions

due to high non-linearity of power systems.

In [7], coherent generator groups were identified using

discrete Fourier analysis. Internal voltage phasors of gen-

erators were estimated by using voltage and current pha-

sors measured by phasor measurement units (PMUs) at

generator terminals. Jonsson et al. further improved this

method by combining generator speed with Fourier anal-

ysis [8] where Inter-area dominant modes were identified

as Fourier coefficients with the most significant amplitude.

However, Fourier analysis based approaches assume lin-

earity and stationarity of the data, which does not hold for

inter-area oscillations. Principal component analysis (PCA)

method proposed in [9] employed bus voltage angle and

generator speed for coherency identification but required

prior information of system dynamic characteristics, which

is difficult to obtain. A correlation coefficient based method

as proposed in [10] did not require prior information as

PCA method did, but a threshold to identify the correct

number of coherent groups, which may vary for different

operating conditions and fault locations. The threshold

requires expert system knowledge which makes practical

implementation of the approach challenging. Another

method in [11] used bioinformatics clustering technique

which required pre-specification of the number of clusters.

Ariff et al. presented an approach based on independent

component analysis [12]. Another measurement-based

approach, using the artificial neural network (ANN) was

introduced in [13] which needed excessive offline training.

For large interconnected networks, consideration of all

possible groups for offline training is daunting. In addition,

the real-time and large volume of PMU data interchange

brings forth additional complications in case of commu-

nication failure. Succinctly an algorithm that can achieve

online coherency with limited system knowledge and is

robust to partial data loss is the need of the hour.

In view of this, the paper proposes an approach for

online coherency determination that also handles partial

observability of the system. It provides an adaptive option

to system operators for intentional islanding operation to

minimize the impact of cascading outages. The enormous

success of dynamic time warping [14–16] for pattern

matching tasks encourages its use for generators clustering.

The proposed approach has been compared and contrasted

with correlation [17] and community detection [2] based

approaches for the IEEE 39-bus system. It has also been

compared with hierarchical clustering (HC) [18] and ICA

[12] for Western interconnection power system in North

America (WECC) 179-bus system. Time domain simula-

tions are used to validate and demonstrate the effectiveness

of the proposed methodology in minimizing impacts of

cascading outages and system-wide blackouts.

The remainder of this paper is organized as follows.

Section 2 presents the proposed controlled islanding algo-

rithm and describes the proposed generator coherence

identification and non-generator bus clustering approach.

In Section 3, the proposal is validated using IEEE 39-bus

system and WECC 179-bus system, compared with exist-

ing approaches. Section 4 illustrates the capability of

dealing with noisy and incomplete data of the proposal, and

Section 5 concludes the paper.

2 Adaptively controlled islanding framework

Cascading outages can initiate electromechanical oscil-

lations in power systems. As shown in Fig. 1, two cascaded

outages occurred at t = 5 s and t = 7 s, and one generator

lost synchronism. The system eventually became unsta-

ble at t = 11.45 s. An efficient islanding scheme should

separate generators with different behavior and ensure that

coherent generators remain on the same island: � to
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improve the transient stability; ` to reduce the chances of

further outages.

The proposed adaptive controlled islanding scheme, can

be implemented using the following steps.

Step 1: Estimation of generators’ rotor angles based on

PMU measurements of voltage and current at

each generator terminal bus.

Step 2: Similarity evaluation between generators rotor

angle responses using algorithm proposed in

Section 3.1. It defines a matrix of similarity

index for each pair of generators.

Step 3: Optimal number of coherent groups (k) selection

by minimizing inter-coherent group distances

[19]. It provides the number of unique coherent

groups.

Step 4: Grouping of generators using k-means into

k coherent groups, obtained from Step 3, and

building a coherency constraint matrix Q using

(8).

Step 5: Building edges’ weight matrix W and Laplacian

matrix L using (4) and (5) respectively.

Step 6: Formatting the grid as a graph G = (V, E,

W) using power flow results.

Step 7: Solving constrained optimization problem in (7)

by finding eigenvalues in (8).

Step 8: Ignore eigenvectors associated with non-positive

eigenvalues. After normalizing the remaining

eigenvectors, only consider those eigenvectors,

which are associated with the smallest k-1

eigenvalues.

Step 9: Allocation of non-generator buses to generator

groups using the k-medoids algorithm on the

matrix consists of k-1 eigenvectors. The opening

of all circuit breakers installed on lines whose

terminal buses are in distinct groups will

eventually form the desired islands.

Next, each step of the algorithm is explained in detail.

2.1 Dynamic time warping (DTW) based generator

coherency identification

Generator coherency identification is primarily a simi-

larity matching problem. Therefore, a method from pattern

recognition field can be employed. Several similarity

measures have been presented in the pattern recognition

field including Euclidean distance, Hausdorff, dynamic

time warping, Pearson correlation, Mahalanobis, etc.

