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Abstract With the integration of distributed generation

and the construction of cross-regional long-distance power

grids, power systems become larger and more complex.

They require faster computing speed and better scalability

for power flow calculations to support unit dispatch. Based

on the analysis of a variety of parallelization methods, this

paper deploys the large-scale power flow calculation task

on a cloud computing platform using resilient distributed

datasets (RDDs). It optimizes a directed acyclic graph that

is stored in the RDDs to solve the low performance prob-

lem of the MapReduce model. This paper constructs and

simulates a power flow calculation on a large-scale power

system based on standard IEEE test data. Experiments are

conducted on Spark cluster which is deployed as a cloud

computing platform. They show that the advantages of this

method are not obvious at small scale, but the performance

is superior to the stand-alone model and the MapReduce

model for large-scale calculations. In addition, running

time will be reduced when adding cluster nodes. Although

not tested under practical conditions, this paper provides a

new way of thinking about parallel power flow calculations

in large-scale power systems.

Keywords Power flow calculation, Parallel programming

model, Distributed memory-shared model, Resilient

distributed datasets (RDDs), Directed acyclic graph (DAG)

1 Introduction

Power flow calculation, which refers to calculating the

distribution of active power, reactive power and voltage in

a power grid with given topology and component param-

eters, is the foundation of steady or transient state analysis,

power system planning, reliability analysis and optimiza-

tion. In recent years, for higher energy efficiency, lower

carbon footprint, and meeting growing power demand,

abundant distributed generators, storages, etc. are inte-

grated into power grid [1], which adds more uncertainty to

power flow calculation and requires it to be more scalable.

Moreover, the construction of cross-regional interconnec-

tion and long-distance transmission systems make the scale

of power systems expand and their structure tends to be

complicated. There is an urgent need to propose new power

flow calculation approaches [2, 3] to cope with these

changes and consequent issues they bring to power flow

calculation, such as the addition of a temporal dimension,

insufficient memory, and slow computational speed and

convergence [4–8].

In view of its good performance in improving compu-

tational efficiency, parallel computing is considered to be a

primary solution for power flow calculation in large-scale

power system. Related research mainly focuses on parallel

algorithms, parallel programming models and experimental

platforms. The purpose of this research is to design effi-

cient parallel algorithms with higher parallelism and lower

data correlation, using methods such as decomposition and

coordination, sparse vectors, Krylov subspace iterations,
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and so on [9–12]. Although these methods have made some

progress, it is extremely difficult to overcome the internal

temporal dependencies in the process of forward-backward

sweeping. They also suffer from poor versatility and

portability.

The parallel programming model is closely related to the

specific hardware platform. Graphical processing units

(GPUs), vector machines, symmetric memory-shared

multiprocessor, Transputer systems and Beowulf clusters

are commonly used. Reference [10] implements power

flow computing by constructing a peer-to-peer (P2P) plat-

form, but its scalability is poor and there is a serious

communication delay, so it is difficult to realize online

computing of large-scale power flow on it. Reference [9]

used pipeline technology with non-blocking communica-

tions based on message passing interface (MPI) to reduce

waiting times in data synchronization among nodes.

However, according to Amdahl’s law, it has a bottleneck of

gradually declining parallel speedup ratio as the number of

computing nodes increases. Reference [12] proposed the

parallel generalized minimal residual (GMRES) algorithm

and implemented an analysis on the Beowulf cluster plat-

form. From the experimental results, there was limited

improvement in parallel efficiency, and the amount of

inter-process communication was increased when adding

processors. A distributed heuristic approach is proposed for

the optimal management of a smart power distribution grid

in [13], and the reported results show its efficiency com-

pared to a heuristic centralized approach, however, the

experiment cases are just 9-bus and 25-bus systems, which

are not a practical scale. References [14] and [15] imple-

mented parallel power flow calculations on GPUs. Refer-

ence [14] used particle swarm optimization (PSO) to

calculate optimal power flow (OPF) while [15] proposed a

Monte-Carlo (MC) based method for probabilistic power

flow (PPF) analysis. They could get speedups of approxi-

mate 16-20 compared to sequential execution on a single

CPU with 30-300 buses. These traditional parallel pro-

gramming models usually have a high cost while they are

difficult to implement, and their hardware platform are

hard to extend. They are usually more suitable for appli-

cations with a relatively small volume of data.

Cloud computing fuses parallel computing and dis-

tributed computing and has become a standard technology

for lots of big data analysis tasks including power system

simulation and control. A cloud-based power system

operational model called cloud grid (CG) is presented in

[16], where the service model of cloud computing is inte-

grated into the whole life cycle of the power system in

China’s smart grid environment. Cloud computing mainly

adopts MapReduce as its parallel programming model,

allowing numerous cheap commercial computers to be

used for computing and giving high reliability, low cost,

the capability for processing a huge amount of data, flex-

ibility and scalability. Reference [17] designed and

implemented a cloud computing platform for a wide area

measurement system and it was used to process large

amounts of power grid data. Its basic software is Hadoop

which uses the MapReduce model for parallel data

extraction, transformation and access across multiple files,

demonstrating efficient massive data processing. In addi-

tion, [18] proposed a technology on processing mass

intermittent energy data on MapReduce model. There are

lots of advantages, achieved by allocating a large number

of tasks to different nodes of a loosely-coupled computer

cluster system and demanding high intensity mass data

throughput; however, MapReduce-based cloud computing

is most suitable for data-intensive applications, and usually

has poor performance when executing computation-inten-

sive tasks such as large-scale power flow calculations.

