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Abstract This paper proposes a day-ahead dispatch

framework of thermostatically controlled loads (TCLs) for

system peak load reduction. The proposed day-ahead

scheduling framework estimates the user’s indoor thermal

comfort degree through the building thermal inertia mod-

elling. Based on the thermal comfort estimation, a day-

ahead TCL scheduling model is formulated, which consists

of 3 stages: � TCL aggregator estimate their maximal

controllable TCL capacities at each scheduling time

interval by solving a optimization model; ` the system

operator performs the day-ahead system dispatch to

determine the load shedding instruction for each aggrega-

tor; and ´ the TCL aggregators schedules the ON/OFF

control actions of the TCL groups based on the instruction

from the system operator. A heuristic based optimization

method, history driven differential evolution (HDDE)

algorithm, is employed to solve the day-ahead dispatch

model of the TCL aggregator side. Simulations are con-

ducted to validate the proposed model.

Keywords Thermostatically controlled load, Demand side

management, Thermal comfort model, Demand response,

Direct load control

1 Introduction

With the development of smart gird, demand side

management (DSM) has been considered as an effective

mean to improve the energy efficiency and economic

operation of the grid [1]. Many research & industrial efforts

have been made to encourage customers participate in the

demand response (DR) programs. Generally, DR tech-

niques can be categorized into two classes: direct load

control (DLC, also known as the dynamic load control or

demand dispatch) [2] and price-based DR (also known as

the indirect load control) [3]. In DLC, the system operator
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directly adjusts the power demand through remote control

devices, with the aim to accomplish specific objectives

(e.g., peak load reduction, frequency regulation, etc.). In

the price-based DR, customers actively adjust their energy

consumptions to respond to the price signals (e.g., time-of-

use (TOU) pricing, real-time pricing (RTP), etc.). Com-

paring with the price-based DR, DLC can provide more

reliable services while aiming to minimize customers’

comfort disturbances.

Among different kinds of loads, thermostatically con-

trolled loads (TCLs) (such as the air conditioners (ACs),

water heaters, refrigerators, etc.) are often considered as

excellent candidates for DR programs due to their capa-

bilities of storing thermal energy [4]. There have been

some industrial programs established to aggregate the

residential ACs for peak load shaving and emergent load

management, such as the SmartAC program of Pacific Gas

& Electric (PG&E) [5]. In the literature, the DLC of TCLs

are also well studied. Ramanathan and Vittal [6] outlined

the fundamental requirements of DLC and presented a

general optimization framework to do the feeder-scale load

reduction while minimizing the residents’ thermal comfort

disruption; Hao et al. [7] transformed the conventional

dead-band dynamic model of the TCL into the continuous

power model, and then modelled the aggregated TCLs as a

stochastic battery model. Then, Hao et al. [7] applied the

aggregated battery model in a frequency regulation appli-

cation; Bashash and Fathy [8] developed a Lyapunov-

stable sliding mode controller to model the TCLs, based on

a partial differential equation framework; Vrettos and

Anderson [9] proposed a two-stage control method for

TCLs. In the first stage, a day-ahead scheduling model is

proposed to determine the optimal TCL dispatch by solving

an AC optimal power flow. In the second stage, a real-time

control model is proposed to allocate the desired set points

to individual TCL. Mathieu et al. [10] used the Markov

Transition Matrix to model the populated TCLs to do the

load reduction. Luo et al. [11] studied the day-ahead

scheduling strategy of a building aggregator; Luo et al. [12]

proposed a decomposed dispatch framework for large scale

TCLs; Luo et al. [13] studied the coordinated dispatch

strategy for TCLs and generation units. Luo et al. [14, 15]

studied the impact of controllable TCLs on the microgrid

operation.

In most of existing works [6–8], the general thermal

inertia model of the TCL is adopted to estimate the indoor

temperature profile. And the resident’s thermal comfort is

considered by properly scheduling the ON/OFF states of

TCLs so that the indoor temperature profiles are controlled

within the pre-set temperature dead-band. With the devel-

opment of two-way communication technology, it would

be feasible to establish more accurate models to estimate

users’ thermal comfort degree. There have been many

efforts done in this aspect in the field of heating, ventilating

and air conditioning (HVAC), where the researchers

developed sophisticated thermal comfort estimation

strategies to optimize the energy consumption of a house/

building [16, 17].

