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Abstract This paper proposes a wavelet-based data com-

pression method to compress the recorded data of oscilla-

tions in power systems for wide-area measurement

systems. Actual recorded oscillations and simulated oscil-

lations are compressed and reconstructed by the wavelet-

based data compression method to select the best wavelet

functions and decomposition scales according to the cri-

terion of the minimum compression distortion composite

index, for a balanced consideration of compression per-

formance and reconstruction accuracy. Based on the

selections, the relationship between the oscillation fre-

quency and the corresponding optimal wavelet and scale is

discussed, and a piecewise linear model of the base-2

logarithm of the frequency and the order of the wavelet is

developed, in which different pieces represent different

scales. As a result, the wavelet function and decomposition

scale can be selected according to the oscillation fre-

quency. Compared with the wavelet-based data compres-

sion method with a fixed wavelet scale for disturbance

signals and the real-time data compression method based

on exception compression and swing door trending for

oscillations, the proposed method can provide high com-

pression ratios and low distortion rates.

Keywords Data compression, Oscillation, Wavelet

transform, Wide-area measurement system (WAMS)

1 Introduction

Wide-area measurement systems (WAMSs) have been

frequently used in power systems. The measured synchro-

phasor data can be used for both real-time applications

such as dynamic monitoring, oscillation source location,

smart control, and wide-area protection [1–5], and off-line

applications such as post-event analysis [6]. With the rapid

development of interconnected power systems, renewable

energy sources, and high-voltage direct current (HVDC)

transmission systems, oscillation problems such as low-

frequency oscillations (LFOs) and subsynchronous oscil-

lations (SSOs) are drawing more and more atten-

tion [7–10], which may threaten power system security and

stability. WAMS can be used for solving these problems.

However, large amounts of data in WAMS caused by high

reporting rates and numerous data channels create a sig-

nificant burden on communication and storage systems,

which may cause data congestion in communication and a

shortage of storage capacity.

For example, 34 phasor measurement units (PMUs) are

implemented for WAMS in the Guizhou Power Grid in

Southeast China. More than 3500 data channels are
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applied, and the reporting rate is 100 Hz. Over 120 GB of

measurement data is transmitted to the phasor data con-

centrator (PDC) per day [11]. Moreover, the overall data

size is expected to be larger as a result of more measure-

ment devices and higher reporting rates in the future.

Therefore, data compression techniques are desirable to

mitigate this burden for communication and storage

systems.

Various kinds of lossy and lossless compression meth-

ods have been developed for data compression in power

systems. A type of lossy compression method achieves data

compression by approximating the signal as segments, such

as the exception compression (EC) and swing door trending

(SDT) methods in [11]. These techniques are suitable for

real-time applications, but the compression performance

and reconstruction accuracy are heavily influenced by the

parameters, which are set based on experience. The accu-

racy is not very high when a high compression ratio is

achieved [11]. Another type of lossy compression method

involves signal transformation algorithms based on fre-

quency-domain analysis or time-frequency analysis, among

which the most widely used are the wavelet transform

(WT)-based data compression methods. The algorithms

can achieve both high compression ratios and high accu-

racy, but they require data buffering and are thus not

suitable for real-time applications. Rather than processing

the signal itself, principal component analysis (PCA) can

be used for data compression by reducing the redundancy

between multidimensional data such as the measurement

data of multiple PMUs [12] and multiple data chan-

nels [13]. The compression performance and reconstruc-

tion accuracy depend on the number of principal

components selected. The compression ratio of PCA is not

very high when high accuracy is achieved [12]. The PCA

algorithm can be combined with other algorithms to

achieve higher compression ratios. Lossless compression

methods such as the Lempel-Ziv-Markov chain algorithm

(LZMA) [14] and Golomb-Rice coding [15] are usually

combined with other techniques because they cannot

achieve high compression ratios by themselves. The above

is summarized in Table 1.

This paper focuses on data compression in storage for

off-line applications, which require high data accuracy but

not much real-time capability [6]. Therefore, the widely

used WT-based data compression technique is selected in

this paper. In [16, 17], a fundamental multiresolution

analysis (MRA) algorithm was utilized for data compres-

sion in power systems. The signals were decomposed into

scaling coefficients (SCs) and layers of wavelet coefficients

(WCs), from which the insignificant data points could be

deleted through threshold methods. Many recent studies

focused on selecting the best wavelet function and

decomposition scale based on various criteria and

improving the fundamental WT-based algorithms. In [18],

based on the criterion of maximum wavelet energy, the db2

wavelet and scale 5 were chosen for the compression of

disturbance signals generated by simulations. The fixed

wavelet and scale may not be suitable for other signals.