There has been much research devoted to improving the

performance of cloud computing frameworks. Spark is

considered to be a more efficient model than MapReduce.

Reference [19] indicated that the bottleneck of Hadoop is

reading data from disk. In [20], it was noted that Hadoop

stores input and output data on disk while Spark stores

them in memory, and the result showed that the latter

obtained a 40 times improvement in speed over the former.

Reference [21] described that, similarly to Spark’s storage

strategy, caching input data could halve the average job

completion time. Some problems about the granularity of

caching and how Hippo uses a ‘‘homework dependency

graph’’ to determine memory retention and prefetching

were discussed in [22]. As the core technique of Spark,

RDDs provide a distributed memory-shared model which is

characterized by MapReduce’s fault-tolerance performance

and simple programming. Currently, RDDs have been

successfully applied in other fields requiring big data pro-

cessing and analysis [23, 24] but there is little research

about RDDs-based power system simulation.

In view of the above analysis, a parallel power flow

calculation method derived from the Newton-Raphson

method and MapReduce is proposed. The contributions of

this method are mainly embodied in two aspects:

1) Deploying large-scale power flow calculation on a

cloud computing platform.

2) Solving the problem of low performance of MapRe-

duce model when applied to this task.

Considering the necessity to manage a large volume of

data, the proposed method takes adequate advantage of

cloud computing and makes up for the insufficiency of

MapReduce by using RDDs and DAG. To reduce the time

spend reading, writing and transferring data, it forms

datasets in memory. The computing performance is further

improved by executing the sequential programs with a

maximum degree of parallelism.
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2 Power flow calculation model for large-scale
power systems

2.1 Power flow calculation model of power system

Power flow analysis is a fundamental calculation which

is often used to evaluate the feasibility, reliability and

efficiency of a power supply scheme, and in doing research

on power system operation and regulating schemes

[25–28]. It is also necessary for theoretical line loss anal-

ysis. An online power flow calculation with improved

performance would be a significant advance.

1) Bus analysis in power flow calculation

Taking various conditions constraint into account, buses

in power system are divided into different categories: � PQ

buses are the most prevalent in the power grid, with given

active power and reactive power, thereby power injection is

known; ` PV buses have known active power and voltage

amplitudes, and usually they are few in number, if any; ´ a

balance bus (PI bus) has given voltage amplitude and

phase, and generally there is only one of them. A power

plants buses which is responsible for adjustment of system

frequency is often selected as the balance bus.

A new type of bus is appearing in the power system in

increasing numbers due to the integration of distributed

energy. Whether they are synchronous generators or dou-

bly-fed generators, wind turbines can be equivalent to PQ

buses in power flow calculations. If connected into grid

through a current-source inverter, solar power can be

equivalent to a PI bus and, if connected into grid through

voltage source inverter, it can be equivalent to a PV bus.

Micro gas turbines and fuel cells can be treated as PV buses

in power flow calculation.

2) The mathematical model of power flow calculation

Power flow calculation aims to determine power distri-

bution and loss accurately according to power grid

parameters and structure within a reasonable time. It is

necessary to set up and solve (1) Newton-Raphson method

which are derived in [29].
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where ‘‘D’’ represents the unbalance value; fj and ej are the

real and imaginary parts of the correction voltages; Hij, Nij,

Jij, Lij, Rij, Sij are the parts of the Jacobian matrix; Pi and Qi

are the active and reactive power; Ui is the voltage mag-

nitude. There are ðn� 1Þ PQ buses and ðn� mÞ PV buses.

The first 2ðm� 1Þ rows in (1) correspond to the PQ buses

and the following ðn� mÞ rows correspond to the PV

buses. A rectangular coordinate system is used.

2.2 Power flow calculation using Newton-Raphson

method

The Gauss-Sederal method, the Newton-Raphson

method and the P-Q method are the main methods for

power flow analysis. Meanwhile, intelligent algorithms

such as the genetic algorithm and particle swarm opti-

mization have been used; however, studies about improv-

ing power flow calculation methods are still aimed at the

traditional algorithms [30, 31].

The Newton-Raphson method (or Newton method) is a

typical method for solving nonlinear equations in mathe-

matics. It is better than other methods in terms of memory

requirement and computational speed with good conver-

gence. This method is still used widely. Its basic idea is

expanding the power flow equation FðxÞ ¼ 0 as a Taylor

series and omitting the second and higher order terms. This

linearizes the nonlinear equations locally, and the core of

the solution process is to form and solve the correction

equation repeatedly.

This paper selects the Newton-Raphson method for

studying power flow calculation because of the following

advantages: � Fast convergence. With an appropriate ini-

tial value, the algorithm has characteristics of square-law

convergence. Generally, accurate solutions can be obtained

after 4-5 iterations, and the time of iteration is substantially

independent of the grid size; ` Good convergence relia-

bility. Compared with the Gauss-Seidel method which has

poor convergence and slow calculation, the Newton-

Raphson method has good convergence reliability; ´

Extensive application. The Newton method is widely used

and applicable to the general power flow calculation

because it has no specific requirements on the parameters

in power grids; ˆ Easy to parallelize. Traditional direct

methods for power flow calculation require forward-back-

ward sweeping in the solving process and it is difficult to

realize this as a vectorized or parallel calculation. The

Newton-Raphson method is easier to parallelize.
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3 Parallel power flow calculation method based
on RDDs and DAG

3.1 Parallel programming model: MapReduce

MapReduce, a parallel programming model for pro-

cessing large data sets, greatly simplifies the complexity of

distributed parallel programming. The Map (mapping)

function is used to map a set of key-value pairs to a new set

of key-value pairs and The Reduce (reduction) function

performs a summary operation for each group of mapped

key-value pairs which share the same key. Taking the

calculation of the admittance matrix’s diagonal elements as

an example, Fig. 1 explains the MapReduce operation.