Reference [11] applied an International Standard Orga-

nization (ISO) standard 7730 thermal comfort model [18]

into the DLC scheme to design a day-ahead scheduling

model for a single residential AC aggregator. The ISO7730

thermal comfort model can estimate the thermal comfort

degree of the residents more precisely, and it has been

widely used in the building’s real-time energy management

[17]. However, one technical obstacle of practically

applying the ISO7730 model in the day-ahead DLC

scheme is that the thermal comfort model requires many

stochastic parameters, which are sometimes difficult to be

accurately estimated in the day-ahead stage.

In this paper, we report further works carried out along

the direction in [11]. The major contributions of this paper

include:

1) A human thermal comfort estimation module is

developed for the load control, which includes two

components reported in the building environment

science, i.e. (i) an advanced thermal inertia model,

which can precisely capture the dynamical indoor

temperature variations caused by the TCL, and (ii) a

simplified thermal comfort model, which estimates the

thermal comfort of the residents. The simplified

thermal comfort model can provide good approxima-

tions for the ISO7730 standard model while relying on

only three stochastic parameters. These 3 parameters

are easy to be forecasted in the day-ahead stage. To the

best of our knowledge, this is the first research to apply

the thermal inertia model and simplified thermal

comfort model on DLC;

2) A 3-stage day-ahead TCL scheduling model is

proposed. In the first stage, the TCL aggregator solve

a capacity estimation model to estimate their maxi-

mum interruptible TCL capacities. In the second stage,

the system operator solves a day-ahead dispatch model

to determine the load shedding instructions for TCL

aggregators. In the third stage, based on the load

shedding instructions, the TCL aggregators schedule

the ON/OFF states of the TCLs to follow the

instructions.

The remaining parts of this paper are organized as fol-

lows. In Section 2, the thermal comfort estimation module

is introduced; in Section 3, the day-ahead TCL scheduling

framework is presented; in Section 4, the approach to solve

the proposed models is discussed; in Section 5, case study

results are presented; finally, conclusions are drawn in

Section 6.
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2 Thermal comfort estimation module

In DLC, ensuring the resident’s comfort is a major

concern. In this paper, a residential thermal comfort esti-

mation module is developed. Two components are included

in this module. Firstly, an advanced thermal inertia model

is used, which can accurately capture the thermal dynamics

of the units; secondly, based on the indoor temperature

calculated by the thermal inertia model, a simplified ther-

mal comfort model is used to estimate the residents’ ther-

mal comfort degree.

2.1 Thermal inertia model

An accurate modeling of the building’s thermal dynamic

process is fundamental to ensure the resident’s thermal

comfort. Traditional thermal inertia models take into

account of parameters like internal and external tempera-

tures, but only considers the thermal resistance of walls and

neglects walls’ thermal capacitance (shown in Fig. 1a). In

this paper, a more accurate two-parameter model is used

and is shown in Fig. 1b. The unit is divided into two

components, one of which is the internal of the house and

the other is the additional thermal mass such as walls with

much larger thermal capacitance.

The indoor air temperature of a unit varies considerably

when considering thermal capacitance of walls. The reason

is the heat gain of a unit consists two parts: the relatively

steady-state transmission caused by the indoor air and

outdoor surroundings temperatures differences and the

unsteady-state gain as a result of the changing intensity of

solar radiation on the external walls. The unsteady-state

heat flow across walls is therefore very complicated as part

of heat passing through walls is captured and later released

to either the indoor air or the outdoor ambient. Hence, the

thermal dynamic model of a two-parameter model could be

expressed as [19].

dTrðtÞ
dt

¼ 1

Ma � Cpa
dQgain;a tð Þ

dt
� dQex;w;r tð Þ

dt
� dQac tð Þ

dt

� �

ð1Þ

dTw tð Þ
dt

¼ 1

Mw � Cpw
dQgain;w tð Þ

dt
þ dQex;w;r tð Þ

dt

� �
ð2Þ

dQgain;a tð Þ
dt

¼ Tamb � Tr

Req

ð3Þ

dQex;w;r tð Þ
dt

¼ Tw � Tr

Rwr

ð4Þ

dQac tð Þ
dt

¼ COP � Pac ð5Þ

dQgain;w tð Þ
dt

¼ Tamb � Tw

Rwa

ð6Þ

where COP is the coefficient of performance of TCL; Cpa
is the heat capacity of air; TrðtÞ represents the indoor air

temperature at time t; Ma is the mass of the air inside the

house; Qgain;a tð Þ represents the heat gain by the indoor air

from the ambient; Qgain;w tð Þ represents the heat gain by the

wall from the ambient; Qac tð Þ is the cooling energy

delivered by the TCL; Qex;w;r tð Þ represents the heat

exchange between the door and indoor air; Pac is the rated

power of the TCL; Tw represents the wall temperature; Tamb
is the outdoor ambient temperature; Req is the equivalent

thermal resistance of the house envelop; Rwr is the thermal

resistance between the wall inner surface and the indoor

air; Rwa are is the thermal resistance between the wall outer

surface and the ambient.