[14, 15]. However, out of these similarity measures,

dynamic time warping provides a non-linear mapping

between trajectories by minimizing the distance between

them [16]. Due to its better performance for partial

observability, dynamic time warping was implemented in

this paper for generator coherency determination.

When a disturbance occurs in a power system, the

generators’ responses are governed by their inertia and

location in the system. Some generators exhibit similarity

in their time domain responses thus are considered as

coherent and can be clustered. Here, rotor angle response is

selected as the metric for generator coherence identifica-

tion. For example, generator p and q are considered

coherent if Ddp(t)-Ddq(t) & 0 or Ddp(t)-Ddq(t) = con-

stant, where Ddp(t) and Ddq(t) are the deviations of rotor

angles of generator p and q, respectively [20]. In this

section, the DTW technique is proposed to identify the

similarity between rotor angle responses of generators in

the system.

Given voltage and current phasor measurements at

generator terminal buses, rotor angle responses of these

generators d can be estimated using least squares (LS) or

Kalman filter (KF) based approaches [21]. Consider two

rotor angle trajectories dp = {dp1, dp2, …, dpi} and dq =

{dq1, dq2, …, dqk} estimated over the same period, where

i and k are numbers of data points for generators p and q,

respectively. Normally i and k are equal. When there is

data loss or significant communication delays in PMU data

transmission, i and k may be different, and DTW can still

handle the data.

A local distance measure d(dpm, dqn) of data points m

and n from rotor angle trajectories dp and dq respectively is

defined as:

dðdpm; dqnÞ ¼ dpm � dqn
�
�

�
�2 ð1Þ

where m 2 f1; 2; . . .; ig and n 2 f1; 2; . . .; kg. Similarly, a

distance matrix D(dp, dq) of size i-by-k is constructed by

calculating local distance measures of each pair of data

points from trajectories dp and dq.

Fig. 1 Generators response following cascaded outages
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Define w = {w1, w2,…, wL} as a warping path, where wl

= (ml, nl)[[1:i]9[1:k] represents the cell in the mlth row,

nlth column of a distance matrix D(dp, dq). A warping path

example of the red and blue trajectories is shown in Fig. 2.

A valid warping path satisfies the following conditions as

stated in [22].

1) Boundary condition: a valid warping path starts from

one corner of the distance matrix D(dp, dq) and ends at

the diagonally opposite corner, i.e., w1 = (1, 1) and wL

= (i, k).

2) Continuity: a valid warping path is made of adjacent

cells (including diagonally adjacent cells), i.e., wl = (a,

b) and wl-1 = (a0, b0), a-a0B1 and b-b0B1.

3) Monotonicity: a warping path is monotone, i.e., if wl =

(a, b) and wl-1= (a0, b0), a-a0C0 and b-b0C0.

The total distance dw(dp,dq) of a warping path w is

defined as:

dwðdp; dqÞ ¼
XL

l¼1
dðdpml

; dqnlÞ ð2Þ

The DTW distance between two trajectories dp and dq is
defined as the minimum total distance among all possible

warping paths, which can be found by dynamic

programming [22].

DTWðdp; dqÞ ¼ dw�ðdp; dqÞ ¼ minfdwðdp; dqÞg ð3Þ

In this paper, the similarity between rotor angle

responses of generators p and q is represented by

DTWðdp; dqÞ. This allows a non-linear mapping between

two rotor angle curves, even with data loss or

communication delays. DTW is highly ranked in pattern

recognition and computer vision fields. It has been widely

used in time series analysis, (partial) shape matching,

speech recognition, and online signature verification [23].

In [24, 25], DTW is tested against Euclidean distance for

small data size and is found to provide smaller out-of-

sample error rate as a result of its improved similarity

metric. A comprehensive explanation of step by step

implementation of the DTW algorithm has been presented

with an example in Appendix A.

Given the coherency of generators, the optimal number

of coherent groups k is selected by minimizing inter-co-

herent group distances [19]. Further, having the number of

coherent groups of generators, various clustering methods,

such as k-means clustering [26], can be employed to group

generators.

2.2 Buses clustering for controlled islanding

After clustering generators, the next step is to find an

optimal cut set for controlled islanding with generator

coherency information as a constraint. The main task is to

allocate non-generator buses to coherent generator groups

based on a certain metric, which is minimum power flow

disruption in this paper.

Several techniques are present in literature for this

‘‘where to island’’ problem including graph clustering. In

[27], a k-way partitioning algorithm was proposed which

partitions the power network into islands by optimizing

minimum load generation imbalance. A kernel k-means

multi-level technique is presented to create islands based

on minimum power flow disruption [28]. Both methods are

computationally efficient. However, neither of these two

methods considers the system’s dynamic constraints. Fur-

thermore, neglecting generator dynamic behavior may

partition the power network into unstable islands. A par-

ticle swarm optimization-based angle modulated algorithm

is presented in [29] and utilized minimum load generation

imbalance to obtain an islanding solution. Reference [30]

presents a Krylov based method to minimize load genera-

tion imbalance for islanding. Further, the computational

complexity of techniques presented in [29, 30] is reduced

by neglecting connectivity of sub-graphs or solving for a

simplified network. However, the islanding solutions may

contain isolated buses or some solutions, which are lost

after simplification, could be better than the solution

obtained by the algorithm [31]. The spectral clustering-

based approach is used to solve the ‘‘where to island’’

problem in this paper, which builds on the concept of

minimum graph-cut [32]. The objective is to minimize the

power flow disruption subject to the generator grouping

from Section 2.1. The minimum graph cut formulation is

stated as follows.