Figure 1 shows that it is necessary to read power grid

parameters from different buses before the Map operation

(each rectangle represents a node), and buffer the inter-

mediate results to disks at various nodes. During the

Reduce operation, it is necessary to read intermediate

results from all child nodes. As a result, there are relatively

many data reading, writing and transmission operations. A

growing amount of power data and calculation makes

transmission delays more and more obvious. Reference

[32] applies MapReduce programming to parallel power

flow computing using the component averaging (CAV)

iterative method and Jacobi iterative method. However,

there are still problems like data transmission delays in the

computing process, long processing time, and poor real-

time performance, which make the results not so

satisfactory.

3.2 Distributed memory sharing model

RDDs and DAG optimization are the core technologies

of Spark. As a distributed memory sharing model, RDDs

can store data in memory and make them form datasets. It

can reduce the time spent reading and writing data by

directly visiting these datasets when analyzing the data

with Spark. Before calculating, the Spark kernel will draw

a DAG describing the calculation path. Computation will

be divided according to the DAG into sets of tasks, which

will be submitted to the compute nodes for real calcula-

tions. DAG optimization enables the sequential tasks to be

executed in parallel to the greatest possible extent. In

addition, transmission time and execution time are reduced

by implementing the task sets with narrow dependence in

one stage. Figure 2 shows the calculation process of

admittance matrix’s diagonal elements based on RDDs and

DAG optimization.

It can be seen from Fig. 2 that the branch admittance

value slices are first read from each node (each rectangle

represents a node), and then the intermediate key values are

stored in the RDDs collection after the Map operation. The

intermediate key values are read from all nodes when

performing a Reduce operation. Reading and writing

operations in the whole process are based on RDDs data-

sets and their speed is much faster. DAG optimization takes

Power grid parameters

Power grid parameters

Power grid parameters

Data splices

Rows, columns, admittance

   5, 5, 2.500+j7.500
   5, 5, 1.250+j3.750

   1, 1, 5.000+j15.000
   1, 1, 1.250+j3.750

   3, 3, 1.250+j3.750
   3, 3, 1.667+j5.000
   3, 3, 10.000+j30.00

Rows, columns, admittance

   1, 1, 6.250 j18.750
   2, 2, 10.834 j32.500
   3, 3, 12.917 j38.750
   4, 4, 12.917 j38.750
   5, 5, 3.750 j11.250

Starting node, admittance

   1, 2, 5.000+j15.000
   1, 3, 1.250+j3.750

   3, 4, 10.000+j30.00
   4, 5, 1.250+j3.750

Rows, columns, admittance

   1, 1, 5.000+j15.000
   2, 2, 1.250+j3.750

   3, 3, 10.000+j30.00
   4, 4, 10.000+j30.00
   4, 4, 1.250+j3.750
   5, 5, 1.250+j3.750

Slave

Slave

Slave

Map operation
Store middle value 

on disk
Slave

Slave

Slave

Reduce operation

Output 
data... ... ...

...

...

...
...

...

Fig. 1 Calculation process of admittance matrix’s diagonal elements based on MapReduce
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the key values of admittance data slices into a joint parti-

tion and stores intermediate results, which are within the

same key, in the same node for processing. This will avoid

the data being mixed among nets, which can reduce data

transmission and improve efficiency of the computation.

The difficulty of parallel processing depends on the size

of the power grid and the complexity of its structure, and

on how well the algorithm can be adapted to parallel

computation. Several factors such as the method of sub-

division, optimal allocation across nodes, and interdepen-

dency should be considered to implement the parallel

power flow calculation. Figure 2 shows the principle for

calculating diagonal elements of the admittance matrix

based on MapReduce, including some steps which are

indicated diagrammatically such as the optimal allocation

of tasks and node calling.

3.3 Parallel power flow calculation method

The analysis above explains why a parallel power flow

calculation using the Newton-Raphson method with RDDs

and DAG optimization should be efficient. In large-scale

power system, the amount of calculation for power flow

calculation mainly comes from solving correction equa-

tions and updating the Jacobian matrix. The complete

process includes preparation for these steps and is outlined

in Fig. 3.

In the calculation process, the n buses of the power grid

are not divided sequentially into PV buses, PQ buses, and

balance buses. Rectangular coordinate is selected for rep-

resentation of voltage. The source and intermediate data

are stored in the RDDs array. After DAG optimization,

those operations with narrow dependence are implemented

in one stage. The whole procedure is divided into seven

stages and each stage can be completed at one node inde-

pendently. Different stages, however, demand striding

several nodes. Stages 1, 2, and 3 can be executed in parallel

as can Stages 4 and 5.

The specific procedures of each stage are as follows,

where the notation � � ½ �½ � on � � ½ � expresses a variable

array or a variable which is formed in the process of the

power flow calculation (‘‘�’’ indicates one or more

letters).