Previous works [13, 20] have shown that different

complexities of models can pose significant impacts on the

accuracy of cooling energy consumption. The thermal

dynamic model in (1)–(5) can be linearized for convenient

calculating the indoor temperature variation. For each

dispatch time interval, Dt is divided into K steps. Provided

that K is sufficiently large, we can assume that the tem-

peratures of the ambient, walls, and the indoor air within

any time step are constant. Hence, the change in temper-

atures can therefore be presented by the temperature dif-

ference between two adjacent time steps. Therefore, the

thermal dynamic model can be linearized as (7)–(10).

TrðkÞ ¼ 1 � 1

Ma � Cpa � Req

� �
Tr;init þ

1

Ma � Cpa � Req

� Tamb;init

þ Tw;init � Tr;init

Mair � Cpa � Rwr

� Sac;init
Qac

Ma � Cpa
k ¼ 1

ð7Þ

TrðkÞðkÞ ¼ 1 � 1

Ma � Cpa � Req

� �
Trðk � 1Þ þ 1

Ma � Cpa � Req

Tamb k � 1ð Þ

þ Tw k � 1ð Þ � Tr k � 1ð Þ
Ma � Cpa � Rwr

� SacðkÞ
Qac k � 1ð Þ
Ma � Cpa

8k 2 ½2;K�

ð8Þ

Tw kð Þ ¼ Tw;init þ
Tamb;init � Tw;init

Mw � Cpw � Rwa

þ Tr;init � Tw;init

Mw � Cpw � Rwr

k ¼ 1

ð9Þ
Fig. 1 Traditional thermal inertia models
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Tw kð Þ ¼ Tw k � 1ð Þ þ Tamb k � 1ð Þ � Tw k � 1ð Þ
Mw � Cpw � Rwa

þ Tr k � 1ð Þ � Tw k � 1ð Þ
Mw � Cpw � Rwr

8k 2 ½2;K�

ð10Þ

where Ma and Mw are mass of the air inside of the house

and the walls; Tr;init is the initial indoor temperature; SacðkÞ
represents the state of the TCL at time k (0-OFF, 1-ON);

Cpw is the heat capacity of the wall.

2.2 Simplified thermal comfort model

Generally, the ISO 7730 thermal comfort model [18]

establishes the analytical determination and interpretation

of human’s thermal comfort degree by two indices: pre-

dicted mean vote (PMV) and predicted percentage of dis-

satisfied (PPD). PMV predicts the mean value of votes of a

large group of people on the ISO thermal sensation scale.

Based on the PMV value, PPD predicts the percentage of a

large group of people likely to feel discomfort. Details of

the ISO 7730 model can be found in [11, 18].

There are 6 stochastic parameters in the ISO7730 model:

4 environment factors (air temperature, air relative

humidity, air velocity, and mean radiant temperature) and

two individual factors (activity level and clothing insula-

tion). Although the efficiency of the ISO7730 model has

already been verified by both of the lab experiments and

field measurements [21], the fact that it contains too many

stochastic parameters limits its practical application in the

grid-level, day-ahead DLC scheme. In order to reduce the

number of required parameters, Barrati et al. [22] proposed

a simplified thermal comfort model. It uses only the air

temperature and relative humidity as inputs. The reliability

of the simplified model was validated with a wide range of

clothing conditions and metabolic rate values. The sim-

plified thermal comfort model, expressed in (11), is very

useful in the DLC day-ahead scheduling because of the less

stochastic variables.

PMV ¼ aTa þ bPv � c ð11Þ

Pv ¼ rh � 10 � eð16:6536�4030:183Þ=ðTaþ273Þ ð12Þ

where rh is the relative humidity (%); Ta is the ambient

temperature (Celsius degree). The values of coefficients a,

b and c are determined based on the third parameter, i.e.

clothing condition (Icl), shown in Table 1. Based on the

PMV value, the PPD value could be calculated, just the

same with the ISO 7730 model.

