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Abstract This paper reveals that the existing techniques

have some deficiencies in the proper estimation of voltage

stability margin (VSM) when applied to a power system

with different load change scenarios. The problem gets

worse when credible contingencies occur. This paper pro-

poses a real-time wide-area approach to estimate VSM of

power systems with different possible load change sce-

narios under normal and contingency operating conditions.

The new method is based on an artificial neural network

(ANN) whose inputs are bus voltage phasors captured by

phasor measurement units (PMUs) and rates of change of

active power loads. A new input feature is also accom-

modated to overcome the inability of trained ANN in

prediction of VSM under N-1 and N-2 contingencies.

With a new algorithm, the number of contingencies is

reduced for the effective training of ANN. Robustness of

the proposed technique is assured through adding a random

noise to input variables. To deal with systems with a lim-

ited number of PMUs, a search algorithm is accomplished

to identify the optimal placement of PMUs. The proposed

method is examined on the IEEE 6-bus and the New

England 39-bus test system. Results show that the VSM

could be predicted with less than 1% error.

Keywords Artificial neural network (ANN), Phasor

measurement unit (PMU), Voltage stability margin (VSM)

1 Introduction

Voltage stability is defined as the ability of the power

system to maintain steady voltages when it is subjected to

perturbations [1]. In general, a power system is designed to

operate under various conditions; however, it is

inevitable that complex power systems will experience

difficulties in the operation process some of which lead to

the voltage collapse. In the sequel of many major blackouts

[2, 3], tackling system voltage instability has attracted

researchers’ attention [4–7].

Among several methods developed so far to calculate

voltage stability limit [8–11], continuation power flow

(CPF) is one of the most efficient methods. In CPF method,

new forms of power flow equations are introduced to

overcome the convergence problem of conventional power

flow algorithms near the stability limit point [11]. CPF

method, although offers accurate outcomes, is time-con-

suming and undesirable for real-time applications. In [12],

a modified coupled single-port model was proposed to

monitor voltage stability of the system. Results show

improvement in monitoring voltage stability in comparison

with the conventional CPF method. In [13] and [14], two

methods were developed to analyze voltage stability based

on the Thevenin equivalent concept. What is missing in

these methods is considering systems different conditions

like contingencies.
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As the CPF method is an offline method, it is not

appropriate to be used it for online applications. In this

manner, several data mining tools such as support vector

machine, artificial neural networks (ANNs), fuzzy systems,

and expert systems together with conventional techniques

have been proposed to develop online monitoring of volt-

age stability [15–18]. Among these methods, ANN is a fast

response technique promising to be used in real-time

applications [16]. The capability of ANN in capturing

nonlinear characteristics of the power system makes it

suitable for real-world practices [19, 20]. ANN, as a

‘‘black-box’’ tool, includes input and output neurons. The

performance of ANN is dominantly affected by the input

feature selection. In the context of voltage stability

assessment, [21] has selected active and reactive line flows

as ANN inputs. In [22], active and reactive powers of load

buses were used in the ANN input vector. Reference [23]

used voltage magnitude of load buses and active and

reactive powers of load and generation buses. In [13],

performances of different inputs of the ANN were com-

pared and it was deduced that the best performance of

ANN is attained using bus voltage phasors as the input

vector.

Dealing with a broad range of contingencies, such as

line outages, is a challenge in voltage stability analysis. In

N-1 contingency states, the trained ANN may fail to

accurately estimate voltage stability margin (VSM)

because of the change in the system configuration and

characteristics. This may become worse in N-2 contin-

gencies. Research attempts in [20–23] have used an ANN

to evaluate voltage stability in the normal condition and a

separate ANN for contingency states. This may be inap-

propriate for a large power system with a huge number and

different types of contingencies.

In the previous works, voltage stability of power sys-

tems has been evaluated by using state variables of the

current operating point. The long-term voltage stability

phenomenon is highly dependent on the load change sce-

narios [1]. Since in large-scale power systems the loads

vary in different scenarios, incorporating the rates of

change in loads in the ANN design process can be a viable

alternative [11]. To the best knowledge of the authors, this

subject has not been covered in previous research

efforts.