Power grid 
parameters

RDD

RDD

RDD

Reduce

Reduce

Reduce

Map

Map

Map

Output data

Map 
operation

Data splices Store intermediate data in 
RDD after Map operation

Reduce 
operation

Branche, from bus, admittance value

1, 2 5.000+j15.000
1, 3 1.250+j3.750

3, 4 10.000+j30.0
4, 5 1.250+j3.750

2, 3 1.667+j5.000
2, 4 1.667+j5.000
2, 5 2.500+j7.500

(Row, columns)(Branche, from bus, admittance value)

(1, 1), (1, 2 5.000+j15.000)
(2, 2), (1, 2 5.000+j15.000)
(1, 1), (1, 3 1.250+j3.750)
(3, 3), (1, 3 1.250+j3.750)

(2, 2), (2, 3 1.667+j5.000)
(3, 3), (2, 3 1.667+j5.000)
(2, 2), (2, 4 1.667+j5.000)
(4, 4), (2, 4 1.667+j5.000)
(2, 2), (2, 5 2.500+j7.500)
(5, 5), (2, 5 2.500+j7.500)

(3, 3), (3, 4 10.000+j30.000)
(4, 4), (3, 4 10.000+j30.000)
(4, 4), (4, 5 1.250+j3.750)
(5, 5), (4, 5 1.250+j3.750)

(Branche, from bus), (Admittance value)

(1, 1), (6.250 j18.750)
(2, 2), (10.834 j32.500)
(3, 3), (12.917 j38.750)
(4, 4), (12.917 j38.750)
(5, 5), (3.750 j11.250)

Power grid 
parameters

Power grid 
parameters

Fig. 2 Calculation process of admittance matrix’s diagonal elements based on RDDs and DAG optimization
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Step 1: Save the impedance data and their row numbers in

the source file in a RDDs array RR½lnum�½4� and index variable
lnum respectively. The other elements of the array are the

identities of ‘‘from’’ and ‘‘to’’ buses of the branch impedances,

stored in RR½ �½0� and RR½ �½1� respectively, and the resistance
and reactance of the branch impedances, stored inRR½ �½2� and
RR½ �½3� respectively, with ohms as their units. The conduc-

tance (real part)YG½nþ 1�½nþ 1� and susceptance (imaginary

part) YB½nþ 1�½nþ 1� of the admittance matrix can be cal-

culated according to (2) and (3) after getting array RR½ �½ �.
YG½ �½ � and YB½ �½ � are both RDDs arrays.

YG½i�½j� ¼ �RR½ �½2�=ðRR½ �½2�2 þ RR½ �½3�2Þ
YB½i�½j� ¼ �RR½ �½3�=ðRR½ �½2�2 þ RR½ �½3�2Þ

(
ð2Þ

YG i½ � j½ � ¼ �
P
k¼1

k¼n

k!¼i

YGði;kÞ

YB i½ � j½ � ¼ �
P
k¼1

k¼n

k!¼i

YBði;kÞ

8>>>>><
>>>>>:

ð3Þ

This procedure is shown in Fig. 4 below in terms of

diagonal elements and off-diagonal elements separately.

Off-diagonal elements can be computed directly from

branch resistance and impedance using (2). Then the

diagonal elements can be calculated according to (3).

Step 2: Read the information about bus voltage and bus

power, and save the buses’ type, voltage, active power and

reactive power in the RDDs arrays Tbus½nþ 1�, U½nþ 1�,
P½nþ 1� and Q½nþ 1�, respectively. Set the values of

unknown data to zero; for instance, the reactive power of a

PV bus is unknown, so these are set zero.

Step 3: Set the initial value of voltage on each bus

according to (4). Each voltage value consists of real part e

and imaginary part f , while their correction values are ee

and ff . In the first iteration, initial values and correction

      Stage 6

Solve correction equation and 
the correction value of each 

bus voltage and generate 
RDD: ei

(k), fi
(k), finding the 

biggest: | e(k)|max, | f (k)|max

                          Stage 5

Calculate the value of 
each element in 
Jacobian matrix  

according to (7), (8) 
and  generating RDD: 

H[ ], N[ ], J[ ], L[ ], 
R[ ], S[ ]

   Stage 4

Calculate the values of 
Pi

(K), Qi
(K) for PQ buses 

according to (4), (5)

Map and Reduce 
operation

Stage 2
The  document 

concerning voltage 
and power based on 
the IEEE standard 

Read the data of  bus 
type and the 

corresponding voltage, 
power, and generate 

RDD: Tbus[ ], P[ ], Q[ ]

Stage 1

Admittance 
matrix based on 
RDD: YG[ ][ ], 

YB[ ][ ]

Stage 3 

Initialize bus 
voltages and 
generate the 

corresponding 
RDD: ei

(0), fi
(0); 

i=1, 2, , n, i≠sDef ReadGB( ): 
Unit ={ }
Def Admittance( ): 
Unit ={ }

Def ReadPQU( ): 
Unit ={ }

Def Init( ): 
Unit ={ }

Def ComputeHNJL( ): 
Unit ={ }

Def ComputePPQQ( ): 
Unit ={ }

Def SoveY( ): Unit ={ }
Def MaxEF( ): Unit={ }
Init( )

| e(k)|max,
| f (k)|max

can t meet the 
conditions

| e(k)|max, | f (k)|max meet the conditions

     Stage 7

 Calculate the power distribution 
in the grid and line losses 

according to (9) 
Def ComputeS( ): 
Unit ={ }

 The document 
concerning 

impedance based 
on the IEEE 

standard 

Map and 
Reduce 

operation

Fig. 3 Complete process for parallel power flow calculation

i=0, j=i

0<i<n
&0<j<n?

i==j?