In [19, 20], a wavelet packet decomposition (WPD)-based

data compression method, which is an expansion of

wavelet decomposition (WD), was proposed for better

accuracy. The best wavelet and scale were selected based

on the maximum wavelet energy as well. However, the

decomposition of high-frequency components in WPD may

be meaningless for the compression of LFOs. In [21], an

embedded zerotree wavelet transform (EZWT)-based data

compression technique was proposed where the lossless

encoding method was combined with the lossy WT-based

compression method. Similarly, in [12], an efficient data

compression method was introduced where several lossy

and lossless compression methods such as PCA, WT, and

LZMA were combined. In addition, many other WT-based

data compression methods were developed in earlier years,

including the lifting scheme [22], which is a fast algorithm

of WD; the slantlet transform [23], with different wavelets

for different scales; and the minimum description length

(MDL) method [24], in which the abrupt change data

points were extracted to achieve data compression. How-

ever, there are two main problems in the above WT-based

methods: 1) it is difficult to select the optimal wavelet

functions and decomposition scales with a balanced com-

pression performance and reconstruction accuracy; 2) most

of the above methods are only suitable for the compression

of disturbance signals. For example, the MDL method is

used for extracting abrupt changes from disturbance sig-

nals [24], and the criterion of maximum wavelet

energy [18–20] means retaining the information of abrupt

changes as much as possible. These approaches are not

suitable for oscillations, such as LFOs and SSOs.

Our previous work [25] proposed a wavelet-based uni-

versal data compression method to solve these problems.

The criterion of the minimum compression distortion

composite index (CDCI) was proposed to select the best

wavelet and decomposition scale. CDCI was proven to be

suitable for the compression of different types of signals

including oscillations and disturbance signals, and the

Table 1 Comparison of different types of data compression methods

Performance Lossy methods Lossless methods

Segments WT-based PCA

CR High High Low Low

Accuracy Low High High Very high

Real-time High Low
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selected wavelet and scale can provide balanced com-

pression performance and reconstruction accuracy. How-

ever, in [25], signals have to be compressed and

reconstructed by all candidates of wavelets and scales.

Only then can the CDCIs of all the candidates be calculated

to select the best one. The entire algorithm can result in a

significant amount of calculation.

Therefore, an improved wavelet-based data compression

technique for oscillations in power systems is proposed in

this paper based on [25]. The wavelet function and

decomposition scale can be selected directly according to

the oscillation frequency, which is the most significant

characteristic of oscillations. The amount of calculation in

the proposed method is much lower than that in [25].

Specifically,

1) The qualitative relationship between the oscillation

frequency and the corresponding optimal wavelet

function and decomposition scale is discussed. As

samples, actual recorded oscillations and simulated

oscillations are compressed and reconstructed by the

wavelet-based data compression method to select the

best wavelets and scales based on the criterion of the

minimum CDCI in [25].

2) A quantitative relationship is established by linear

regression. A piecewise linear model of the base-2

logarithm of the frequency (log2 f ) and the order of the

wavelet (N) is developed in which different pieces

represent different scales.

3) To evaluate the performance of the proposed method,

a comparison is made with the wavelet-based data

compression method with a fixed wavelet and scale for

disturbance signals in [18] and the EC and SDT data

compression (ESDC) method in [11].

This paper is organized as follows. Section 2 introduces

the wavelet-based universal data compression method and

the criterion of CDCI for selecting the optimal wavelet

function and decomposition scale. Section 3 presents the

relationship between the oscillation frequency and the

corresponding optimal wavelet and scale, and a piecewise

linear model is developed. Section 4 carries out a com-

parison of other data compression methods. Section 5

presents the conclusion.

2 Wavelet-based universal data compression

2.1 Wavelet-based data compression

The procedure for the wavelet-based MRA is shown in

Fig. 1. Through the low-pass filters gi and high-pass filters

hi, a time series can be decomposed into SCs and WCs,

corresponding to the approximations ai and details di of the

original signal, respectively. The filters, which are finite

impulse response (FIR) filters, are constructed by a scaling

function and a wavelet function that depend on the choice

of wavelet function. MRA means decomposing the gener-

ated SC layer by layer to get SCs and WCs of different

scales. SCs and WCs represent the low-frequency and

high-frequency components of the signal, respectively. The

reconstruction is the inverse procedure of the

decomposition.

After the first decomposition, the lengths of the SCs and

WCs will be n0 þ K � 1, in which n0 is the number of

original sampling points and K is the length of the filters.