Power network can be represented as a weighted graph

G = (V, E, W) with vertices (V) and edges (E) resembling

buses and branches (lines or transformers), respectively. To

replicate characteristics of the power grid, each edge in the

graph is assigned a certain weight (W), which can be any

system parameter depending on the targeted application. In

this work, power flows through branches are used as the

weighting factors. Further, to accommodate system losses,

Fig. 2 Optimal warping path
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weights are evaluated by averaging power flows measured

at both sides of the lines as follows.

Wij ¼ Wji ¼
ðjPijj þ jPjijÞ=2 i 6¼ j

0 i ¼ j

�

ð4Þ

where Pij and Pji are the active power flows measured at

terminal i and j of branch i-j, respectively. The weight

matrix in (4) considers the dynamic characteristic of

the power network as power flow changes with system

operating conditions. After evaluating the weight matrix,

an un-normalized Laplacian matrix, L, can be formulated

with its element Lij calculated as:

Lij ¼
�Wij i 6¼ j

di ¼
Pn

j¼1
Wij i ¼ j

8

<

:
ð5Þ

where di is the sum of weights of all edges connected to

node i. To make graphs with different weights comparable,

the Laplacian matrix can be normalized as LN=D
-1/2LD-1/2

[33], where D is a diagonal degree matrix with di as its

diagonal entries.

Given the coherent generator groups, we apply spectral

clustering to further cluster buses for controlled islanding.

To incorporate generator coherency information as a con-

straint in spectral clustering, two types of linkages can be

introduced: must link (ML) and cannot link (CL). ML

constraints ensure the coherent generators remain on the

same island while CL keeps the non-coherent generators on

different islands. A linkage constraint matrix Q is defined

as:

Qi;j ¼
þ1 i; j 2 ML

�1 i; j 2 CL

0 else

8

<

:
ð6Þ

Let u[{-1, ?1}N be an island indicator vector for

N buses, where ui = ?1 if bus i belongs to island ? and ui =

-1 if bus i belongs to island -. An index uTQu =
P

ijuiujQij can be defined to determine how well constraints

in Q are satisfied by the assignment u. The greater the

value of uTQu is, the more satisfied the coherency

constraints Q are by the associated indicator vector

u [34]. Variables ui and Q can be extended to more than

two islands as u[RN and Q[RN9N respectively. If Qij[ 0,

then buses i and j should be on the same island and if Qij\
0 buses i and j should be placed on different islands.

Similar to the normalized Laplacian matrix, constraint

matrix Q can also be normalized as QN = D-1/2QD-1/2.

Finally, the association of non-generator buses to already

identified generator groups can be obtained by solving the

following constrained optimization problem [19]:

argv min vTLNv

s:t: vTQNv[ b

vTv ¼ vol

v 6¼ D1=21

8

>>>><

>>>>:

ð7Þ

where vTLNv is the cost of the spectral cut; b is the

satisfaction threshold for constraints; vol ¼
PN

i

di is the

volume measure of the graph. vTv = vol is used to

normalize v and v=D1/21 is used to avoid trivial solutions

with 1 as a constant vector whose entries are 1 s. The

relaxed island indicator vector u can be recovered from v as

u = D-1/2v. The optimal solution of (7) can be obtained

using the Karush-Kuhn-Tucker theorem [35] by solving

the following generalized eigenvalue problem:

LNv ¼ kðQN �
b
vol

IÞv ð8Þ

After normalizing eigenvectors associated with positive

eigenvalues using v v
jjvjj

ffiffiffiffiffiffi

vol
p

and k being the coherent

generator groups obtained through the proposed algorithm,

k-1 eigenvectors with lowest eigenvalues are selected.

Finally, the k-medoids algorithm [36] can be applied, on a

matrix V* having k-1 eigenvectors as columns. It will

allocate non-generator buses to k islands.

2.3 Discussion

The main scope of this work is to present an approach,

which can find more stable islands. An islanding solution

based on constrained spectral clustering is proposed which

splits the power network into islands using minimum

power flow disruption. Additionally, to ensure the dynamic

stability of the newly formed islands, DTW based gener-

ator coherency information is treated as a constraint during

spectral clustering based splitting process [37]. Further, it

helps for reconnecting the islands and reduces the com-

plexity [38].

Finding an islanding solution with minimum load gen-

eration imbalance is indeed an NP-hard problem and con-

sidered as a special form of 0–1 knapsack problem [39].