Calculate according to (2) 
when 

RR[ ][0]==i&RR[ ][1]==j, 
during scanning RR

Calculate according to (1) 
when 

RR[ ][0]==i||RR[ ][1]==j,  
during scanning RR

i=i+1, j=j+1

Form admittance 
matrix 

Y

YN

N

Fig. 4 Calculation process for admittance matrix
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values of voltage can be estimated. Otherwise, they can be

set according to the correction equation.

e
ðkÞ
i ¼ e

ðk�1Þ
i þ ee

f
ðkÞ
i ¼ f

ðk�1Þ
i þ ff

(
ð4Þ

Step 4: Calculate the unbalance value of the PQ buses’

active power (PP) and reactive power (QQ), and the PV

buses’ active power (PP) and voltage (UU), according to

(5)-(7) as follows:

PP½i� ¼ P½i� �
Xj¼n

j¼1

½e½i�ðYG½i�½j�e½j�

�YB½i�½j�f ½j�Þ þ f ½i�ðYG½i�½j�f ½j� � YB½i�½j�e½j�Þ�
ð5Þ

QQ½i� ¼ Q½i� �
Xj¼n

j¼1

½f ½i�ðYG½i�½j�e½j� � YB½i�½j�f ½j�Þ

þe½i�ðYG½i�½j�f ½j� � YB½i�½j�e½j�Þ�
ð6Þ

UU½i�2 ¼ U½i�2 � ðe½i�2 þ f ½i�2Þ ð7Þ

Figure 5 consists of inner and outer loops. The outer

loop traverses the first subscript (indicating the bus) of the

unbalance value and the inner loops compute the value of

each element by accumulation. The first inner loop

calculates the unbalance value of active power, then

judges the type of bus. If it is a PQ bus, the second inner

loop calculates the unbalance value of reactive power,

otherwise the unbalance value of voltage.

Step 5: Calculate the elements of the Jacobian matrix

using (8), (9) and save them in the related two-dimensional

RDDs arrays H½nþ 1�½nþ 1�, N½nþ 1�½nþ 1�,
J½nþ 1�½nþ 1�, L½nþ 1�½nþ 1�, R½nþ 1�½nþ 1� and

S½nþ 1�½nþ 1�. PQ buses are represented by elements H,

N, J, L in Jacobian matrix and PV buses by H, N, R, S.

H½i�½j� ¼ YG½i�½j�f ½i� � YB½i�½j�e½i�
N½i�½j� ¼ YG½i�½j�e½i� þ YB½i�½j�f ½i�
J½i�½j� ¼ �N½i�½j�
L½i�½j� ¼ H½i�½j�
R½i�½j� ¼ 0& S½i�½j� ¼ 0

8>>>>>><
>>>>>>:

ð8Þ

where i = j, when i = j, there exists:

I
:
¼ Y½i�½i�U

:

i
þ
P
j¼1

j¼n

j 6¼i

Y ½i�½i�U
:
½j� ¼ a½i�½i� þ jb½i�½i�

H½i�½i� ¼ YG½i�½i�f ½i� � YB½i�½i�e½i� þ b½i�½i�
N½i�½i� ¼ YG½i�½i�e½i� þ YB½i�½i�f ½i� þ a½i�½i�
J½i�½i� ¼ �YG½i�½i�e½i� � YB½i�½i�f ½i� þ a½i�½i�
L½i�½i� ¼ YG½i�½i�f ½i� � YB½i�½i�e½i� � b½i�½i�
R½i�½i� ¼ 2f ½i�
S½i�½i� ¼ 2e½i�

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð9Þ

Step 6: Sort the Jacobian matrix elements from Step 5

according to the order of PQ and PV buses and the patterns

H;N

J; L

" #
and

H;N

R; S

" #
respectively to construct the

Jacobian matrix RDDs array Y½2n�½2n�. Similarly,

construct the unbalance value vector RDDs array

PQU½2n�½1� according to the order of PQ and PV buses

i=0

Set the intermediate variables: 
MP=0, MQ=0, MU=0

j=0

Calculate the value of MP:
MP+=e(i)(YG(i)(j)e(j)
YB(i)(j)f(j))+f(i)(YG(i)(j)f(j)+
YB(i)(j)e(j)), j=j+1

j<n?
N

j=0

i<n?

PP(i)=P(i) MP(i)
QQ(i)=Q(i) MQ(i)

PP(i)=P(i) MP(i)
UU(i)=U(i) MU(i)

i=i+1

Judge the type 
of bus: the value of 

Tbus[i]

j=j+1

j<n?

Judge the type 
of bus: the value 

of Tbus[i]

Calculate the values of 
MU:
MU=e(i)e(i)+f(i)f(i)

Calculate the values of 
MQ:
MQ+=f(i)(YG(i)(j)e(j)
YB(i)(j)f(j))+E(i)(YG(i)
(j)f(j)+YB(i)(j)e(j)), j=j+1

PV busPQ bus

Y

Y

N

PV busPQ bus

Y

N

Start

End

Fig. 5 Calculation process of unbalance value
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and the patterns
PP

QQ

" #
and

PP

UU

" #
respectively.

Following (2) multiply the inverse of the Jacobian matrix

by PQU to obtain the RDDs array ef ½2n�½2n� which are the

correction values, arranged in order of PQ and PV buses

and the pattern
ee

ff

" #
.