The total number will be approximately twice as many as

before. Other layers are similar. Therefore, two-time down-

sampling is necessary to avoid information redundancy in

decomposition, as indicated by the ‘‘# 2’’ in Fig. 1a. Sim-

ilarly, two-time up-sampling is obligatory for reconstruc-

tion, as indicated by the ‘‘" 2’’ in Fig. 1b. Therefore,

assuming that the highest scale is I, the number of ai and di
at any scale i can be written as:

ni ¼
ni�1 þ K � 1

2
� ni�1

2
i ¼ 1; 2; . . .; I ð1Þ

The general form is:

ni � 2�in0 i ¼ 0; 1; . . .; I ð2Þ

The total number of sampling points before and after

decomposition is:

n � 2�In0 þ
XI

i¼1

2�in0 ¼ n0 ð3Þ

As introduced above, SCs represent approximations of
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Fig. 1 Procedure of MRA
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the original signal, which is very important. By contrast,

WCs represent the details in which the high-value data

points experience abrupt changes and the low-value data

points are mainly caused by noise. Therefore, a threshold

can be applied to WCs to achieve data compression and

retain important information of the signal. Many threshold

methods have been developed, of which a selection

deserves further study in the future. However, no matter

what threshold method is chosen, the problem of selecting

the best wavelet functions and decomposition scales with

balanced compression performance and reconstruction

accuracy always exists. Therefore, a common and widely

used fixed-threshold and soft-thresholding method [26] is

adopted in this paper. The method is simple but efficient,

and the soft thresholding can avoid discontinuities in WCs,

making the reconstructed signal smoother. The threshold ki
and WCs after thresholding d̂i at scale i can be calculated

as:

ki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnðniÞ

p
i ¼ 1; 2; . . .; I ð4Þ

d̂i ¼
signðdiÞðjdij � kiÞ jdij � ki

0 jdij\ki

�
ð5Þ

The main computation of the wavelet-based data

compression method is multiplication in convolutions

with the wavelet filters. In the decomposition of scale i,

the number of multiplications is about 2Kðni�1 þ K � 1Þ,
so the total number of multiplications in the decomposition

of MRA can be calculated as:

Cðn0;K; IÞ ¼ 2K
XI

i¼1

ðni�1 þ K � 1Þ

� 4Kn0ð1� 2�IÞ þ 2KIðK � 1Þ

� 4Kn0ð1� 2�IÞ

ð6Þ

Similarly, the number of multiplications in the

reconstruction process is the same.

2.2 Selection of wavelet and decomposition scale

In our previous work [25], the optimal wavelet function

and decomposition scale were selected based on the crite-

rion of minimum CDCI for a balanced consideration of

compression performance and reconstruction accuracy.

The following is an introduction to CDCI.

The compression ratio can be used to evaluate com-

pression performance. Assuming that each nonzero data

point is of equal size and that zero points can be ignored,

the compression ratio kCR can be calculated as:

kCR ¼
len aIð Þ þ len

PI

i¼1

d̂i

� �

lenðxÞ
ð7Þ

where x is the original signal; function len(�) means the size

of data points.

The distortion rate can be used to evaluate reconstruc-

tion accuracy, which can be calculated as a root normalized

mean square error. Assuming that the reconstructed signal

is x0n and L is the length of the signal, the distortion rate kDR
can be expressed as:

kDR ¼ jjx0n � xnjj
jjxnjj

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PL

n¼1

ðx0n � xnÞ2
s

ffiffiffiffiffiffiffiffiffiffiffi
PL

n¼1

x2n

s ð8Þ

Based on the compression ratio and the distortion rate,

the CDCI is constructed as (9) to achieve a compromise

between compression performance and reconstruction

accuracy.

nCDCI ¼ a
1

kCR
þ bk�DR ¼ a

kCR
þ b

kDR
2� 10�3

aþ b ¼ 1

8
<

: ð9Þ

where a and b are the weights of the compression perfor-

mance and reconstruction accuracy, respectively. Owing to

the significant difference in magnitude, both 1=kCR and kDR
should be normalized. 1=kCR can be seen as a normalized

value owing to its value range of (0, 1]. The distortion rate

should be normalized, and the base value is set as 2� 10�3

in this paper according to the standard [27] in China.

The values of a and b should vary with the compression

ratio and the distortion rate. If both the compression ratio

and the distortion rate are small, the value of a should be

higher because it is more important to increase the com-

pression ratio than to decrease the distortion rate. Con-

versely, the value of b should be higher. For simplicity,

assuming that the weights vary linearly with the distortion

rate, the CDCI can be calculated as (10) in [25]. Obviously,

a smaller CDCI means a better and more balanced

performance.

nCDCI ¼
1� k�DR
kCR

þ k�DR
� �2 ð10Þ

According to [25], the wavelets of db2 to db10 and

sym2 to sym10 can be chosen as the candidates of the

wavelet functions for their properties of orthogonality,

compact support, and good regularity. Since the filter

length of wavelets dbN and symN is 2N, the highest scale

I can be calculated as (11) as demonstrated in [28] to

guarantee the filter length is smaller than the length of

WCs.
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I ¼ floor log2
n0

2N � 1

� 	
ð11Þ

where function floor(�) stands for rounding down.