This is why in this work we considered minimum power

flow disruption instead of minimum load generation

imbalance as the criterion for spectral clustering. It is a

P-problem as can be converted into a minimum-cut prob-

lem and hence solved efficiently [40]. Consideration of

generator coherency constraints during spectral clustering

increases its complexity. However, this increased compu-

tational complexity can be overcome using recursive

bisection to find island boundaries [41]. Thus, using min-

imum power flow disruption has the advantage of reducing

42 Hasan Ul BANNA et al.
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the time complexity from NP-hard to P that makes the

proposed DTW based islanding approach computationally

efficient.

3 Simulation results and performance evaluation

The proposed methodology is validated through

dynamic simulations of IEEE 39-bus and WECC-179

systems. Cascading outages are created using DSAT tools.

Time domain simulations show how the proposed

methodology can help in minimizing the impact of cas-

cading outages and avoiding blackouts.

Proposed DTW based coherency is determined using t =

5-7.5 s of data and is utilized further during constrained

spectral clustering. The islanding scheme will then be

available in case it is needed. The severity and stability

indices during cascading failure will determine the exact

timing of the islanding. In the experimental validation,

islanding was deployed at t = 9 s to realize the practical

situation where closed-loop algorithms may try to bring the

system back towards stability and if those algorithms fail

then as a last resort islanding can be adopted to avoid

further failure. There is no other reason for the islanding

time selection of t = 9 s.

Length of the PMU data is critical for the identification

results due to cascading failures occurring at different

instances as reported in [2]. We do not attempt to duplicate

that discussion but rather emphasize the particular advan-

tages DTW has that makes it suitable for applications in

generator coherence identification and controlled

islanding

The simulation is performed on a 64-bit Intel� Core i7

Central Processing Unit with 3.00 gigahertz speed, 12

gigabytes installed memory (RAM) and 1 terra byte hard

disk space. For both case studies, running the proposed

algorithm on Matlab takes 1.12 s. It is expected running the

same program using c/c?? will be 50-100 times faster,

which satisfies the online application requirements.

Transient stability essentially means that the generators

in one island should maintain synchronization after

islanding operation. Transient stability of the newly formed

islands primarily depends on the coherency of the gener-

ators. Silhouette measure can be used to validate the

coherent group formation identified by coherency deter-

mination algorithms, which is a measure to validate the

consistency of the clusters in the data [42, 43]. Utilizing

this index, it can be shown that how strongly generators in

one group are coherent and coupled together as compared

to those in other coherent groups. It is expressed as:

VS
i ¼

S�min;avgðiÞ � S�avgðiÞ
S�min;avgðiÞ

S�avgðiÞ\S�min;avgðiÞ

0 S�avgðiÞ ¼ S�min;avgðiÞ
S�min;avgðiÞ � S�avgðiÞ

S�avgðiÞ
S�avgðiÞ[ S�min;avgðiÞ

8

>>>>><

>>>>>:

ð9Þ

where Smin,avg
* (i) is the minimum average dissimilarity of

ith generator w.r.t other coherent groups, and Savg
* (i) is the

average dissimilarity of ith generator w.r.t all other gen-

erators in the same coherent group. A generator with large

silhouette value shows that it is strongly coupled with the

generators of its coherent group and weakly coupled with

the neighboring groups. Typically, silhouette value lies

between 1 and -1. Generators coherency identification is

appropriate if most of the generators have large silhouette

values. On the other hand, if silhouette values are very

small or negative, it shows the possibility of too many

coherent groups [44]. The criteria to determine the most

suitable coherent group formation is to check the average

silhouette value. The coherent groups’ formation having

higher average silhouette value will indicate more strongly

coupled coherent groups [44].

The coherent generator groups’ formation with maxi-

mum average silhouette value is considered more appro-

priate coherency identification [45]. Hence, more coherent

generator groups formation will surely ensure more tran-

sient stability after islanding and will help in healing the

system and avoiding a further blackout. A few researchers

have recently used this coherency validation criterion for

coherent generator groups’ formation evaluation. There-

fore, it can be regarded as a measure of the stability of the

newly formed islands [44, 45]

We compared stability in the form of silhouette mea-

sure, which is independent of the number of clusters/is-

lands. Also, since the system is already recovering from

cascading failures, maintaining transient stability is more

crucial and focused in this work than maintaining load

generation balance. Load generation imbalance is a bi-

product and shows an additional benefit that the proposed

approach is carrying. Moreover, researchers have shown

that loss of load is not directly related to the number of

islands formed [37, 44–46]. The comparisons in

[37, 45, 46] indicate that the loss of load is more for less

number of islands formed and the amount of load lost is

not directly proportional to the number of islands.