In view of the above concerns and requirements, this

paper develops a novel ANN-based approach with explicit

inputs reflecting load change scenarios in addition to bus

voltage phasors. This combination of features is used since:

1) Proximity of voltage collapse could be estimated by

using voltage magnitude.

2) Power flow could be predicted by means of phase

angles [16].

3) Rates of load change give a direct implication to the

devised ANN that which loads or regions has more

effect on the system voltage stability limit. Note that

the load change rate can be obtained by having two

sequent power quantities captured by measurement

and monitoring system.

The proposed method is able to estimate VSM in normal

and contingency conditions by using a single ANN. The

ability to determine voltage stability status in normal and

contingency at the same time is the main advantage of the

proposed method in comparison with the other online

methods. To keep the ANN accuracy in contingency con-

ditions, a specific input standing for contingency number is

accounted for. As in the large-scale systems the number of

contingencies is intractable, the performance of the pro-

posed method would be affected. Accordingly, a new

algorithm is introduced to reduce the number of contin-

gency states supposed to be added in training phase of the

ANN. The effectiveness of the proposed algorithm is

examined on IEEE 6-bus test system and New England

39-bus test system.

The rest of the paper is organized as follows: some

fundamental considerations of voltage stability are dis-

cussed in Section 2. An introduction to the ANN and the

proposed methodology are presented in Section 3. Sec-

tion 4 outlines simulation results. Section 5 summarizes

the conclusions.

2 Fundamentals of voltage stability analysis

One of the main features that affects voltage stability of

a power system is the limitation in transferring active and

reactive powers through transmission lines. To explain the

basics of voltage stability, a simple radial system is shown

in Fig. 1 where a constant voltage source plays the role of

infinite bus. Transmission line and load are represented by

Z and ZL, respectively. By decreasing ZL, more power

could be transferred to the load, until the maximum power

is transmitted. Afterward, by further decrease of ZL (de-

manding more power), the voltage drop will be more

dominant and the power transferred to the load will even-

tually decrease. This process, shown in Fig. 2, is known as

E Z
VL

IL

ZL

Fig. 1 A simple radial network
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the P-V curve. The current active power delivered to the

load and the maximum possible active power transfer are

P0 and Pmax, respectively. VSM is defined as:

VSM ¼ Pmax � P0

Pmax

ð1Þ

VSM is selected as a voltage stability indicator because

of its simplicity of deduction for system operators and the

speed of calculation [16, 17].

As a reliable method to obtain VSM, CPF method is

often used [11]. In CPF method, a model of load, (2) is

incorporated into the network (3) [16].

Pi
L ¼ Pi

L0 þ kPi
Ld

Qi
L ¼ Qi

L0 þ kQi
Ld

(
ð2Þ

Pi ¼ V2
i Gii þ Vi

P
i6¼j

VjðGij cos hij þ Bij sin hijÞ

Qi ¼ �V2
i Bii þ Vi

P
i6¼j

VjðGij cos hij � Bij sin hijÞ

8><
>: ð3Þ

where Pi
L and Q

i
L are active and reactive power delivered to

the load bus i; k is a real number that defines loading of the

system; Pi
Ld and Qi

Ld are the rates of load changes in active

and reactive power of the load bus i; Pi and Qi are the

active and reactive power injected to node i; Vi is the

voltage magnitude at bus i; hij is the voltage angle differ-

ence between buses i and j; Gij and Bij are the real and

imaginary parts of the ijth element of the system admittance

matrix. The rates of change in active and reactive power

are defined as deviations of the active and reactive powers

as k changes. In CPF method, by increasing k, system load

is increased until the load reaches maximum load limit. In

bifurcation node, k, PL, and QL are equal to kmax, PLmax,

and QLmax, respectively.