In [25], different types of actual recorded signals were

compressed and reconstructed by the candidates of wave-

lets and scales, among which those corresponding to the

smallest CDCI were selected as the best wavelets and

scales. The results demonstrated that CDCI can be utilized

to choose the best wavelet and scale for the compression of

different types of signals, including oscillations and

disturbances.

The main computation of the method in [25] consists of

multiplications in the decomposition and reconstruction

process, and multiplications in the calculation of the dis-

tortion rate. Since the candidates for the wavelet functions

are db2 to db10 and sym2 to sym10, and the decomposition

process can be reused when choosing the same wavelet and

different scales, the total computation can be calculated as:

Cprevious � 2
X10

N¼2

h
Cðn0; 2N; IÞ

þ
XI

i¼1

Cðn0; 2N; iÞ þ 2In0

i

¼ 2
X10

N¼2

ð8N þ 2Þn0I ¼ 900n0I

ð12Þ

Since the highest scale is 5 in [25], the amount of

computation can be calculated as 4500n0.

3 Relationship between oscillation frequency
and optimal wavelet and scale

As mentioned above, a signal can be decomposed into

low-frequency components and layers of high-frequency

components. Therefore, it can be speculated that the

selection of the optimal wavelet function and decomposi-

tion scale depends on the oscillation frequency. In this

section, oscillations of different frequencies are com-

pressed and reconstructed by the wavelet-based method to

select the best wavelets and scales based on the CDCI.

According to the results, a piecewise linear model of the

base-2 logarithm of the frequency (log2 f ) and the order of

the wavelet (N) is developed in which different pieces

represent different scales. The decomposition scale and

wavelet function can be selected based on the model.

The window length of data to be processed at a time

deserves careful consideration. According to [25], a win-

dow length of 10 s is chosen for the compression of LFOs

and SSOs to compromise between compression ratios and

distortion rates. The sampling rate of the signals is 100 Hz,

so the number of data points to be processed at one time is

1000. According to (11), since the maximum order N is 10,

as shown in Sect. 2.2, the highest scale can be calculated as

5.

3.1 Compression of actual recorded LFO signal

An actual recorded LFO signal of about 0.9 Hz, as

shown in Fig. 2, is compressed and reconstructed by the

wavelet-based method to select the best wavelet function

and decomposition scale based on CDCI. The waveform is

long enough to show the entire process of the LFO.

Two hundred pieces of waveforms are intercepted from

the LFO signal randomly, and the length of each piece is

10 s. The pieces of waveforms are compressed and

reconstructed by the candidates of wavelets (db2 to db10

and sym2 to sym10) and scales (1 to 5). The compression

ratios and distortion rates of different wavelets and scales

are then calculated to get the corresponding CDCIs.

According to the criterion of the minimum CDCI, the best

wavelet and scale of each waveform are selected. The

results are listed in Table 2.

As shown in Table 2, the choices for different wave-

forms are close to each other. Specifically, the best

decomposition scale is definitely 4, and the optimal N is

about 5. It can be concluded that apart from the oscillation

frequency, other characteristics such as the oscillation

amplitude have a small effect on the selection.

To give a reasonable explanation of the above results,

the compression and reconstruction of the waveform

between 0 and 10 s are analyzed as representative of the

LFO signal. The compression ratios and distortion rates for

each scale and wavelet are shown in Fig. 3. The com-

pression ratio limit of each scale can be calculated as

kCR;lim ið Þ ¼ 2i because all WCs are set to zero.

According to Fig. 3, some rules are summarized as

follows:

1) The performance of dbN and symN are similar to each

other on the same order and scale. The reason is that

806040200 100 120
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400

420

A
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W
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Fig. 2 Actual recorded LFO signal
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symN is constructed based on dbN in the wavelet

theory.

2) The selection of a decomposition scale is the more

critical factor in determining the compression perfor-

mance and reconstruction accuracy. On a scale of 1 to

4, the compression ratios increase by a factor of 2 per

level and can almost reach the limits. The stable values

of the distortion rates are quite low. On the contrary,

the stable value of distortion rates at scale 5 is much

higher, but the compression ratios are not much higher

than those of scale 4. The result is consistent with the

choice made by the CDCI. The explanation is as

follows. On a scale of 1 to 4, WCs are considered to

consist only of trivial information, which is eliminated

by thresholding. By contrast, the valuable information

of the oscillation is kept in SCs without being

destroyed. However, at scale 5, the valuable informa-

tion is mixed in WCs and then destroyed by thresh-

olding, resulting in high distortion. Moreover, the

amplitude of the WCs caused by the oscillation is too

large to be zero. As a result, the distortion rates are

quite low, and the compression ratios can reach the

limits on a scale of 1 to 4, whereas the distortion rates

are high and the compression ratios cannot reach the

limits at scale 5.