PPD ¼ 100 � 95 � expð�0:03353 � PMV4 � 0:2179

� PMV2Þ ð13Þ

3 Day-ahead TCL scheduling framework

There are 3 stages in the proposed day-ahead TCL

scheduling framework: interruptible TCL capacity esti-

mation, day-ahead system dispatch in the system operator

side, and day-ahead TCL dispatch in the TCL aggregator

side. The schematic of the framework is depicted in Fig. 2,

and the models of these 3 stages are presented as below.

It is worth noting that for the peak load shaving appli-

cation, the control of TCLs is with high frequency base

(often on one or multiple minutes), and the system dispatch

is with low frequency base (often 15–60 minutes,

depending on different electricity market structures).

Therefore, we simply use the notations t and t0 to denote

the time indices of the system dispatch interval and the

TCL control interval, respectively. We also use the nota-

tions T and T 0 to denote the total number of the system

dispatch intervals and the TCL control intervals,

respectively.

3.1 Interruptible capacity estimation for TCL

aggregator

When participating in the day-ahead scheduling pro-

gram, a TCL aggregator needs to estimate the maximum

interruptible TCL capacity at each dispatch interval. Since

different TCL control actions at one time interval will

affect the indoor temperature trajectories and further affect

the control actions of the following time intervals, the

aggregator solves following model to maximize the inter-

ruptible TCL capacity over the whole scheduling horizon.

maxF1 ¼
XT 0

t0¼1

PLS
a ðt0Þ ð14Þ

PLS
a ðt0Þ¼

XNGa

i¼1

1 � sa;iðt0Þ
� �

� PGrate
a;i ð15Þ

Table 1 Coefficients of simplified thermal comfort model [22]

Icl Sex a b c

0.25–0.5 Male 0.2630 0.3027 6.8066

Female 0.2658 0.1072 6.7232

Both 0.2803 0.1717 7.1383

0.51–1.0 Male 0.1162 - 0.1338 2.2011

Female 0.2424 0.0614 5.5869

Both 0.1383 0.0269 3.0190

1.01–1.65 Male 0.1500 - 0.1668 2.5121

Female 0.1494 - 0.1056 2.6408

Both 0.1478 - 0.1371 2.5239
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PGrate
a;i ¼

XNTCL
a;i

j¼1

P
TCL;rate
a;i;j ð16Þ

where PLS
a ðt0Þ is the total shed power of aggregator a at

time t0 (kW); NGa is the number of TCL groups managed

by the TCL aggregator a; sa;iðt0Þ represents the state of the

ith TCL group of the ath aggregator at time t0 (0-OFF, 1-

ON); PGrate
a;i represents the aggregated rated power of ith

TCL group of the ath TCL aggregator; NTCL
a;i is the number

of TCLs of the ith TCL group of the ath aggregator; P
TCL;rate
a;i;j

represents the rated power of the jth TCL of the ith TCL

group of aggregator a (kW). Models (14)-(16) are sub-

jected to following constraints.

1) TCL group state constraint

sa;iðt0Þ 2 f0; 1g 8a ¼ 1 : A; i ¼ 1 : NGa; t
0 ¼ 1 : T 0

ð17Þ

2) Thermal comfort constraint. It strictly constraints the

mean PPD trajectory of each TCL group below a pre-

specified PPD threshold, where the function PPD �ð Þ
represents model (13).

PPDa;iðt0Þ �PPDlimit

8a ¼ 1 : A; i ¼ 1 : NGa; t
0 ¼ 1 : T 0 ð18Þ

PPDa;iðt0Þ ¼ PPD PMVa;iðt0Þ
� �

ð19Þ

PMVa;iðt0Þ ¼

PNTCL
a;i

j¼1

PMVa;i;jðt0Þ

NTCL
a;i

ð20Þ

where a and A are index and number of TCL aggregators;

PPDa;iðt0Þ and PMVa;iðt0Þ are mean values of PPD and

PMV of the ith TCL group of ath aggregator at time t0;
PMVa;i;jðt0Þ is the PMV value of the jth TCL of the ith TCL

group of aggregator a at time t0.
3) Minimum online time constraint. It applies to avoid

mechanical weariness of the TCL due to frequently

turning compressors on/off.

sona;iðt0Þ � sonmin 8a ¼ 1 : A; i ¼ 1 : NGa; t
0 ¼ 1 : T 0

ð21Þ

sona;iðt0Þ¼ sona;iðt0 � 1Þþsa;iðt0Þ � Dt0
� �

� sa;iðt0Þ ð22Þ

where sona;iðt0Þ is the accumulated online time of the ith TCL

group of the ath aggregator at time t0; sonmin is the minimum

required online time.