To compare the performance of the proposed approach

with existing benchmarks, same ‘‘where to island’’ algo-

rithm, i.e., spectral clustering is used to find the boundaries

of the islands; whereas, generator coherency information is

determined through DTW, correlation and community

detection methods. Islanding solutions are compared

Online coherence identification using dynamic time warping for controlled islanding 43
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regarding stability, minimum load generation imbalance

and minimum power flow disruption. The coherent group

formation with maximum average silhouette value ensures

more stability, serving as the primary objective for con-

trolled islanding and also helps to avoid further cascading

failures.

3.1 Case 1: comparison with correlation based

method

In this case, a 3-phase fault is applied on line 17-16 near

bus 17 at t = 5 s and cleared after 150 ms with the tripping

of the corresponding line. Another line 2-1 is tripped at t =

7 s following a 3-phase fault of 280 ms duration [17].

These cascading outages eventually lead the system to lose

synchronism at t = 12.36 s as shown in Fig. 3(a). Voltage

magnitudes at buses also go very low resulting in a

blackout as can be seen in Fig. 3(b).

The loss of synchronism and voltage violations are clear

indications that the system should be split. In a practical

implementation, the timing of splitting is determined by the

system operator. Moreover, it depends on the vulnerability

analysis performed after severe disturbances [33]. In this

paper, we implement intentional islanding at t = 9 s fol-

lowing two cascading outages. The proposed approach

provides a suitable islanding solution using online coher-

ency and pre-fault power flow conditions. The proposed

generators coherency algorithm identifies two coherent

generator groups as (G1, G8, G9) and (G2, G3, G4, G5, G6,

G7). We use this information and solve a constrained

spectral clustering problem as described in Section 2.2.

Table 1 shows the allocation of non-generator buses to

coherent generator groups. It suggests that the breaker on

line 3-4 should be opened to form two islands as shown in

Fig. 4, and 74.76 MW of active power is disrupted. Gen-

erators rotor angles also show the clear formation of two

coherent groups after islanding as shown in Fig. 5(a).

Voltage magnitude at buses is within limits as can be seen

in Fig. 5(b). The numerical results suggest that Algorithm

1 is capable of avoiding system-wide blackouts by keeping

voltages at buses within limits and maintaining generators

synchronism.

In this case, G10 can be considered as a separate island

[37] or as a reference [3, 47] during coherency identifica-

tion. We adopted the latter approach in this paper. That is

why it is not directly considered for DTW based coherency

determination. However, its inclusion in the final islanding

solution depends on its location and minimum power flow

disruption based spectral clustering results.

To check the quality of islanding, active and reactive

power generation capacities and load demands are evalu-

ated for each independent island as presented in Table 2.

Generators in each island are capable of fulfilling local

demand after islanding. Hence, the proposed online

coherency algorithm is capable of identifying suit-

able generator groups which can be used as dynamic

constraints for intentional islanding at the expense of no

load shed to avoid a blackout.

The correlation-based method proposed in [17] is car-

ried out as a benchmark. It calculates the correlation

coefficient for each pair of generators and splits them based

on the average correlation value.

The correlation-based method identifies three coherent

groups as (G2, G3), (G4, G5, G6, G7), (G1, G8, G9). The

generation capacity of island 1 is below the local demand

of the island as shown in Table 3. About 145.1 MW load is

shed as shown in Fig. 6(b) with the red color area at the top

of the load bar. Further, as shown in Fig. 7, the proposed

DTW based approach shows a higher value of the stability

measure, hence indicates better tightness for the coherent

generators group formation and will be more transiently

stable.

Moreover, breakers on lines 3-4 and 14-15 are opened to

split the system into three islands. On the other hand,Fig. 3 System losing synchronism and becoming unstable
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Algorithm 1 sheds no loads with fewer islands and breaker

operations. A complete comparison of Algorithm 1 and

correlation method based islanding is in Table 4.

3.2 Case 2: comparison with community detection

method

A 3-phase fault is simulated on line 13-14 near bus 13 at

t = 5 s and cleared after 150 ms with the tripping of the

line. Another 3-phase fault of 6 cycles duration is simu-

lated in the middle of the line 16-17 at t = 7 s [2]. Fol-

lowing these cascading outages, the system loses

synchronism at t = 11.45 s, and voltage magnitudes also go

beyond permissible limits as shown in Fig. 8(a) and

Fig. 8(b) respectively if the islanding is not

implemented.

The proposed coherency algorithm identifies two gen-

erator groups as (G1, G2, G3, G8, G9) and (G4, G5, G6,

G7). Solving the constrained spectral clustering problem,

we get the allocation of non-generator buses as presented in

Table 5. According to the allocation, the breaker on line

14-15 should be opened to split the system into two islands

as shown in Fig. 9, and 33.41 MW power is disrupted.

Rotor angle trajectories shown in Fig. 10(a) indicate the

synchronism of generators after islanding. Voltage mag-

nitudes are also within limits as shown in Fig. 10(b).

Active and reactive power generation/load imbalance is

evaluated for each island as shown in Table 6. Generators

in island 1 are capable of fulfilling the load demand.