3) The order of the wavelet has very little effect on the

compression performance and reconstruction accuracy

in most cases. With N increasing, the compression

ratios have a tendency to decrease. The distortion rates

decrease at first and then reach stable values. At scale

4, the distortion rate reaches the stable value at about

order 5. Since the compression ratio at order 5 is

slightly higher than that of order 6 and higher, the best

order of the wavelet can be chosen as 5. However, the

performance difference between order 6 and order 5 is

small. The compression ratio at order 6 is lower than

that at order 5, but the distortion rate at order 5 is

higher than that at order 6. Therefore, the best order

can be chosen as 6 as well. This result is consistent

with the choice made by the CDCI. The explanation is

as follows. As N increases, the amplitude-frequency

response of the wavelet filter becomes more similar to

a rectangular shape, making the low-frequency infor-

mation more difficult to leak out to the WCs.

Moreover, the regularity of the wavelet filter becomes

better as N increases, bringing about smoother recon-

struction waveforms. Therefore, the distortion rates

decrease at first and then reach stable values with

N increasing. As N increases, the number of sampling

points after decomposition increases slightly according

to (1), resulting in a slight decrease in the compression

ratios.

3.2 Compression of actual recorded SSO signal

An actual recorded SSO signal of about 7 Hz is com-

pressed and reconstructed by the wavelet-based method to

select the best wavelet function and decomposition scale

based on the CDCI, as shown in Fig. 4.

Similar to the procedure in Sect. 3.1, 200 pieces of

waveforms of 10 s are intercepted from the SSO signal

Table 2 Number of each wavelet function and decomposition scale

being selected in compression of LFO

Wavelet function Decomposition scale Number

db4 Scale 4 2

db5 Scale 4 61

db6 Scale 4 55

db7 Scale 4 3

sym5 Scale 4 52

sym6 Scale 4 21

sym7 Scale 4 6

Total 200

108642
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108642
Order
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Fig. 3 Compression ratios and distortion rates of LFO between 0 and

10 s
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randomly. The pieces of waveforms are compressed and

reconstructed by the candidates of wavelets and scales,

from which the best are selected by calculating the CDCIs.

The results are shown in Table 3.

As shown in Table 3, the best decomposition scale is

definitely 2 and the optimal N is about 9, which is different

from the choice for the compression of LFO. Therefore, it

can be concluded that the oscillation frequency has a sig-

nificant effect on the selection.

The compression and reconstruction of waveforms

between 50 and 60 s are analyzed, similar to Sect. 3.1. The

compression ratios and distortion rates at each scale and

wavelet are shown in Fig. 5.

The rules indicated in Fig. 5 are similar to those in

Fig. 3. � There is little difference between the perfor-

mance of dbN and symN. ` The selection of a decompo-

sition scale is more important than that of the wavelet

function. On a scale of 3 to 5, the distortion rates are too

high to accept. By contrast, at scale 2, the distortion rates

are low, and the compression ratios are high enough. This

result is consistent with the choice made by the CDCI. ´

The order of the wavelet has very little effect on the per-

formance if the distortion rate reaches the stable value. At

scale 2, the distortion rate reaches the stable value at about

order 8 or higher, whereas the performance difference

between order 7 to order 10 is small. The result is con-

sistent with the choice made by the CDCI.

3.3 Compression of simulated oscillations

As mentioned above, the oscillation frequency has a

significant effect on the selection of the wavelet and

decomposition scale, whereas other characteristics such as

the oscillation amplitude have only a slight effect. In

addition, the base value of the oscillations may affect the

selection. In general, the base value is approximately

constant in a time window. Therefore, actual recorded

oscillations can be simplified as sinusoidal signals of dif-

ferent frequencies and amplitudes superimposed on dif-

ferent DC biases, as shown in Fig. 6. Furthermore, since

Table 3 Number of each decomposition scale and wavelet function

being selected in compression of SSO

Wavelet function Decomposition scale Number

db7 Scale 2 1

db8 Scale 2 11

db9 Scale 2 87

db10 Scale 2 54

sym7 Scale 2 8

sym9 Scale 2 7

sym10 Scale 2 32

Total 200

(a) Compression ratios

(b) Distortion rates
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Fig. 5 Compression ratios and distortion rates of SSO between 50

and 60 s
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the wavelet filters are linear filters, and all WCs can be set

to zero by thresholding in general when making the optimal

selection, the compression process is approximately a lin-

ear transform. Therefore, it can be roughly proved that the

optimal selection is the same if the ratio of the oscillation

amplitude to the DC bias is constant. This proposition can

be verified by numerical experiments as well. According to

the proposition, the DC biases of the simulated signals can

be set to a fixed value, and different oscillation amplitudes

represent different signals.