3 Proposed methodology

The first step towards developing an appropriate ANN

for the voltage stability monitoring is clarification of the

goal of ANN and the problem in question. The problem

defined in previous attempts is: ‘‘For a specific system

condition, what would be the stability margin?’’ Specifying

system condition includes obtaining system parameters and

variables, such as voltage magnitude, active and reactive

powers of the loads, etc. However, the problem in question

in this paper is: ‘‘For a specific system condition and rates

of load changes, what would be the stability margin?’’ The

aspect of various load change scenarios is emphasized here

since, based on the authors’ experiences, real power sys-

tems do not have a unique and identical load increase

pattern in all load points. This feature leads to significant

deficiencies of the existing ANN models in proper esti-

mation of VSMs. Neither increasing ANN training samples

nor applying different configuration of ANN could handle

this complexity. To overcome this difficulty, the rates of

various load changes should be predicted and inserted as

inputs into the ANN.

To compute VSM, MATLAB-based open source soft-

ware tool PSAT is employed by applying CPF method on

sample cases. After generating appropriate sample cases

for training, validating, and testing the designed ANN,

MATLAB neural network toolbox is employed to estimate

VSM [21, 24].

3.1 ANN structure

In this study, the standard multilayer perceptron (MLP)

neural network consisting of one input layer, one output

layer, and one hidden layer including 10 neurons is

employed to predict VSM of the power system shown in

Fig. 3. The Levenberg-Marquardt back-propagation algo-

rithm is selected for the training phase of ANN.
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Fig. 2 P-V curve of simple radial system
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Fig. 3 Simplified diagram of MLP neural network
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3.2 Input variables selection

The issue of selecting input variables is a basic and

determinative aspect in obtaining the best performance of

the model. Regarding ANNs, there is no straight method to

specify which input could lead the model to the highest

efficiency [25]. The difficulty of selecting input features is

due to the following items:

1) There are many available variables of which those

improving performance of the model should be

selected.

2) Selected variables should have less correlation to

avoid redundancy.

3) Selected variables should have a potential in estima-

tion of VSM; worthless features may even lead to

malfunction.

As indicated before, the combination of voltage angles

and magnitudes of system buses as the input of ANN is the

most effective feature combination in comparison to others,

such as voltage magnitudes and reactive powers, etc. [16].

This deduction does not hold in the problem at hand since

different rates of load changes are accommodated. Under

these circumstances, a third input feature is needed. To do

so, the rates of load changes are selected as the third input

feature. In this way, ANN could directly learn how to

respond along with different load change scenarios.

3.3 Data set generation

A wide range of possible states of the system and load

change scenarios while having the minimum number of

samples should be accounted for in generating ANN

training data set. To do so, random variables are added to

active and reactive powers of loads, active power of gen-

erators, voltage magnitude of PV buses, and the rate of load

changes in load buses, respectively, as follows.

Pi
LðjÞ ¼ Pi

L0½1þ 2DPL
ð0:5� eiPL

ðjÞÞ�
Qi

LðjÞ ¼ Qi
L0½1þ 2DQL

ð0:5� eiQL
ðjÞÞ�

(
ð4Þ

Pi
GðjÞ ¼ Pi

G0½1þ 2DPG
ð0:5� eiPG

ðjÞÞ�
Vi
GðjÞ ¼ Vi

G0½1þ 2DVG
ð0:5� eiVG

ðjÞÞ�

(
ð5Þ

Pi
LdðjÞ ¼ Pi

Ld0½1þ 2DPLd
ð0:5� eiPLd

ðjÞÞ� ð6Þ

where Pi
L0, Q

i
L0, P

i
G0, V

i
G0, P

i
Ld0 are the base cases of active

and reactive power of load, active generation power, voltage

magnitudes of generators, and the rate of changes in load bus

i, respectively; Pi
LðjÞ, Qi

LðjÞ, Pi
GðjÞ, Vi

GðjÞ, Pi
LdðjÞ are jth

samples of aforementioned variables. Random numbers in

the range of zero up to one (eiPL
, eiQL

, eiPG
, eiVG

, eiPLd
) are added

to base values to generate new samples.D is the per unit value

of range of variation and it is a known value. So, (4)–(6)

represent random variables located within their associated

feasible ranges. As an example forPi
LðjÞ, ifD equals to 0.3 (i.

e. 30% variation from the base load) and eiPL
ðjÞ equals to 0.9,

the active power load at bus i in the case j equals to 76%of the

base case active power.

