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Abstract With the development of smart grids, a renew-

able energy generation system has been introduced into a

smart house. The generation system usually supplies a

storage system with the capability to store the produced

energy for satisfying a user’s future demand. In this paper,

the main objective is to determine the best strategies of

energy consumption and optimal storage capacities for

residential users, which are both closely related to the

energy cost of the users. Energy management with storage

capacity optimization is studied by considering the cost of

renewable energy generation, depreciation cost of storage

and bidirectional energy trading. To minimize the cost to

residential users, the non-cooperative game-theoretic

method is employed to formulate the model that combines

energy consumption and storage capacity optimization.

The distributed algorithm is presented to understand the

Nash equilibrium which can guarantee Pareto optimality in

terms of minimizing the energy cost. Simulation results

show that the proposed game approach can significantly

benefit residential users. Furthermore, it also contributes to

reducing the peak-to-average ratio (PAR) of overall energy

demand.

Keywords Demand-side management, Non-cooperative

game, Nash equilibrium, Storage capacity optimization,

Energy consumption scheduling

1 Introduction

Smart grids have played an important role in the security

of grid operations and the stability of energy supply [1]. A

smart grid is an integration of the power network and

information network. Compared to traditional electrical

grids, smart grids are environmentally-friendly and more

intelligent in the information communication. Energy

generators in traditional electrical grids, which primarily

consume fossil fuel as their energy source, produce about

41% of the whole world greenhouse gases and have a huge

negative effect on the environment [2]. With the appear-

ance of problems with fossil energy depletion and the

greenhouse effect, energy generation in smart grids through

renewable energy resources, such as wind power, solar

power, and geothermal power, has become an attractive

alternative and contributes to solving the problem [3–5].

Furthermore, in traditional electrical grids, information is

delivered in a single direction. Only grids can manage and

control energy to satisfy the demand of consumers. Grids

and consumers can both participate in the energy man-

agement in smart grids via the information network [6],

which contributes to promoting the utilization of renewable

energy resources and reducing the emission of greenhouse

gases.

In order to improve the functions of smart grids on the

demand side, the concept of demand-side management
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(DSM) is proposed to reduce the energy cost of consumers,

shift energy consumption from peak hours to reduce peak-

to-average ratio (PAR) and balance power supply and

demand [7–9]. DSM programs can be conducted effec-

tively primarily due to their dynamic pricing schemes such

as time-of-use (ToU) pricing [10], real-time pricing (RTP)

[11] and critical-peak pricing. Most of consumers who

want to reduce their costs are willing to shift their energy

consumption from peak demand hours to off-peak hours

because of the high price in peak hours. In fact, consumers

in demand-side primarily refer to the users who consume

energy to satisfy their requirements as residential users,

commercial users and industrial users. However, residential

DSM has attracted more attention due to residential users

being responsible for about 40% of global energy con-

sumption [12]. Moreover, DSM has become more signifi-

cant for smart grids especially when renewable energy

generation is introduced into the smart house. Photovoltaic

(PV) generation, which has been widely applied as a type

of renewable energy generation, can be installed in the

common household for providing energy [13, 14]. Since

PV only works during daylight, PV generation usually

requires a storage system to store the produced energy and

then this storage provides energy for loads during peak

hours to reduce the user’s cost [15]. However, it brings

more challenges for DSM to schedule energy consumption

when storage is introduced into the DSM, such as the

optimization of storage capacity [16, 17]. Storage capacity,

which is related to various aspects (user’s loads, price

policy and characteristics of renewable energy sources), is

an important factor for the cost of residential users. Users

must pay more for storage depreciation cost when the PV is

supplied with a large capacity storage system. However,

storage with small capacity cannot satisfy user’s demand

during peak hours, which causes the rise of energy costs.

Therefore, optimization of storage capacity is a non-neg-

ligible problem for PV-storage systems in DSM

programs.

Recently, many researchers have proposed various DSM

programs to manage the energy consumption of residential

users. The problem of optimizing storage capacity in DSM

programs has also been studied in some literatures with

implementing different methods. The authors [18] propose

a mixed-integer linear programming framework for DSM

to optimize the capacity of PV and an energy storage

system when considering the variability of loads during

weekday-weekend and different seasons. Guo et al. [19]

provided an online control algorithm, which incorporated

renewable energy generation, home appliances and battery

storage, to achieve a clear trade-off between users’ cost and

energy storage capacity. Moreover, the authors [20]

focused on the Monte Carlo and particle swarm optimiza-

tion to schedule capacity of wind turbines and batteries in

smart households while considering the statistical charac-

ters of the load, renewable energy generation and energy

price. Specifically, different from aforementioned methods,

a game-theoretic method, which has been extensively

employed as a solution to solve the problems of opti-

mization for DSM [21–23], is also studied in DSM with

storage in literature [24–28]. The authors [24] adopted a

dynamic non-cooperative repeated game to determine

optimal energy trading amounts for the next day consid-

ering the existence of community energy storage devices.