Since the time interval frequencies of TCL control and

system dispatch are different, TCL aggregators therefore

calculate the final load shedding capacity of each system

dispatch interval by averaging the capacities of TCL con-

trol intervals. By taking into account some uncertain situ-

ations, the averaged capacity is multiplied by the dispatch

margin factor c (c is within (0, 1]).

EPaðtÞ¼

PtþDt

t0¼t

PNGa

i¼1

PLS
a ðt0Þ

tþDt
� c ð23Þ

where EPaðtÞ is the estimated interruptible TCL power

capacity of aggregator a at time t.

3.2 Day-ahead dispatch model for system operator

After receiving bids from load aggregators, the system

operator solves model (24) to determine the load reduction

amount of each aggregator at each system dispatch time

interval. The objective of the system dispatch is to mini-

mize the load shedding cost.

minF2¼
XT
t¼1

XA
a¼1

prclcðtÞ � LSaðtÞ ð24Þ

Historical database

Meteorological data forecast 

Capacity estimation 
model

HDDE algorithm

Actions
● Generate 

capacity data
● Submit the bids

Inte rruptible TCL capacity estimation module

Historical database

System load forecast 

Day-ahead dispatch model

ALMP/IPORT

Action
● Send load shedding 

instructions to the 
aggregators

System dispatch module

Bidding information

TCL dispatch module

Load shedding instructions

Inputs
● Meteorological data
● Dispatch instructions
● Thermal inertia model
● Residents’ behaviour data
● Building information 

TCL dispatch model

HDDE algorithm

Actions
● Control the 

TCL groups

Inputs
● Residents’ behaviour data
● Building information
● Thermal inertia model

Fig. 2 Schematic of the day-ahead TCL dispatch framework
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where LSaðtÞ is the load shedding instruction for aggregator

a at time t; prclcðtÞ is the market clearing price at time t.

Model (24) is subjected to following constraints:

0� LSaðtÞ�EPaðtÞ t ¼ 1 : T ð25Þ

XA
a¼1

LSaðtÞ�PsysðtÞ t ¼ 1 : T ð26Þ

where PsysðtÞ is the total required shed power of the system

at time t. Note that the system operator’s day-ahead dis-

patch task in an actual day-ahead power market also

includes accepting bids from the generation side and

making power output allocations among units. However, in

this paper we do not consider the scheduling of generation

side, but focus on the application scenario in which the

system operator schedules the load reduction amounts

among different load aggregators, so as to satisfy the sys-

tem peak load reduction requirement.

3.3 Day-ahead scheduling model for TCL

aggregator

After solving model (24), the system operator sends

dispatch results to each TCL aggregator. The load shedding

deviations between the actual and instructed load shedding

will bring penalty costs to the load aggregator (e.g. the

imbalance energy prices in some market structure), there-

fore each aggregator needs to solve a day-ahead dispatch

model to schedule the ON/OFF states of TCLs, so that the

total load shedding deviations over the DLC period can be

minimized:

minF3 ¼
XT
t¼1

XtDt
t0¼ðt�1ÞDtþ1

ðPLS
a ðt0Þ � LSaðtÞ

�� �� ð27Þ

where Dt is the duration of a system dispatch interval;

PLS
a ðt0Þ is the total shed power of aggregator a at time t’.

The model is subjected to following constraints:

1) TCL group state constraint

sa;iðt0Þ 2 f0; 1g 8a ¼ 1 : A; i ¼ 1 : NTCL
a ; t0 ¼ 1 : T 0

ð28Þ

2) Thermal comfort constraint

PPDa;iðt0Þ �PPDlimit

8a ¼ 1 : A; i ¼ 1 : NGa; t
0 ¼ 1 : T 0 ð29Þ

3) Minimum online time constraint

sona;iðt0Þ � sonmin 8a ¼ 1 : A; i ¼ 1 : NGa; t
0 ¼ 1 : T 0

ð30Þ

4 Approach to solve the models

In the proposed day-ahead TCL scheduling framework,

there are three optimization models need to be solved. In

the system operator side, the day-ahead load shedding

dispatch model (24) is a convex optimization problem with

continuous variables and linear constraints. This model can

be directly solved by the linear programming technique. In

this study, the commercial optimization software AMPL

[23] is employed to solve model (24).