However, 137.7 MW load is shed in island 2 for stable and

balanced operation as shown in Fig. 11(a).

We also carry out the community detection method

introduced in [2], and results are summarized in Table 7.

Community detection method identifies three coherent

generator groups as (G2, G3), (G4, G5, G6, G7), (G1, G8,

Table 1 Allocation of non-generator buses

Island 1 Island 2

2,3,17,18,25,26,27,28,29,30,37,38 1,4,5,6,7,8,9,10,11,12,13,14,15,16,19,20,21,22,23,24,31,32,33,34,35,36,39

Fig. 5 Generators rotor angle responses and voltage profiles at

system buses after implementing proposed islanding scheme

Fig. 4 Formation of two islands

Online coherence identification using dynamic time warping for controlled islanding 45

123



G9). The active power generation capacities of island 1 and

island 3 are less than the demand of each island. As a

consequence, 50.6 MW and 96.43 MW loads are shed in

island 1 and 3 respectively as shown in Fig. 11(b). As seen

in Fig. 12, the proposed DTW based approach shows a

higher value of the stability measure, hence will be more

transiently stable. Breakers on lines 3-4, 8-9 and 14-15 are

Table 2 Active and reactive power balances in each island using proposed approach

Island Active power generation capacity

PG (p.u.)

Active power load demand

PL (p.u.)

Reactive power generation capacity

QG (p.u.)

Reactive power load demand

QL (p.u.)

1 16.20 16.13 ? 24 to - 15 3.266

2 45.73 45.36 ? 59 to - 38 14.73

Table 3 Active and reactive power balances in each island using correlation-based algorithm

Island Active power generation capacity

PG (p.u.)

Active power load demand

PL (p.u.)

Reactive power generation capacity

QG (p.u.)

Reactive power load demand

QL (p.u.)

1 22.239 23.69 ? 31 to - 20 7.866

2 23.50 21.595 ? 28 to - 18 6.858

3 16.20 16.13 ? 24 to - 15 3.266

Fig. 6 Active power load shedding comparison

Fig. 7 Silhouette plots for coherent generators groups
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opened to split the system into three islands. A complete

comparison of Algorithm 1 and community detection

method based islanding can be seen in Table 8, which also

indicates superior performance of the proposed

algorithm.

To obtain appropriate islanding, load generation imbal-

ance is not as crucial and critical as ensuring the transient

stability within islands as the system is already recovering

from cascading outages. Moreover, on an island, load

generation imbalance can be compensated through partial

load shedding. However, an island with a negative stability

margin and good load generation imbalance will collapse.

Hence, a proper islanding solution must ensure that

coherent generators remain on the same island to improve

the stability and reduce the chances of further outages

[37].

DTW based coherency determination can still handle the

data even if the compared trajectories are of different

Table 4 Performance comparison between proposal and correlation-based algorithms

Method No. of switching

operations

Power flow disruption

(MW)

Load/generation imbalance

(MW)

Load shed

(MW)

Silhouette

value

Proposed algorithm based

islanding

1 74.76 44.27 0 0.8846

Correlation coefficient based

islanding

2 108.17 342.6 145.1 0.8517

Fig. 8 System losing synchronism and becoming unstable

Table 5 Allocation of non-generator buses

Island 1 Island 2

15,16,19,20,21,22,23,24,33,34,35,36 1,2,3,4,5,6,7,8,9,10,11,12,13,14,17,18,25,26,27,28,29,30,31,32,37,38,39

Fig. 9 Formation of two islands
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length; however, since correlation method is a point-to-

point distance-based method, it requires an equal length of

trajectories to compute the correlation matrix for coherency

evaluation. Further, practical application of community

detection method is also challenging for online identifica-

tion of coherent groups with partial observability of the

system [2].

3.3 Western interconnection power system of North

America

A modified version of Western Interconnection power

system of North America is also employed to validate and

demonstrate the performance of proposed coherency

determination method. It has 29 synchronous generators.

System’s topological structure and parameters can be

found in [48]. Rotor angle trajectories’ data of nine poorly

Fig. 10 Generators rotor angle responses and voltage profiles at

system buses after proposed islanding

Table 6 Active and reactive power balances in each island using proposed approach

Island Active power generation capacity

PG (p.u.)

Active power load demand

PL (p.u.)

Reactive power generation capacity

QG (p.u.)

Reactive power load demand

QL (p.u.)

1 23.50 21.59 ? 28 to - 18 7.16

2 38.43 39.81 ? 55 to - 35 10.83

Fig. 11 Active power load shedding comparison
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damped oscillation cases, named as ND_1, ND_2,…,

ND_9, are utilized to signify the performance and com-

parison of the proposed coherency identification with HC

[18], and ICA [12] methods. Coherency identification

results of the proposed, ICA and HC methods along with

their average silhouette values are shown in Table 9.