Loads increase in a fixed power factor fashion, that is:

Pi
LðjÞ

Qi
LðjÞ

¼ Pi
LdðjÞ

Qi
LdðjÞ

ð7Þ

where Qi
LdðjÞ is the rate of change in reactive power of the

ith bus in jth sample. While Pi
LdðjÞ, Pi

LðjÞ, Qi
LðjÞ are

dependent on random variables, Qi
LdðjÞ is a function of

aforementioned variables and there is no need to use any

extra random variable to generate Qi
LdðjÞ.

3.4 Evaluation of model performances

Typical measures applied for the performance evalua-

tion of ANNs are residual squared error (R2) and mean

square error (MSE) [23, 26]. In this paper, R is used to

measure the performance of the designed ANN. This index

is defined as:

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

P
ðxi;yiÞ2S

ðyi � ypÞ2

P
yi2S

ðyi � ymÞ2

vuuuut ð8Þ

where xi is the input parameters of ANN (voltage phasors

and rates of load changes); yi is the value of VSM deter-

mined by CPF method; yp is the predicted value of VSM

estimated by ANN; ym is the mean value of VSM deter-

mined by CPF method, and S ANN samples set.

R is equal to one when the trained ANN is able to

exactly predict all VSMs. Inaccurate estimation of VSM

leads to lower values of R measure.

3.5 Incorporation of system configuration changes

Power system components (e.g. lines, generators, and

etc.) need periodical maintenances. In addition, there are

always unexpected outages in the system due to component

failures or protection system incorrect actions. Power sys-

tems likely face with the condition that one, two, or more

components are out of service. Dealing with power system

assessments in contingency conditions is hence crucial for

the system operators [5, 27]. Note as well that since the

higher order of contingencies are of trivial probabilities,

usually single and double outage contingencies are merely

accounted for in system studies. However, power system

resilience analysis calls for low probability but very sever

disturbances.
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The designed ANN should be able to deal with N-1 and

N-2 contingency situations. This requirement could be

fulfilled in two ways:

1) Implicit method in which the ANN samples include

contingency cases; however, no input directly intro-

duces contingency condition to ANN [16, 17].

2) Explicit method in which the ANN samples include

contingency samples; moreover, an extra input(s),

which specifies contingency identification, is added to

the input features. In this manner, each sample

corresponds to a specified contingency. Results show

that this method can improve the ANN performance.

3.6 Flowchart for VSM estimation using ANN

In the process of obtaining VSM using ANN, the

number of samples used for training phase should be

tractable. However, the number of possible contingencies

is too huge for a real-scale power system. To deal with this

difficulty, an algorithm is introduced in the following to

eliminate unnecessary contingencies from the list of cred-

ible ones. The flowchart of the algorithm is shown in

Fig. 4. The flowchart of the algorithm includes three

steps.

Step 1: Train ANN with normal state samples.

Step 2: Choose some samples among N-1 contingen-

cies. If the trained ANN is able to predict VSM, there is no

need to add these contingencies to sample cases of ANN.

Otherwise, the contingencies are added to sample cases and

ANN is retrained. This step may be applied for all N-1

contingencies. In this stage, some of contingencies, with

low effects on the voltage stability or with impacts similar

to those of contingencies already included in the training,

are omitted.