For the TCL aggregator, both the interruptible TCL

capacity estimation model (14) and day-ahead TCL dis-

patch model (27) are non-linear, complex combinatorial

optimization problems. Control actions of the TCL groups

at a given time interval are dependent with the control

actions at other time intervals. Considering G TCL groups

and T 0 TCL control intervals, for both models the number

of search path for the global optimization is in the order of

2G�T 0
. This would be a tremendous, if not impossible,

search task for the global optimization for models (14) and

(27). In order to effectively search for the global/near-

global solutions in affordable time scales, we employ a

heuristic based optimization method proposed in [24],

history driven differential evolutionary (HDDE) algorithm,

to solve the two models.

4.1 Introduction of HDDE

HDDE is based on the differential evolutionary (DE)

algorithm, which is proposed by Storn and Price in 1997

[25] and has been applied in many industrial applications.

In the original DE, most of the solutions, which are gen-

erated in the search process, are discarded. Only the best

solution will be memorized. The motivation of HDDE is

that the discarded solutions can actually provide useful

information to guide the search. In HDDE, a binary parti-

tioning (BP) tree is constructed to record all the historically

generated solutions, referred as the BP fitness tree. HDDE

evolves the population using the same mutation and

crossover mechanisms of DE. There are two important

steps that distinguish HDDE from DE: BP fitness tree

updating and BP fitness tree guided search.

In the BP fitness tree updating process, each newly

generated solution will be inserted into the tree. By using a

certain distance metric, the entire search space of the

problem is divided into multiple disjoint sub-spaces. In the

BP fitness tree guided search process, the mutated indi-

vidual will be generated by using the pseudo-gradient and

global search operators, which use certain selection algo-

rithms to select the solutions stored in the BP fitness tree to

generate the mutant. The pseudo-gradient search operator

is used to guide the search toward the local optimum to
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speed up the convergence of the algorithm; the global

search operator is used to improve the global search

capability of the algorithm. Detailed principles of HDDE

can be found in [24].

4.2 HDDE-based approach for TCL day-ahead

dispatch

By using HDDE to solve models (14) and (27), each

individual represents a TCL dispatch solution and can be

coded as a vector with NGa � T 0 dimensions. Value of the

dth dimension represents ON/OFF state of the

modðd;NGaÞ
th TCL group at the time of floorðd=GaÞ,

where modð�Þ represents the modulus operation and

floorð�Þ represents round down operation. The whole pop-

ulation can be expressed as follow.

*

*

*

11 12 1 1( +1) 1(2 ) 1( )

21 22 2 2( +1) 2(2 ) 2( )

1 2 ( +1) (2 ) ( )

 ... ... ...

 ... ... ...

... ... ...

a a a a

a a a a

a a a a

G G G G T

G G G G T

P P PG P G P G P G T

x x x x x x

x x x x x x

x x x x x x

⎤⎡
⎥⎢
⎥⎢
⎥⎢
⎥⎢
⎥⎢
⎥⎢
⎥⎢
⎦⎣

ð31Þ

Models (14) and (27) are with the same constraints. For

each model, the constraint handling procedures of an

individual are outlined below.

Step 1: Set the dimension index j=0;

Step 2: If pij¼ 1, skip to Step 6; otherwise, check if the

minimum online time constraint is satisfied. If ‘‘yes’’,

then go to Step 3; if ‘‘no’’, then set pij¼1 and go to Step

4;

Step 3: Calculate the mean indoor air temperature value

at time floorðd=GaÞ by using the TCL aggregation model

in Section 2, and calculate the PPD value (for models

(20) and (40), the simplified thermal comfort model is

used; for model (44), the standard thermal comfort

model is used). Check if the thermal comfort constraint

is satisfied. If ‘‘no’’, then set pij¼1;

Step 4: Set j=j?1. If j¼GaT
0 � 1, then terminate the

constraint handling process; otherwise, go to Step 2.

The HDDE-based approach for models (14) and (27) is

summarized in Table 2 based on the constraint handling

strategy and its searching mechanism. Firstly, HDDE ran-

domly generates p individuals to form a population, and the

constraint handling algorithm is applied in each individual

(Lines 2–3). The population is then evaluated and each

individual is inserted into the BP fitness tree (Lines 4–9). In

each generation, the mutant is generated by the BP fitness

tree guided search, and the BP fitness tree is updated by

using the newly generated individuals (Lines 11–19).