The process of calculation is shown in Fig. 6. There are

two parts: generating the Jacobian matrix and getting its

inverse. The generation of the Jacobian matrix consists of

two loops: firstly traversing each line of the matrix and then

calculating the elements. The process of inversion is to get

each element’s algebraic cofactor and form a quotient with

the determinant of the Jacobian matrix. Finally, the inverse

matrix is multiplied by the unbalanced value vector, thus

solving the correction equation, and the results are saved in

the RDDs array ef ½ �. The values of array ef ½ � are placed

into ee½ � and ff ½ � according to the order of Ybus values. For

example, if Ybus½1� ¼ 2, then ee½2� ¼ ef ½2�, ff ½2� ¼ ef ½3�.
Referring to Fig. 3, the termination condition for the

iteration compares the maximum correction with a speci-

fied threshold, and the iteration will finish and jump to Step

7 if this condition is met, otherwise, the iteration will

continue from Step 3.

Step 7: To complete the power flow calculation, calcu-

late the distribution of power and line loss in the power grid

according to (10), (11) and (12).

eSs¼U
:

s

Xn
i¼1

Y
�

si
U
�

i
¼ Ps þ jQs ð10Þ

eSij¼U
:

i
I
�

ij
¼U

:

i
U
�

i

y
�

i0
þðU

�

i
�U

�

j
Þ y
�

ij

� �
¼ Pij þ jQij ð11Þ

eSji¼U
:

j
I
�

ji
¼U

:

j
U
�

j

y
�

j0
þðU

�

j
�U

�

i
Þ y
�

ji

� �
¼ Pji þ jQji ð12Þ

4 Experimental results and analysis

4.1 Cluster-based computing environment

The experimental platform is made up of a 5-node

cluster in a cloud computing platform, which includes a

master and four slaves. Figure 7 shows the topological

graph.

Running on the cluster are four processes NameNodes

and one ResourceManager, which is also called the Master

of the cluster. There are also four processes DataNode,

which act as Workers in the cluster, and one NodeManager.

DataNode and NameNode are responsible for managing

storage files. ResourceManager and NodeManager manage

the cluster resources. The Master and Worker processes are

started by Spark and then run the tasks submitted by Spark.

The hardware configuration of each node includes: 20 GB

disk, 1 processor and 1 GB memory. The cluster uses

Hadoop and Spark technology, with hadoop distributed file

system (HDFS) as its storage system for large-scale power

data, Yarn as resource manager, Spark as memory-based

distributed parallel computing framework and Scala as a

light and convenient programming language. The details of

software configuration are in Table 1.

Sort the buses by PQ, PV and generating the RDD
array which stores the bus number: Ybus[n]

i=1, j=1

i<n?

j<n?

Record bus number corresponding to Jacobian rows and
columns: li=Ybus(i), cj=Ybus(j), and record the intermediate
variables: Ti=i 1, Tj=j 1

i=i+1

N

Judge the
bus type

Y(2Ti)(2Tj)=H(li)(cj)
Y(2Ti)(2Tj+1)=N(li)(cj)
Y(2Ti+1)(2Tj)=J(li)(cj)
Y(2Ti+1)(2Tj+1)=L(li)(cj)

Y(2Ti)(2Tj)=H(li)(cj)
Y(2Ti)(2Tj+1)=N(li)(cj)
Y(2Ti+1)(2Tj)=R(li)(cj)
Y(2Ti+1)(2Tj+1)=S(li)(cj)

PQ bus PV bus

j=j+1

Calculate its inverse after obtaining Jacobian matrix

i=0, j=0

i<n?

Calculate the cofactor of Y(i) (j) and
do division with determinant of Y

j=j+1

i=i+1

Generate unbalance values RDD array PQU [2n]
using the method for generating Jacobian matrix.

Conduct multiply operations with the inverse matrix of
Jacobian, and get correction matrix array RDD ef [2n]

Y

Y

Y

Y

N

N

N

j<n?

Fig. 6 Process of generating and inverting Jacobian matrix
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4.2 Source data and test cases

The test data are stored in two files: a branch impedance

file and a bus voltage and power file. The columns stored in

each file are listed in Tables 2 and 3. According to (1) and

(2), the branch admittance value YR (real part) and YB

(imaginary part) will be acquired and then the admittance

matrix can be obtained. Data are accessed according to the

type of bus and unused or non-existant data are set to 0

when reading the file.

In order to simulate large-scale power flow calculations,

test cases are constructed from multiple instances of the

standard test systems IEEE 30, IEEE 118 and IEEE 300.

The test systems are interconnected by tie-lines to make

N9N network structures, so that larger-scale case systems

come into being. The number of buses and branches in

each constructed test case are shown in Table 4.

4.3 Experimental processing and results analysis

To analyze the advantages of a distributed memory

cluster, three aspects are taken into account: the scale of

simulated power system, the speedup of the power flow

calculation and the scale of Spark cluster. Power flow

calculations using the method outlined above were com-

pleted on the Spark cluster and some run-time features of

the experiment are shown in Tables 5 and 6.

Table 5 shows information about available resources of

each node in the Spark cluster after starting. The cluster has

four slaves and they have been successfully started. Each

node with ‘‘active’’ status can perform tasks assigned by

the master at any moment. Table 6 shows details of five

completed tasks. The Spark cluster allocates an ID for each

task in its execution process. Each slave can use 1 GB

memory. Each task is performed by all slaves at the same

time using 4 kernels.