As before, the sampling rate of the signals is 100 Hz,

and the length of the signals is 10 s. Owing to the little

difference between the performance of dbN and symN,

only the wavelets of db2 to db10 are chosen as candidates

to simplify the algorithm. The candidates of the decom-

position scales are on a scale of 1 to 5.

The frequency of the simulated oscillations is deter-

mined as follows. The frequency range of LFO is from 0.1

to 2.5 Hz in general [29], and the frequency of SSO is

considered to be between the frequency of LFO and the

power frequency. In this paper, the sampling rate of signals

is 100 Hz. Therefore, the highest frequency of the signals

is 50 Hz according to the sampling theorem. To prevent the

valuable low-frequency information from being leaked into

the WCs, the highest frequency of the signals to be com-

pressed is 25 Hz. As a result, the frequency range of the

oscillations to be compressed is 0.1 to 25 Hz. Since the

upper frequency limit of SCs should be halved after each

decomposition, the base-2 logarithm of the frequency

(log2 f ) should be approximately evenly distributed. The

frequencies of the simulated oscillations are listed in

Table 4.

According to the proposition above, the DC bias is set to

a fixed value of 400 in this paper, and the amplitudes are

set between 10 and 100 in steps of 10.

Similar to the procedures in Sects. 3.1 and 3.2, the

simulated oscillations are compressed and reconstructed by

the candidates of wavelets and decomposition scales, from

which the best are selected by calculating the CDCIs. Part

of the results are listed in Table 5.

According to Table 5, some rules are summarized as

follows:

1) For oscillations with the same amplitude, the selected

decomposition scale decreases with an increase in the

frequency. The reason is that if the frequency is

higher, the valuable oscillation information will be

leaked into the WCs on a lower scale.

2) For oscillations with the same amplitude, if the same

scale is selected, the selected N will increase with an

increase in the frequency. The reason is that if the

oscillation frequency is higher, the valuable oscillation

information will be leaked into the WCs more easily.

As explained in Sect. 3.1, an increase in N can inhibit

the leakage.

3) For oscillations with the same frequency, if the same

scale is selected, the selected N will increase with an

increase in the amplitude. The reason is that if the

amplitude is higher, more valuable information will be

leaked into the WCs. As explained in Sect. 3.1, an

increase in N can inhibit the leakage.

3.4 Piecewise linear model

Since there is a positive correlation between the fre-

quency and the selected scale and order, a linear fit can be

applied to the data points in Table 5. Specifically, a linear

fit of log2 f and the selected N is carried out for oscillations

with the same amplitude and the same selected scale. If the

linear correlation coefficient r satisfies r[ 0:6 and the P

value satisfies P\0:01, it can be considered that log2 f and

the selected N have a strong linear correlation. All lines of

different amplitudes and decomposition scales are shown

in Fig. 7. Different colors indicate different scales, and

Table 4 Frequencies of the oscillations to be compressed

Frequency range (Hz) Step size (Hz)

[0.1, 0.25] 0.01

[0.26, 0.48] 0.02

[0.5, 0.95] 0.05

[1, 1.9] 0.10

[2, 4.8] 0.20

[5, 7.5] 0.50

[8, 24] 1.00

Table 5 Selected decomposition scales and wavelets for part of the

simulated oscillations of different frequencies and amplitudes 10 and

100

Frequency (Hz) 10 100

Scale Wavelet Scale Wavelet

0.1 5 db3 5 db3

0.2 5 db3 4 db5

0.5 5 db6 4 db6

1 4 db6 3 db6

1.5 4 db9 3 db6

2 3 db6 3 db9

3 3 db8 2 db6

5 2 db6 2 db10

7 2 db10 1 db7

10 1 db5 1 db10

24 0 0
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scale 0 represents the corresponding oscillations that can-

not be compressed by the compression method. The circles

indicate data points that are not suitable for a linear fit.

According to Fig. 7, the rules are summarized as

follows:

1) In most cases, there is a linear relationship between

log2 f and the selected N for oscillations with the same

amplitude and the same selected scale, and there is still

a positive correlation in other cases.

2) For oscillations with the same frequency and the same

selected decomposition scale, the selected orders of

the wavelet for oscillations of different amplitudes are

close to each other. Since the order of the wavelet has

very little effect on the compression performance and

reconstruction accuracy, an averaged N is acceptable to

represent all orders corresponding to different

amplitudes.

According to the above two points, for oscillations with

the same selected decomposition scale and different

amplitudes, a linear fit of log2 f and the selected N is

acceptable. Although the best N may not be selected based

on the linear model, the model is much more simplified,

and the selected order is acceptable.