Finally, the optimal solution is output (Line 21).

5 Simulation study

The proposed models are implemented in MATLAB.

The AMPL solver is used to solve model (27). The

MATLAB programs invoke the AMPL/IPOPT solver

through the external command interface to perform the

upper-layer day-ahead dispatch. The results of the AMPL/

IPOPT are output into a text file, which is retrieved by the

MATLAB programs to do the further optimization.

All the simulation programs are performed on a 4 core,

64-bit DELL Workstation with Intel � Core TM i5-2400

CPU and RAM 4 Giga-byte.

5.1 Sampling and grouping of units

In this paper, the Monte-Carlo simulation method is

employed to generate unit samples where TCLs are loca-

ted. We assume that the occupants are with the moderate

activity environment, and thus set the value of M to be 1.2.

This assumption covers many typical building scenarios,

such as dwellings, offices, classrooms, etc. [22]. Several

parameters of the thermal comfort estimation module are

treated the stochastic parameters, shown in Table 3. The

Monte-Carlo simulation is then performed to repeatedly

sample the stochastic parameters to generate heterogeneous

unit scenarios.

Table 2 HDDE based TCL dispatch

1.     Prepare input parameters for model (14) and (27), respectively
2.     Initialize the population ={ },  1, 2,...,iP x i p=
3.     Apply the constraint handling algorithm for each individual

of P
4.     Evaluate P with the objective function of model (14) and (27)
5.     Find the historical optimal solution 0x
6.     Initialize BP fitness tree T to let it only contain the root node
7.     For i=1 to P
8.          UpdateBPFitnessTree (xi, f(xi), T)
9.     Next i
10.   For g=1 to maximum iteration number Ng
11.        For i=1 to P
12.             BPFitnessTreeGuidedSearch(xi, T)
13.        Next i
14.        Apply the constraint handling algorithm for each 

individual of P
15.        Evaluate P with the objective function of model (14) and 

(27)
16.        Update optimal solution 0x

17.        For i=1 to P
18.             UpdateBPFitnessTree (xi, f(xi), T)
19.        Next I
20.   Next g
21.  Output the optimal solution 0x
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After the Monte-Carlo simulation, the C-means clus-

tering method [25] and its MATLAB implementation are

employed to cluster the unit samples based on the param-

eter similarity, and the samples are finally grouped to

multiple groups, where each group includes samples

belonged to the same cluster.

5.2 Simulation setup

Totally 5558 TCL samples are generated. 4 TCL

aggregators are set up (denoted as Agg A, B, C, and D) and

each one manages multiple TCL groups. Agg A and Agg B

are set to have larger capacities than Agg C and Agg D.

The general information of the TCL groups is shown in

Table 4.

The DLC is assumed to be performed by the grid

operator for two hours, i.e. from 13:00 to 15:00, and the

dispatch interval is assumed to be every 0.25 hours. The

temperature and relatively humidity profiles are obtained

by the Guangzhou Central Meteorological observatory,

China [26] are used for the simulation, shown in Fig. 3.

The value of PPDlimit is set to 20%, and the value of sonmin is

set to 1/12 hours (i.e. 5 minutes. For HDDE, we set the

control parameters by several trails: F ¼ 0:7 and Cr ¼ 0:8;

the population size and maximum iteration time are set to

200 and 800, respectively.

Table 3 Parameter settings of Monte-Carlo simulation

Parameter name Value

Unit wall length Nð10; 0:5Þ
Unit wall width Nð7; 0:5Þ
Unit wall height Nð2:7; 0:5Þ
Wall material Randomly selected as 1, 2, or 3: 1-timber; 2-brick; 3-concrete

Thermal conductivity of the unit wall Timber: 0.14; Bricks: Uð0:6; 1:0Þ; concrete: Uð0:4; 0:7Þ
COP Nð2:7; 0:5Þ
Window area (Areawd) 0\Areaunit � 45, Areawd follows Uð1; 3Þ

45\Areaunit � 60, Areawd follows Uð4; 6Þ
60\Areaunit � 100, Areawd follows Uð8; 10Þ
100\Areaunit � 150, Areawd follows Uð12; 15Þ

Rated power of TCL 0\Areaunit � 45, Prated follows Uð0:7; 1:5Þ
45\Areaunit � 60, Prated follows Uð1:6; 2:1Þ
60\Areaunit � 100, Prated follows Uð2:5; 3:5Þ
100\Areaunit � 150, Prated follows Uð3:5; 4:2Þ