Testing the performance of parallel computing requires

benchmark testing tools, such as SparkBench. However,

SparkBench supports only four types of application:

machine learning, graph calculation, SQL querying, and

streaming data calculation. It can’t be used to test power

system flow calculations directly. SparkBench performance

indices include the task execution time and resource con-

sumption, yet not the volumes of shuffle data, input and

output data, etc. From the above description, it is difficult

to give an accurate and detail description of the I/O time

Client

Master

Slave

Slave

SlaveSwitch

Branches
admittance

data

Bus voltage
and power

data

Fig. 7 Cluster nodes topology

Table 1 Software information of nodes

Software Name Version

Operating system Centos V6.0

Software development kit (SDK) Jdk 1.8.0_31

Programming language Scala 2.11.5

File system HDFS Hadoop-2.5.2

Resource manager Yarn Hadoop-2.5.2

Computing framework Spark 1.2.0

Programming tool IntelliJ IDEA 14.0.3

Table 2 Arrangement of data in branch impedance file

Column Meaning

1 From bus

2 To bus

3 Resistance

4 Reactance

Table 3 Arrangement of data in buses’ voltage and power file

Column Meaning

1 Bus type (1: PQ, 2: PV, 3: Balance bus)

2 Bus number

3 Voltage amplitude (p.u.)

4 Active power

5 Reactive power

Table 4 Information of cases

Case name Number of buses Number of branches

1062 1062 1620

2383 2383 2896

2737 2737 3506

3000 3000 4280

7680 7680 10976

161542 161542 247715

331462 331462 508323

498550 498550 764595
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and the volume of intermediate data. Referencing [7, 9],

this article adopts the commonly used running time and

speedup ratio to evaluate the performance of parallel pro-

grams. Running time refers to the time that the whole

parallel hardware platform takes to execute a parallel

program and solve a problem. Specifically, it includes: the

arithmetic calculation time, which is measured by the

number of steps of basic operations during the execution of

the algorithm; the communication time, which is measured

by the count of communication traffic; and the I/O time,

which is measured by the count of data read from or written

to files and their transmission delay.

4.4 Experiment 1: comparison of running time

for different models and cases

The foundation of this work and the problems which

need to be solved are based on a cloud computing platform,

so the proposed method and others are compared in the

same cloud computing architecture and experimental

environment, so that the validity and advantages of pro-

posed method can be verified.

The first experiment compares the running time of the

power flow calculation in stand-alone model, using the

MapReduce model, and using the proposed method when

the number of buses is 118, 1062, 2383, 2737, 3000, 7680,

161542, 331462, and 498550. For good convergence, the

number of iterations of the correction equation is set to be

3. In Fig. 8, the abscissa is the number of buses and the

ordinate is running time. It shows the change of running

time with the number of buses under the three computa-

tional models.

It can be seen from Fig. 8 that, as the number of buses

increases, the advantages of the proposed method emerge

gradually and its performance is better than MapReduce

and the stand-alone model when the number of buses is

equal to or more than 2383. Meanwhile, it should be noted

that when the amount of data is small the advantage of the

parallel computing model with cloud computing are not

obvious. Under the cluster model, after submitting the task,

every node needs to establish connection with the cluster

during the initialization process, at the same time, the

HDFS must establish communication with Spark, and

MapReduce and the cluster’s internal nodes need to

establish communication with each other, which altogether

Table 5 Information about available nodes after starting Spark cluster successfully

Node ID Status Processor Memory (GB)

Worker-20150711005200-202.206.212.11-50571 Active 1 (0 used) 1.0 (0.0 used)

Worker-20150711005825-202.206.212.8-33135 Active 1 (0 used) 1.0 (0.0 used)

Worker-20150711005825-202.206.212.10-49791 Active 1 (0 used) 1.0 (0.0 used)

Worker-20150711005825-202.206.212.7-53383 Active 1 (0 used) 1.0 (0.0 used)

Table 6 Information about finished tasks

Business ID Name Used memory of every node (GB) Used processor Status Running time (s)

app-20150711021723-0004 OnLine1 1 4 Done 51

app-20150711015925-0003 OnLine2 1 4 Done 14

app-20150711012931-0002 OnLine3 1 4 Done 18

app-20150711012132-0001 OnLine4 1 4 Done 21

app-20150711010053-0000 OnLine5 1 4 Done 11
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Fig. 8 Running time of power flow calculation for different numbers

of buses using three computational models
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takes about 10 s. In the task execution process, the master

will divide the task into subtasks and assign to slaves for

execution. So, because of these overheads, it can be seen

that when the number of buses is 118, the running time in

stand-alone model is even less than for the other two

models.

In all cases, the running time of the power flow calcu-

lation using the MapReduce model is higher than stand-

alone model. When there is a small amount of data, the

distribution achieved with the Map task is seriously

uneven, so there is a great difference in the utilization ratio

of nodes and the computing capability of cluster cannot be

fully exploited, while a lot of management overhead still

exists, resulting in low performance. For large-scale power

flow calculation, MapReduce calculation tasks are exe-

cuted in multiple nodes where data are stored, which will

produce temporary data and frequent read/write operations

for the HDFS. A large number of disk I/O operations are

required and, as a result, its performance is still poor and

has no advantage compared with the sequential stand-alone

model.