Step 3: The same process of Step 2 is applied to N-2

contingencies. In comparison to N-1 contingencies, an

N-2 contingency brings about more severe impacts only

when the two outaged elements are electrically (and likely

geographically) close to each other. Otherwise, N-2 con-

tingency has no further mutual impact compared to two

respective N-1 contingencies. In such a case, usually one

of contingencies has more effect on voltage stability and it

would determine the limitation of voltage stability. That is

why analysis of N-2 contingencies will start after inves-

tigating all N-1 contingencies. Thus, majority of N-2

contingencies would be eliminated in this stage and just a

few are added to the training data set. However if in a

large-scale system, the number of N-2 contingencies is

intractable, contingency screening and selection procedures

can be taken in use to handle the computational

difficulty.

In summary, the ANN is trained to respond normal,

N-1, and N-2 contingencies. If the system experience a

contingency in real-time, then the input standing for the

contingency number implicitly assist ANN to lead to a

more accurate result. In this manner, the designed method

is well capable to deal with contingencies.

4 Simulation results

According to the nature of long-term voltage stability,

test cases are designed as such they can specify the effect

of load change during a long-term voltage stability

assessment. The IEEE 6-bus standard and the New England

10-machine 39-bus test systems are examined for the

numerical analysis purposes [28].

4.1 Illustrative example

In this section, the IEEE 6-bus test system shown in

Fig. 5 is used to demonstrate the VSM estimation by means

of the proposed method.

The first step is generating sample cases. To do so,

random variables are added to the system base cases. The

tolerances of active and reactive powers are set at ±30%.

This means that D equals to 0.3 in (4). The tolerance of

Start training ANN with 
normal condition samples

Train the ANN

Test a new N 1 
contingency

Add the contingency 
samples to ANN 

training set

Terminate off-line training 
and testing phase ready for 

real-time application

Y Y

YY

Add the contingency 
samples to ANN 

training set

Test a new N 2 
contingency

N

NN

Have all N 1 
contingencies
 been tested? 

Results 
acceptable?

Results 
acceptable?

N

Have all N
contingencies
 been tested? 

Fig. 4 An algorithm to reduce ANN training samples in large power

systems
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generators voltage magnitude is set at ±3%. The tolerance

of the rate of change of active power is set at ±30%. The

number of generated cases is 3000. These cases are ran-

domly divided into three groups: training, validation, and

testing cases. 70% of the whole cases are used for training

phase, while each of the validation and testing phase

include 15% of cases. Training and validation phases are

done concurrently. The validation phase is used to stop

training before over fitting occurs. Only normal condition

is considered in this stage and contingency analysis will be

discussed later. Using CPF method for each of the sample

case, VSM is obtained and used as the target of the

designed ANN.

The next step is to adopt ANN inputs. In this regard,

voltage magnitudes and angles of all buses except the slack

bus plus the rate of active power changes of all load buses

are selected as the inputs. Slack bus voltage magnitude and

angle are fixed during simulations, so it is omitted from the

input list. Thus, we have thirteen inputs and a single output

target for the ANN.

Training the ANN is conducted thereafter. The trained

ANN could be next used to predict unseen cases as the test

phase of the ANN. Figure 6 shows the performance of

designed ANN during training, validation, and test phase.

As it can be seen in Fig. 6, the performance of ANN during

test phase is so close to that associated with the training

phase. It shows that number of training samples is large

enough; so, using more samples to obtain better results is

unnecessary and may lead to over fitting.

Now, contingency states are to be included in the pro-

cess. In this paper, only line outages are considered for

both N-1 and N-2 contingencies. To do so, N-1 con-

tingency is added to the normal state of the system. Note

that the algorithm described in Section 3.6 is not taken in

use here as the system at hand is small enough. As

explained in Section 3.5, either implicit or explicit method

should be used to include the impact of contingencies.

Performance of the implicit technique is shown in Fig. 7.

Comparing with Fig. 6, it is deduced that the performance

of ANN is degraded in the implicit method. Because bus

voltage phasors do not provide enough discrimination for

contingencies and ANN is trained inappropriately.