Literature [25] designed an auction-based mechanism to

determine the internal prices of renewable energy sources

with a non-cooperative Stackelberg game in the scenario

where each residential unit has an energy storage and they

can share storage with the controller. The authors [27]

proposed a Stackelberg game among the utility provider

and users to minimize their cost when considering energy

storage devices selling back energy. Adika et al. [28] for-

mulated a non-cooperative game to reduce users’ energy

bills via coordinating the charging and discharging of

batteries with a high penetration of household batteries.

However, few literatures consider the optimization of

the storage capacity in DSM programs with game-theoretic

methods. In this paper, based on the ToU pricing mecha-

nism and battery storage, we primarily focus on combining

the optimization of battery capacity and energy consump-

tion with the non-cooperative game-theoretic method under

the scenario in which each user has a PV-battery system

and other household appliances. Compared to previous

research on DSM programs with game theory, residential

users in the scenario not only consider energy consumption

behavior but also battery capacity in order to reduce energy

cost. In brief, the main contributions of this paper can be

summarized as follows: 1) An energy consumption man-

agement program is proposed for multiple residential users

using a game-theoretic method to obtain the scheduled

energy consumption and optimal capacity for reducing

users’ costs in three approaches, including shifting loads

from on-peak hours to off-peak hours, selling energy back

to the grid by PV generation and providing energy for users

during peak demand hours with using batteries; 2) The

existence of the Nash equilibrium and optimal battery

capacity for the proposed on-cooperative game approach

are both proved mathematically; 3) Simulations are con-

ducted to confirm the effectiveness and efficiency of the

approach and the results show that not only the cost of the

residential user can be reduced but the PAR of the grid is

also reduced.

The rest of this paper is organized as follows. The

system model is introduced in Sect. 2. In Sect. 3, we for-

mulate the non-cooperative game approach and prove the

existence of the Nash Equilibrium and optimal battery

capacity. The simulation is presented to verify the
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theoretical analysis in Sect. 4. Finally, Sect. 5 concludes

this paper.

2 System model

As shown in Fig. 1, a scenario is considered with mul-

tiple residential users and a single utility company (energy

source) as part of the wholesale electricity market. Assume

that each user owns a smart meter with the function of

energy consumption scheduling. All smart meters are

connected to the power line and information network.

Users receive price policy and send desired demand to the

company via the information network. Users in the sce-

nario have shiftable and unshiftable loads and a PV-storage

system, all of which are controlled by the DSM except for

the unshiftable loads, which primarily refer to household

appliances such as lights and refrigerators, whose operation

time is stable and unscheduled. Shiftable loads can be

scheduled and are prone to delay, such as washing

machines and EVs. PV offers energy for users’ loads and

charges the battery in the daylight. Users can sell surplus

energy back to the company after PV has satisfied the loads

and battery.

2.1 Energy consumption model

Suppose there are N residential users in the scenario

with a set of N ¼ 1; 2; . . .;Nf g. A day is divided into H

time slots, which is denoted by H ¼ 1; 2; . . .;Hf g. For

residential user n 2 N , let ln
h denote the total energy con-

sumption of unshiftable and shiftable loads in time slot

h 2 H, and the daily energy consumption of loads for user

n is denoted by:

ln ¼ l1n; . . .; l
h
n; . . .; l

H
n

� �
ð1Þ

Due to the existence of a PV-battery system, the PV-

battery and utility company can offer the energy for

household loads during working time. Let xn
h denote the

energy demand sent to the utility company by user n in

time slot h 2 H, and the daily energy demand is

formulated as:

xn ¼ x1
n; . . .; x

h
n; . . .; x

H
n

� �
ð2Þ

The total energy demand across all users in time slot h

can be calculated as:

Xh ¼
XN

n¼1

xhn ð3Þ

To calculate the PAR in the total energy demand, the

daily and average energy demand are calculated as follows

[29]:

Xpeak ¼ max
h2H

Xh ð4Þ

and

Xavg ¼
1

H

X

h2H
Xh ð5Þ

Therefore, the PAR in total energy demand is expressed

as:

PAR ¼ Xpeak

Xavg

¼ H
max
h2H

Xh

P

h2H
Xh

ð6Þ

2.2 Energy cost model

Energy cost function refers to a type of pricing mech-

anism formulated by utility companies. An effective cost

function can be employed to encourage residential users to

positively take part in their energy consumption scheduling

programs. To fairly charge the cost of energy consumption

by users, we make the following assumptions:

1) A utility company has a responsibility for satisfying

the demand of all users at any time, hence the energy

cost in any time slot h 2 H is a function of the total

energy demand Xh by N users.