There are overlaps between different frequency ranges

that correspond to different selected scales. In these areas, a

higher scale means higher compression ratios and higher

distortion rates, whereas a lower scale means lower com-

pression ratios and lower distortion rates. It is difficult to

decide which choice is better. Therefore, both linear

models that correspond to both scales should be used to

select the wavelets. The better choice can be selected based

on the criterion of the minimum CDCI.

In conclusion, a linear fit of log2 f and the selected N can

be carried out for oscillations with the same selected

decomposition scale and different amplitudes. As a result, a

piecewise linear model with overlaps between different

frequency ranges of different pieces is developed, in which

different pieces represent different selected scales. All lines

of different selected scales are shown in Fig. 8. The linear

correlation coefficients r for a scale of 1 to 5 are about

0.79, 0.73, 0.65, 0.48, and 0.58 respectively, and all P

values satisfy P\0:01. Since the order of the wavelet has

very little effect on the compression performance and

reconstruction accuracy, the linear fit is considered to be

acceptable.

The piecewise linear model can be expressed as:

N ¼

1:357 log2 f þ 8:081 f 2 ½0:1; 0:6� S5

0:538 log2 f þ 6:288 f 2 ½0:19; 1:6� S4

1:330 log2 f þ 5:944 f 2 ½0:55; 3:4� S3

4:113 log2 f � 0:257 f 2 ½2:4; 7:5� S2

4:437 log2 f � 6:401 f 2 ½6; 17� S1

Null f 2 ½13; 24� S0

8
>>>>>>>><

>>>>>>>>:

ð13Þ

where S represents the scale. Based on the equation, the

decomposition scale and order of the wavelet for the

compression of oscillations can be calculated according to

the oscillation frequency. Specifically, the scale can be

selected by the frequency ranges, and the order of the

wavelet is the rounding of the calculation result of the

corresponding equation. If the calculated N is greater than

10, the selected N should be 10. If the frequency is in

different frequency ranges, all corresponding scales and

calculated orders should be applied to the compression
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Fig. 8 Relationship between oscillation frequency and order of

wavelet of different decomposition scales
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Fig. 7 Relationship between oscillation frequency and order of

wavelet of different oscillation amplitudes and decomposition scales
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method, among which the best can be selected based on the

CDCI.

According to (6), the amount of computation of the

proposed method can be calculated as:

Cthis ¼
8n0Nð1� 2�IÞ f 62 O
P

½16n0Nkð1� 2�IkÞ þ 2n0� f 2 O

�
ð14Þ

where O represents overlaps and k represents the corre-

sponding frequency ranges. When f 2 ½0:55; 0:6�, scales 3
to 5 should be applied to the compression. Thus, the

maximum amount of computation can be calculated as

about 274:5n0. The computational burden is much lighter

than that of [25].

4 Comparison

4.1 Proposed piecewise linear model-based data

compression method

The actual recorded LFO and SSO signals in Sect. 3 are

used in the proposed piecewise linear model-based

method.

Since the frequency of the LFO signal is about 0.9 Hz,

the optional decomposition scales and wavelet functions

are calculated as db6–scale 4 and db6–scale 3. The signal is

compressed and reconstructed with a window length of

10 s. Both choices are used in the compression method,

among which db6–scale 4 is selected based on the criterion

of minimum CDCI, for all data in different time windows.

The choice is very close to the selection made in Sect. 3.1.

The compression ratio is calculated as 13.62, and the dis-

tortion rate is 3:609� 10�4. The amount of computation is

about 178n0 according to (14). The original and recon-

structed LFO signals between 0 and 10 s are shown in

Fig. 9.

Similarly, since the frequency of the SSO signal is about

7 Hz, the optional scales and wavelets are calculated as

db10–scale 2 and db6–scale 1. The length of the time

window is 10 s as well. Both choices are used in the

compression method, among which db10–scale 2 is selec-

ted based on the CDCI. The choice is very close to the

selection made in Sect. 3.2. The compression ratio is cal-

culated as 3.773, and the distortion rate is 3:728� 10�4.

The amount of computation can be calculated as 172n0
according to (14). The original and reconstructed LFO

signals between 50 and 52 s are shown in Fig. 10.

4.2 Wavelet-based data compression method

with fixed wavelet and scale

Reference [18] selected the best wavelet and scale as

db2–scale 5 for the data compression of disturbance sig-

nals, based on the criterion of maximum wavelet energy.

To compare with the proposed piecewise linear model-

based method, the wavelet of db2 and scale 5 is used in the

compression of the LFO and SSO signals shown in Sect. 3.

The amount of computation can be calculated as about

15:5n0 according to (14).

For compression of the LFO signal, the compression

ratio is 11.09, and the distortion rate is 1:948� 10�3. The

original and reconstructed LFO signals are shown in

Fig. 11. According to the figure, there is a significant dis-

tortion of the reconstructed signal. Moreover, the
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Fig. 9 Original and reconstructed LFO signals between 0 and 10 s by

proposed method
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by proposed method
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by db2 and scale 5
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compression ratio is lower than that of the piecewise linear

model-based method.