In the explicit method, an input which defines contin-

gency number is added to input features. Thus, 14 inputs

1

6

4

5 2

3

G

G

Fig. 5 Single-line diagram of IEEE 6-bus test system

Fig. 6 Regression analysis of the forecasted VSM versus the actual

value

Fig. 7 Regression analysis of the forecasted VSM versus the actual

value under N–1 contingencies using the implicit method
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are introduced which include five bus voltage magnitudes,

five bus voltage angles, three rates of power change of load

buses, and a contingency number. The obtained results are

given in Fig. 8. As can be seen, the performance of the

designed ANN is remarkably much more accurate in the

explicit method.

4.2 New England 39-bus test system

The proposed method is applied on the New England

39-bus test system shown in Fig. 9. Note that as the voltage

stability problems and studies has geographically limited

interdependencies, examining systems larger than IEEE

39-bus system in voltage stability focused literature is not

common and brings no new insights. In this case, the dif-

ficulty is dealing with numerous contingencies; hence, the

algorithm proposed in Section 3.6 is utilized. The structure

of the devised ANN is presented in Fig. 10. Inputs X1 up to

X38 are bus voltage magnitudes. Inputs X39 up to X76 are

bus voltage angles. Inputs X77, X78, X79 represent the rate of

change of active powers of three regions of the system.

Practically, in power systems, loads of a same region

change in a same manner. So, the New England 39-bus test

system is divided into three regions and loads of each

region change in an identical rate. This assumption is

technically sensible while it can be even relaxed by

increasing the number of regions. Input X80 represents

contingency number.

The number of samples used for training, validation, and

testing phase of the ANN is 3000 (70% for training, 15%

for validation, and 15% for testing).

Figure 11 shows the performances of three methods in

estimation of VSM while no contingency is regarded.

These methods are:

Method 1: Inputs are voltage phasors and rates of change

of active powers. Also, different load change scenarios are

used in the training phase.

Method 2: Inputs are voltage phasors. Different load

change scenarios are used in the training phase.

Method 3: Inputs are voltage phasors. However, only a

single load change scenario is used in the training phase.

Actually, this is the conventional method assuming a

unique load variation pattern for the whole system.
Fig. 8 Regression analysis of the forecasted VSM versus the actual

value under N–1 contingencies using the explicit method
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Referring to Fig. 11, it is concluded that the conven-

tional Method 3 fails in the proper estimation of VSM (R =

0.6144). Thus, adding various load change scenarios to the

train sample set is an inevitable requirement in real-world

practices. Comparison of two other techniques reveals that

the direct consideration of various load change scenarios in

the ANN (Method 1) outperforms Method 2 in which load

change scenarios are only seen among in the training set.

The next step is to add N-1 contingency samples to the

main training samples. Recalling the proposed flowchart,

only contingencies which are not properly estimated by the

ANN are added to the training samples. Doing so, 48 single

contingencies are reduced to 27. Figure 12a shows the

capability of the designed ANN to estimate the VSM under

normal and N-1 contingencies.

Next, N-2 contingencies are similarly covered. From

the viewpoint of voltage stability assessment, the most

severe N-2 contingencies are outage of transmission lines

terminating to a given load bus. These double contingen-

cies with a count of 45 are initially considered and next

filtered out. Finally, 10 double contingency is recognized

valuable to be added to the training samples. Figure 12b

shows the regression results of the designed ANN in

response to the normal, N-1 contingency, and N-2 con-

tingency states.

4.3 ANN training time

Among the aspects of real-time application of VSM

assessment approaches is the computational time. Talking

about ANN, one computational time is important: How

long does the devised ANN take to estimate VSM?

Table 1 shows the computational time of ANN training

and execution (VSM estimation) in the IEEE 6-bus and the

New England 39-bus test systems. The simulations are

conducted on an Intel 2.2 GHz CPU with 8 GB RAM.

Expectedly, the ANN fits well to be implemented in a real-

time manner.