Generators’ sets are formed as A = {103, 112, 116, 118},

B = {13, 15, 40, 43, 47, 138, 140, 144, 148, 149}, C = {30,

35, 65, 70, 77, 79}, D = {4, 6, 9, 11, 18, 36, 45, 159, 162},

D1 = {4, 6, 9, 11, 18}, D2 = {36, 45, 159, 162} [44].

Higher value of the metric average silhouette value (Vi
s)

indicates the better generators’ coherency identification. As

can be seen from Table 9, the proposed coherency method

has a higher average silhouette value of each case than HC

and ICA methods. It signifies that the generators identified

by the proposed method are more strongly matched to its

coherent group and poorly matched to its neighboring

groups. Hence, the proposed coherency method is effective

to determine generators’ coherency considering the aver-

age silhouette value.

The proposed DTW based coherency identification

approach can be integrated into the wide area monitoring

system in the control center. Coherent generator groups can

be determined from PMU measurements and provide wide-

area monitoring and control for controlled islanding.

4 Performance of proposed approach with partial
observability and noise

The performance of online PMU measurements-based

algorithms is sensitive to partial loss or delay. In PMU

based wide area measurement system, communication link

failure is common, which may lead the system to be par-

tially observable. Monitoring and control with incomplete

information may result in misoperation. Hence, it is

Table 7 Active and reactive power balances in each island using community detection based algorithm

Island Active power generation capacity

PG (p.u.)

Active power load demand

PL (p.u.)

Reactive power generation capacity

QG (p.u.)

Reactive power load demand

QL (p.u.)

1 12.229 12.735 ? 16 to - 10 5.366

2 23.50 21.58 ? 28 to - 18 6.864

3 26.21 27.175 ? 39 to - 25 5.766

Fig. 12 Silhouette plots for coherent generators groups

Table 8 Performance comparison between proposed and community detection based algorithms

Method No. of switching

operations

Power flow disruption

(MW)

Load/generation imbalance

(MW)

Load shed

(MW)

Silhouette

value

Proposed algorithm based

islanding

1 33.41 328.2 137.7 0.781

Community detection based

islanding

3 120.94 339.03 147.03 0.3061
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Table 9 Comparison of proposed coherency method with HC and ICA method for Western interconnection power system of North America

Case Proposal HC[48] ICA[10]

ND_1 VS
i ¼ 0:8579

CG1 ¼ D

CG2 ¼ CG1

VS
i ¼ 0:5559

CG1 ¼ f45; 159g
CG2 ¼ CG1

VS
i ¼ 0:8502

CG1 ¼ CG2þ CG3

CG2 ¼ f45; 159g
CG3 ¼ fD� CG2g

ND_2 VS
i ¼ 0:6519

CG1 ¼ f36; 116; 118g
CG2 ¼ f30; 35; 65; 79g
CG3 ¼ Bþ D1

CG4 ¼ f45; 103; 159; 162g
CG5 ¼ f70; 77; 112g

VS
i ¼ �0:1717

CG1 ¼ f65g
CG2 ¼ CG1

VS
i ¼ 0:5782

CG1 ¼ Aþ D2

CG2 ¼ Bþ D1

CG3 ¼ C

ND_3 VS
i ¼ 0:8024

CG1 ¼ C

CG2 ¼ CG1

VS
i ¼ �0:2438

CG1 ¼ f6; 11g
CG2 ¼ CG1

VS
i ¼ 0:5273

CG1 ¼ CG2þ CG3

CG2 ¼ Bþ D1

CG3 ¼ f65g
ND_4 VS

i ¼ 0:7553

CG1 ¼ f13; 15; 138; 148g
CG2 ¼ D

CG3 ¼ C

CG4 ¼ B� G1

VS
i ¼ 0:3386

CG1 ¼ f6; 11g
CG2 ¼ CG1

VS
i ¼ 0:6221

CG1 ¼ CG2þ CG3

CG2 ¼ D� f6; 11g
CG3 ¼ f6; 11g

ND_5 VS
i ¼ 0:7826

CG1 ¼ C þ f112g
CG2 ¼ CG1

VS
i ¼ �0:1541

CG1 ¼ f6; 11g
CG2 ¼ CG1

VS
i ¼ 0:5273

CG1 ¼ CG2þ CG3

CG2 ¼ Bþ D1

CG3 ¼ f65g
ND_6 VS

i ¼ 0:8706

CG1 ¼ D

CG2 ¼ CG1

VS
i ¼ 0:5735

CG1 ¼ f45; 159g
CG2 ¼ CG1

VS
i ¼ 0:8535

CG1 ¼ CG2þ CG3

CG2 ¼ D� f6; 11g
CG3 ¼ f6; 11g

ND_7 VS
i ¼ 0:8578

CG1 ¼ D

CG2 ¼ CG1

VS
i ¼ 0:518

CG1 ¼ f45; 159g
CG2 ¼ CG1

VS
i ¼ 0:8439

CG1 ¼ CG2þ CG3

CG2 ¼ D� f6; 11g
CG3 ¼ f6; 11g

ND_8 VS
i ¼ 0:8533

CG1 ¼ D

CG2 ¼ CG1

VS
i ¼ 0:5401

CG1 ¼ f45; 159g
CG2 ¼ CG1

VS
i ¼ 0:8545

CG1 ¼ CG2þ CG3

CG2 ¼ D� f6; 11g
CG3 ¼ f6; 11g

ND_9 VS
i ¼ 0:8698

CG1 ¼ f70; 77; 112g
CG2 ¼ Bþ D1þ f103g � f6; 11g
CG3 ¼ f35; 65g
CG4 ¼ f6; 11; 45; 159; 162g
CG5 ¼ f36; 116; 118g
CG6 = f 30,79g