For compression of the SSO signal, the compression

ratio is 28.62, and the distortion rate is 5:277� 10�3. The

original and reconstructed LFO signals are shown in

Fig. 12. According to the figure, the oscillation information

is destroyed.

To sum up, the fixed wavelet and scale of db2–scale 5

are not suitable for the compression of oscillations owing

to the severe distortion, despite the small amount of com-

putation. The decomposition scale of 5 is too high for most

oscillations, causing the valuable information of oscillation

to be leaked out into WCs and then destroyed by the

threshold method. As a result, there is a significant dis-

tortion of the reconstructed signal. At a wavelet order of 2,

the oscillation information is more easily leaked out into

WCs than other wavelets, causing more severe distortion.

In addition, the regularity of db2 is worse than that of other

wavelets, which means the reconstructed waveform is not

smooth enough. Therefore, the wavelet of db2 may not be

suitable for the compression of oscillations.

4.3 ESDC method

In [11], a real-time data compression method based on

the EC and SDT methods was proposed where LFO signals

were compressed with good compression performance. To

compare this with the proposed piecewise linear model-

based method, the LFO and SSO signals shown in Sect. 3

are compressed by the ESDC method. According to [11],

the parameters are set as follows: Tmax ¼ 0:2 s, and

VExcDev ¼ VCompDev ¼ 0:001Vbase. The main computation

of ESDC is multiplication and division to calculate the

SDT criterion, and the number of calculations depends on

the signal to be compressed. Therefore, the amount of

computation can only be measured rather than calculated

based on parameters.

For compression of the LFO signal, the base value of the

active power is set as 686 MVA, which is the capacity of

the connected generator. After the compression and

reconstruction, the compression ratio is calculated as

16.949, and the distortion rate is 2:267� 10�3. The amount

of computation is measured as about 0:87n0 multiplications

and divisions. The original and reconstructed LFO signals

are shown in Fig. 13. Although the compression ratio is

slightly higher than that of the piecewise linear model-

based method, the distortion rate is much higher.

For compression of the SSO signal, the base value of the

phase voltage is set as 230=
ffiffiffi
3

p
� 133 kV. After the

compression and reconstruction, the compression ratio is

calculated as 3.418, and the distortion rate is 7:318� 10�4.

The amount of computation is measured as about 1:18n0
multiplications and divisions. The original and recon-

structed SSO signals are shown in Fig. 14. The compres-

sion ratio is lower and the distortion rate is higher than that

of the piecewise linear model-based method.

To sum up, the proposed piecewise linear model-based

method is more suitable for the compression of oscillations

in storage than the ESDC method. Specifically, the amount

of computation of the ESDC method is much less than that

of the proposed method, whereas the distortion rate of the

proposed method is lower than that of the ESDC method.

The compression ratios of the two techniques are close to

each other. The ESDC method was proposed for real-time

applications, thus requiring a small amount of computation.
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Fig. 13 Original and reconstructed LFO signals between 0 and 10 s

by ESDC method
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By contrast, the proposed method is used for storage, and

thus can afford a heavy computational burden. Therefore,

the performance of the proposed method is better than that

of the ESDC method in applications of data storage owing

to the low distortion rate. Moreover, the parameters of the

ESDC method are set based on experience. By contrast, the

wavelet and scale can be directly selected based on the

oscillation frequency in the proposed method.

5 Conclusion

Wavelet-based data compression techniques are widely

used for data compression in power systems. However,

most of the wavelet-based methods are only suitable for the

compression of disturbance signals. In this paper, a

wavelet-based data compression method is proposed for the

compression of oscillations in power systems. Actual

recorded oscillations and simulated oscillations are com-

pressed and reconstructed by the wavelet-based data

compression method to select the best wavelet functions

and decomposition scales according to the criterion of the

minimum CDCI for a balanced consideration of compres-

sion performance and reconstruction accuracy. Based on

the selections, a piecewise linear model of the logarithm of

the oscillation frequency and the order of the wavelet is

developed, in which different pieces represent different

scales. As a result, the decomposition scale and wavelet

function can be selected according to the oscillation fre-

quency. Compared with the wavelet-based data compres-

sion method with a fixed wavelet and decomposition scale

for disturbance signals and the ESDC method for oscilla-

tions, the proposed method can provide high compression

ratios and low distortion rates. Specifically, the compres-

sion ratio depends on the oscillation frequency, and can

almost reach the compression ratio limit kCR;lim ið Þ ¼ 2i of

scale i. The distortion rate is on the order of 10�4 in gen-

eral, and is always no more than 2� 10�3. The computa-

tional burden is not heavy for the compression in storage.
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