2) The energy cost in a certain time slot is always

increasing and smooth or at least a piecewise smooth

function with respect to the energy demand Xh.

3) The cost in peak demand hours is higher than that in

off-peak demand hours. That is, the cost of the user is

not only related to the energy amount they consume

but also the time slot when they consume.

Based on the above assumptions, a quadratic cost

function is utilized in most of the literature due to the

nature of the increasing and strictly convex function

[9, 30], and the function is:
Fig. 1 A scenario contains N residential users with smart meters, a

PV-storage system, information network, and power line
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Ch Xhð Þ ¼ ahX
2
h þ bhXh ð7Þ

where ah[ 0, bh C 0 are fixed parameters with high

values in peak demand hours; Ch(Xh) is the total cost of

N users for energy demand Xh in time slot h. Therefore, the

cost of user n can be calculated as:

Cn;h ¼ ahXh þ bhð Þxhn ¼ ph Xhð Þxhn ð8Þ

where ph(Xh) represents the energy price in time slot h.

According to the price model ph(Xh), the model can

guarantee the growth of the energy price with the increase

of Xh, which will effectively convince the consumers to

shift their peak-time consumption to off-peak hours.

Furthermore, the energy price can affect users

’consumption behavior via regulating ah and bh in

different time slots. Following the adopted energy price

model, the total cost for residential user n in a whole day

can be calculated as follows:

Cn xn; x�nð Þ ¼
XH

h¼1

ph Xhð Þxhn
� �

ð9Þ

where x�n ¼ x1; � � � ; xn�1; xnþ1; � � � ; xN½ � denotes the

energy demand across all users except user n. According to

(9), residential users can reduce their energy cost by using

the following approaches: 1) making the best use of the

PV-battery system to reduce the energy purchased from the

utility company; 2) shifting loads from peak hours to off-

peak hours to avoid the higher energy price.

2.3 PV generation

Generally, in the hybrid system containing PV-battery

generation, the schedule of energy from the utility com-

pany, the PV and battery storage is a complex process for a

household energy management system [31]. Considering

that the cost of energy from a PV system is cheaper than

that from the utility company, the priorities of energy

obtained from the PV in this paper are defined as follows:

at any working time in the daylight, the energy output can

be employed to provide energy for household loads and

then the batteries; when energy is still surplus after satis-

fying the loads and batteries, it can be sold back to the

utility company allowing for making a profit from trading.

For user n, assume that the energy output of PV generation

is en,h C 0 in time slot h. PV provides energy en,h
l C 0 for

household loads and energy en,h
b C 0 for charging the bat-

teries respectively. Hence, surplus energy is en,h -

en,h
l - en,h

b C 0, in which en,h - en,h
l - en,h

b = 0 which

represents that the user has no surplus energy to sell.

Accordingly, the profit that user n is making from trading

in a whole day is equal to:

Gn ¼
XH

h¼1

ks en;h � eln;h � ebn;h

� �
ð10Þ

where ks[ 0 is the energy selling price in cents/kWh. At

present, the profit making from trading is usually con-

ducted via energy price subsidies by the government in

China. Currently, the subsidy standard ks is 6.3 cents/kWh

for distributed PV generation [32].

The cost of generation should be considered in the users’

daily cost. In this paper, the cost of PV generation is cal-

culated by dividing the total cost of PV, including those for

investment, operation, and maintenance, which is expres-

sed as the cost of PV generation per unit electricity [18].

Hence, the daily cost of PV generation can be expressed as

follows:

CPV
n ¼

XH

h¼1

kPVn en;h ð11Þ

where kn
PV is the cost of generation per unit energy in cents/

kWh. It depends on many factors, such as type and size of

the PV, solar resources in the area and maintenance costs.