VS
i ¼ 0:1651

CG1 ¼ f6; 11g
CG2 ¼ CG1

VS
i ¼ 0:8575

CG1 ¼ CG1

CG2 ¼ Bþ D1
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important to ensure that the coherency identification

method is robust to some extent against partial loss/delay

of PMU data. Moreover, due to the ever-decreasing cost of

PMUs, as compared to benefits gained in the form of

increased system observability, their deployment is mas-

sively increasing. This increased dependency on PMUs

also poses some challenges for online approaches in case of

partial observability of the system. This area has not been

widely explored, specifically for online coherency identi-

fication application. Some researchers also reported it as

the limitation of their proposed coherency identification

approach [2].

The proposed online coherency approach is applicable

in the case of partial observability of the system due to its

non-linear nature of similarity computation as explained in

Section 2. Consider case 1 mentioned in Section 3, where

we have cascaded outages of line 17-16 and 2-1 at t = 5 s

and t = 7 s respectively. We considered PMUs on generator

buses only. To analyze the performance of the proposed

online coherency algorithm for a partially observable sys-

tem, we intentionally remove the initial measurement

points for each PMU. Figure 13 shows the experimental

results. The green color in each curve indicates the lost part

of PMU data. We determine the coherency through

the proposed approach. After determining the coherency

with such incomplete PMU data, we compare the coher-

ency results with the results obtained without loss of

measurements. The algorithm still gives us the same

coherency results. Thus, the proposed online coherency

approach is robust to a considerable extent for loss/delay of

PMU data.

In this paper, we considered the worst-case scenario

when a certain consecutive portion of PMU measurements

is lost. Measurement loss randomly is an easier problem to

solve as compared to the one discussed in this paper.

Further, we considered measurement loss rate ranging 5%-

45% for different PMU channels as shown in Fig. 13.

To validate the applicability of the proposed coherency

identification method for actual PMU measurements in the

presence of noise, white Gaussian noise is added for sim-

ulating the measurement noise.

Rotor angle trajectories and their coherency grouping as

suggested by the proposed coherency method are shown in

Fig. 14. Reference [49] experimentally recommended an

SNR value of 45 dB as a good approximation for real PMU

data. However, we test the performance with a higher level

of noise, i.e., 30 dB. Figure 15 shows the generator

grouping identified by the proposed coherency method in

the presence of noise. It can be seen that the coherency

Fig. 13 Performance of proposed coherency algorithm with partial

loss of PMU data

Fig. 14 Generators’ coherency grouping identified by proposed

coherency method without noise

Fig. 15 Generators’ coherency grouping identified by proposed

coherency method in the presence of white Gaussian noise
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grouping with white Gaussian noise is the same as the one

without noise. Hence, the performance of the proposed

method is not affected by a certain level of noise.

5 Conclusion

Splitting the system into self-sustained islands is the last

resort to maintain transient stability. This paper presents a

novel methodology for generator coherency identification.

It uses post-fault rotor angle trajectories of generators for

coherency determination. For non-generator buses alloca-

tion, constrained spectral clustering is applied to minimize

power flow disruption, considering coherency matrix as a

constraint. Future work includes: � allocation of non-

generator buses based on multiple constraints like

restoration constraint, thermal limits of transmission lines,

etc., in addition to generator coherence constraint; ` pre-

vention of blackouts using energy storage system without

going into islanding operation mode; ´ further testing of

the proposed methodology on the real-time simulator for

hardware-in-the-loop simulation.
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Appendix A

A simple example to further clarify the formulation and

implementation of the DTW algorithm is presented here.

Consider two trajectories, tr1(t) = {-0.60, -0.65, -0.71,

-0.58, -0.17, -0.77, 1.94} and tr2(t) = {-0.87, -0.84, -0.85,

-0.82, -0.23, 1.95, 1.360.60, -0.29}. First local distance

measures, between each pair of trajectories as formulated

in (1), are calculated. A matrix of size 1097 is obtained as

shown in Fig. A1. Then starting from the element (1,1),

multiple summing paths can be traced to reach the final cell

(10,7) as described in (2). Out of these possible summing

paths, an optimal path which would sum up to minimum

distance will represent the DTW distance between trajec-

tories tr1(t) and tr2(t) as expressed in (3) and shown in

Fig. A1.
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