4.4 Effect of measurement errors on proposed

method

It is inevitable that every measurement includes some

level of error. According to the standard IEEE C37.118

[29], the total vector error (TVE) is introduced to describe

the allowable tolerance of phasor measurement error as:

TVE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re Vmf g � Re Vrf gð Þ2þ Im Vmf g � Im Vrf gð Þ2

Re Vrf gð Þ2þ Im Vrf gð Þ2

s

ð9Þ

where Re{V} and Im{V} indicate the real and imaginary

parts of vector V, respectively; m and r stand for measured

and exact value of the vector, respectively.

In order to analyze the effect of measurement error on

the proposed method, normally-distributed random noises

are added to inputs of ANN. Based on the standard IEEE

C37.118, random noise terms are added to both magnitude

and phase angle of phasors in a way that TVE does not

exceed 1%. As given in Table 2, results show that the

proposed algorithm is robust to the noise and the perfor-

mance index of the designed ANN is more than 90%.

Fig. 11 Regression analysis of the forecasted VSM versus the actual

value

Fig. 12 Regression analysis of the forecasted VSM versus the actual

value using the explicit method

Table 1 Training and execution time of ANN

Mode Training time (s) Estimation time (s)

6-bus system 4.9410 0.0156

39-bus system 54.5970 0.0312
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4.5 Optimal phasor measurement unit (PMU)

placement

Most of the power systems around the world have only

limited number of PMUs and there is far distance with the

complete phasor observability of electric power networks.

The reason was the high price of PMU devices in the past

and is the limited available wide-band communication

media todays. Accordingly, the optimal placement with the

objective of VSM analysis could be a practically fruitful

alternative [30]. Usually, it is not computationally feasible

to test every possible combinations of PMU placement (2N,

where N is the number of buses). A search algorithm could

thus be employed to obtain a proper combination. To do so,

the New England 39-bus test system is studied.

Among many methods proposed to find the optimal

placement of PMUs for complete observability of the

system [31, 32], integer linear programming (ILP) method

is the most commonly used [33]. In [34], optimal PMU

placement of the New England 39-bus system ensuring

complete observability is reported. Each PMU by means of

current phasors and line parameters makes its hosting bus

and all adjacent buses observable (zero injection bus effect

is overlooked because of its low reliability and high

propagated error). Doing so here, buses 2, 6, 9, 10, 11, 14,

17, 19, 22, 23, 25, 29, 34 are selected as candidates for

PMU placement ensuring entire observability. Among

candidate buses, the search algorithm is to find the best

placement of a given number of PMUs achieving the best

performance of the proposed method.

Initially, the place of first PMU among 13 buses is

specified. Afterward, the second PMU is placed in a bus

out of 12 remaining buses. This process will continue until

the last available PMU. Note as well that this procedure

looks for appropriate schemes within the context of the

final full observability PMU placement plan.

The performance of the proposed method using 1 to 4

PMUs are shown in Fig. 13. Results show that in the New

England 39-bus system by 4 PMUs out of 13 ones, an

appropriate performance in VSM estimation is achieved.

Note that we mimic the real situation in which just the

outputs of measurement system are real/valid values to be

used in the studies. Hence, only the data captured by PMUs

are assumed to be available here. Expectedly, with more

PMU devises installed across the network, more

comprehensive data is available for training the ANN and a

better performance of VSM estimation is attained.

5 Conclusion

This paper revealed that an ANN with bus voltage

phasors as inputs is unable to estimate VSM when various

load change scenarios are expected. To deal with this

problem, the rates of change of active powers were adopted

to be added to the input vector of ANN. The designed ANN

was trained off-line and used for real-time VSM estima-

tion. For the sake of practicality, two explicit and implicit

methods have been discussed for incorporation of contin-

gencies. The results indicated that the explicit method has

more reliable performances. In large-scale power systems,

the immense number of contingencies could be cumber-

some. An algorithm was accordingly developed to reduce

the number of contingencies in large-scale power systems.

Results show that the performance of the proposed method

is more than 99% in all case studies and is not affected by

the size of the system. In addition, the effect of noise on the

ANN inputs has been tested and the results clarified that the

VSM could be obtained in noisy environments by using the

proposed method.
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