Comparing with traditional parallel computation models

such as MPI, the advantages of proposed method are also

dependent on the data scale. A comparison of running time

between methods from [7, 9, 12, 33] and the proposed

method of this paper is shown in Table 7. It should be

noted that the single value used [7, 9, 12, 33] in Table 7 is

the lowest among them. Table 7 illustrates that when the

number of buses is small to moderate (less than 106200),

the performance of this method is slower than the best

achieved in [7, 9, 12, 33]. When the maximum number of

buses is 106200, [7, 9, 12, 33] achieve a lowest running

time of 49.72 s, nevertheless, the proposed method can

reach a lower running time of 38.376 s in the case of

161542 buses. As the number of buses continues to

increase, the performance advantages of the proposed

method can be better seen, and this is determined by the

structure and inherent characteristics of the cloud com-

puting environment.

4.5 Experiment 2: change of time speedup based

on the proposed method

Speedup refers to the ratio between two times. This

experiment measures the running time ratio of the proposed

method and the stand-alone power flow calculation as the

number of buses changes. The result is given in Fig. 9,

where the abscissa is the number of buses and the ordinate

is the time speedup of the power flow calculation.

The experimental results show that the speedup ratio

increases with the number of buses, which indicates that

the parallel performance of the proposed method is

enhanced with an increasing amount of data and calcula-

tion. Presumably, if the number of buses continues to

increase of buses, there is still room for the speedup to

improve.

4.6 Experiment 3: efficiency of power flow

calculation with different cluster scales

Due to limited experimental conditions, The cluster built

with the Spark framework has only 4 slaves and 1 master,

but in a practical environment the cluster would be far larger

than this. As the scale of cluster expands, the advantages

will become more obvious. This experiment compares the

time efficiency of power flow calculation using the proposed

method in the cases of 5 nodes (4 slave nodes and one master

node) and 9 nodes (8 slave nodes and one master node). The

test data come from the synthesized systems with 3000,

161542, and 331462 buses. Figure 10 shows the time nee-

ded when using the 5-node cluster and the 9-node cluster for

these systems. As can be seen, the time needed for the power

flow calculation reduces when the number of slave nodes

increases from 4 to 8, but the reduction is not proportional to

the number of added nodes. This is because additional time

is needed for communicating with the new nodes.

Table 7 Running time of methods proposed in this paper and in

[7, 9, 12, 33] when using four processors

Number of buses Running time (s)

References [7, 9, 12, 33] This paper

118 0.896 11.012

1062 1.330 14.842

3000 1.620 21.321

7680 8.310 27.912

106200 49.720 –

161542 – 38.376
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Fig. 9 Speedup ratio for proposed method compared to a stand-alone

power flow calculation
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4.7 Experiment summary

Through the above three experiments, we can draw the

following conclusions:

1) The time performance of the power flow calculation

using the proposed method is superior to the stand-alone

model and the MapReduce model, and the speedup

increases with the number of buses.

2) The time performance of power flow calculation

using the proposed method is improved with the expansion

of the Spark cluster. However, as the cluster enlarges, the

cost for managing the cluster will also increase. The run-

ning time of the proposed method won’t be reduced in

proportion to the scale of cluster.

Additionally, some shortcomings about experimental

process and results need to be pointed out and explained:

1) The power flow calculation has achieved better per-

formance in stand-alone model when the number of buses

is relatively small. This phenomenon confirms that cloud-

based parallel computation, including the proposed

method, is more appropriate for a large volume of data.

2) In this paper, we reference the experimental setups of

power flow calculation in [7, 9, 12, 33], and compare with

the best running time among these papers. Although the

numbers of power flow calculation buses and branches are

not exactly the same as in this paper, the running time of

power flow calculations may be compared among similar

configurations.

3) There is a big gap between the proposed method and

mature commercial tools. This paper uses five cheap PCs to

build an experimental cluster and deploys a virtual machine

(CentOS operating system) on each node (Windows oper-

ating system) for the power flow calculation experiment. In

the process of the power flow calculation, the virtual

machine occupies only a small amount of CPU, memory (1

GB) and other resources available on the PCs. The overall

performance of this cluster including its stability and reli-

ability are only applicable for experimental testing, and its

performance is not as good as some commercial models.

Through employing a reliable and stable basic computing

platform, and conducting practical improvement and opti-

mization on it, the performance will be greatly improved.

For example, a smart grid dispatching control system

named D5000 developed by the NARI Group, and the

solution for intelligent dispatching system in Central China

Power Grid designed by Sugon corporation, have been

employing traditional MPI and OpenMP respectively.

Nevertheless, the performance of each system is greatly

better than that reported in [7, 9, 12, 33].

In summary, in the same cloud computing experiment

platform, the testing results show that this method has

greatly improved the computational performance compared

with MapReduce, and its running time is better than [7, 33]

in the case of a large number of buses, which verifies the

advantages of proposed method.

5 Conclusion

This paper proposed a parallel power flow calculation

method based on RDDs, DAG optimization and the Newton-

Raphsonmethod to deal with the problem of large amounts of

data transmission and low efficiency in the MapReduce

model for parallel computation. Running time comparisons

were performed in an experimental environment. There were

some disparities between the simulation data and actual

power grids, as well as between the experimental cluster

configurations and the commercial tools for cluster comput-

ing. However, in similar experimental environment, the

results show that the proposed method is more suitable for

large-scale power systems compared with stand-alone,

MapReduce and some methods proposed in the literature.

In the future, some studies about the allocation of virtual

machines, task scheduling and load balancing strategy are

hoped to be carried out to meet the needs of higher com-

puting performance and analysis efficiency when applied to

power flow calculation.
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