Note : Nð�Þ denotes the normal distribution; Uð�Þ denotes the uniform distribution; Areaunit means the area of the unit

Table 4 TCL aggregator information

Name Group count TCL count Total capacity (kW)

Agg A 70 1792 6956

Agg B 60 1804 6019

Agg C 40 1003 3822

Agg D 33 959 3268

Table 5 Estimated capacities of TCL aggregators

Time Agg A Agg B Agg C Agg D PsysðtÞ

13:00–13:15 2817 2882 1628 1304 3459

13:15–13:30 1997 2084 789 1057 4877

13:30–13:45 2304 2249 810 1144 5232

13:45–14:00 2312 2221 1066 1198 5876

14:00–14:15 2505 2313 1226 1247 6430

14:15–14:30 3084 3037 1671 1332 7849

14:30–14:45 4372 4600 2535 2122 11656

14:45–15:00 4203 4061 2398 1767 11799

Note: The units of all the data items are kilowatt

Fig. 3 One-day air temperature and humidity profiles
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5.3 Numerical analysis

The day-ahead capacity estimation result of the 4

aggregators are shown in Table 5. From Table 5, a general

trend can be observed that the high outdoor temperature

leads to less controllable TCL capacity (the first several

intervals). After estimating the interruptible TCL capacities

at each dispatch time interval, the TCL aggregators submit

the bids to the system operator. Many factors would be

considered by the load aggregators to determine the bid

prices, such as the risk aversion level, behaviors of other

competitors, etc. The optimal bidding strategy is worthy

studied itself. Since the bidding strategy is not the focus of

this paper, in this study we assume that all bidding

strategies based on the load aggregator’s marginal cost

curve. As a demonstration, Fig. 4 depicts the bidding curve

of the Agg A.

After receiving the bids of the aggregators, model (24) is

solved by AMPL/IPOPT to determine the load shedding

instructions. Results are shown in Fig. 5. Agg D is required

to shed least load compared with that of other 3 aggrega-

tors. Totally 114356 kWh energy is shed during the 2-hour

DLC horizon, and the total load shedding costs for the

system operator is $481.56.

Based on the load shedding instructions made by the

system operator, the load aggregators solve model (27) to

do the day-ahead dispatch plan of TCLs, in 1-minute basis.

Results are also shown in Fig. 5. It can be seen that there

are some unavoidable small fluctuations between the

hourly-based load shedding instructions and minute-based

TCL control plans. Figure 6 shows the mean indoor tem-

perature variations and corresponding mean PPD profiles

of a representative TCL group under the optimized ON/

OFF control actions. The mean indoor temperature and

PPD profiles are calculated by the thermal inertia model

and the thermal comfort model, respectively. It can be seen

that the proposed method well controls the mean PPD

values of the group under the pre-set threshold.

Figure 7 shows the scatter of PPD values of all TCLs

managed by a representative aggregator at a random

selected time interval. It shows that the PPD values of most

TCLs are under the threshold. Only a very small number of

TCLs (24 out of 959) beyond the PPD threshold (the red

points).
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Fig. 4 Bidding curve of the aggregator A

Fig. 5 Day-ahead TCL planning results of the 4 aggregators
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6 Conclusion and future works

This paper proposed a 3-stage day-ahead scheduling

framework for the TCLs by DLC. An advanced thermal

inertia model and a simplified thermal comfort model are

employed in the proposed framework to support the ther-

mal comfort of the occupants.

In the first stage, the load aggregators solve an opti-

mization model to estimate their interruptible TCL capac-

ities at each system dispatch interval. This is followed by

the system operator that determines the load shedding

instructions based which the aggregators solve a day-ahead

TCL dispatch model to schedule the control plans of the

TCL groups, while accounting for the occupants’ thermal

comfort. The HDDE algorithm and AMPL software are

employed to solve the optimization models, and the sim-

ulation results validate the proposed framework.

Although PMV and PPD models have been widely used

in HVAC systems, in the last several years the concept of

‘‘adaptive model’’ has proposed in the building

environment science [27]. The adaptive model is an

extension of PMV and PPD, which not only considers the

impacts of indoor conditions on people’s thermal comfort,

but also considers people’s adaptive behaviors to the

indoor environment. In future, the authors will study the

impacts of the adaptive model on TCL control and demand

side management.
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