2.4 Energy storage system

The storage system is an indispensable appliance for PV

generation and is also a significant object of energy con-

sumption scheduling in DSM. In this scenario, the chief

task of the battery is to store the surplus energy after PV

generation, satisfying household loads. And then, the bat-

tery provides energy for loads in peak demand hours to

reduce energy cost. Presently, a variety of batteries with

different materials and technologies are available on the

market, such as Sodium/Sulfur batteries, Zinc/Bromine

batteries and lithium-ion batteries [33]. These batteries can

only be charged and discharged for a finite number of

times. Thereby, the depreciation cost cannot be ignored,

which varies with materials, technologies and capacities. It

is usually defined as a quadratic function of charging/dis-

charging power or a linear function of capacity [20, 34]. In

this paper, the depreciation cost is assumed to be a linear

function of battery capacity. Suppose battery capacity of

the residential user n is yn kWh, which can be scheduled

within a certain range:

yn 2 yln; y
u
n

� �
ð12Þ

where yn
l is the minimum capacity and yn

u is the maximum

capacity. Let Cn
bat denote the daily depreciation cost of the

battery which can be expressed as follows:

Cbat
n ynð Þ ¼ kbatn yn ð13Þ

where kn
bat is the depreciation cost per unit of battery

capacity in cents/kWh and is correlated with the type of
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battery. The depreciation cost (13) is a linear increasing

function with respect to battery capacity yn. Users have to

pay more depreciation cost with the increasing of battery

capacity. However, users will pay a higher energy cost to

the utility company if capacity is too small to store suffi-

cient energy from PV generation. Therefore, the optimal

battery capacity contributes to reducing user’s daily cost.

Meanwhile, a number of different battery parameters

must be considered, such as charging and discharging

efficiency. Due to the conversion loss of the battery in the

process of charging/discharging, let 0\ gch\ 1 and

0\ gdis\ 1 represent battery charging/discharging effi-

ciency respectively. Suppose the energy state of the battery

for user n in a whole day is expressed as:

sn ¼ s1
n; � � � ; shn; � � � ; sHn

� �
ð14Þ

Since there is a limitation of battery capacity, we can

determine the following inequality constraints:

0� shn � yn ð15Þ

Let binary variables kch
h and kdis

h represent the operation

patterns of the battery in time slot h. kch
h =1 and kdis

h =1 refer

to the charging and discharging pattern respectively. A

battery cannot charge and discharge at the same time,

therefore:

khch þ khdis � 1 ð16Þ

The energy state of the battery in any time slot h can be

calculated as follows:

shþ1
n ¼ shn þ gche

b
n;h � 1=gdis � bln;h ð17Þ

In (17), en,h
b is the energy charged to the battery by PV

generation and bn,h
l is the energy discharged from the

battery for satisfying user’s loads. The maximal charging

and discharging energy should be lower than a certain

value, thus en,h
b and bn,h

l is satisfied by:

ebn;h � khchBch ð18Þ

and

bln;h � khdisBdis ð19Þ

where Bch is the maximal energy charged to the battery and

Bdis is the maximal energy discharged from the battery.

For user n, the total household loads consume energy ln
h

in time slot h, where PV generation provides en,h
l , the

battery provides bn,h
l and the utility company provides xn

h.

On the basis of the energy balance principle, xn
h, en,h

l , bn,h
l ,

you can satisfy the following equation:

lhn ¼ xhn þ eln;h þ bln;h ð20Þ

According to (20), one can see that the energy

consumption scheduling of users can be translated into

scheduling the purchasing strategy from the utility

company and usage strategy of the PV-battery system.

When the energy users consumption in time slot h is lower

than the energy provided by the PV generation or battery,

there is no need for the user to buy energy from the

company. When energy consumption is more than the

provided energy, the user only needs to buy the remaining

energy after PV generation and the battery satisfy the

loads.

3 Game formulation and analysis

3.1 Daily cost minimization

Household energy consumption scheduling becomes

complicated since the existence of a PV-battery system.

Users have to pay for the cost of energy purchased from the

utility company, the cost of PV generation and the depre-

ciation cost of the battery. In addition, users can make a

profit via selling energy back to the company. Hence, the

total cost of user n in a whole day can be calculated as:

Fn xn; x�n; ynð Þ ¼ Cn xn; x�nð Þ þ Cbat
n ynð Þ þ CPV

n � Gn

ð21Þ

According to (9)–(13), user n’s daily cost can be written

as:

Fn xn; x�n; ynð Þ¼
XH

h¼1

ph Xhð Þxhn
� �

þ kbatn yn þ ks
XH

h¼1

ebn;h

þ ks
XH

h¼1

eln;h þ kPVn � ks
� �XH

h¼1

en;h

ð22Þ

In this scenario, if PV generation supplies a large

capacity battery that cannot be fully charged, a part of the

storage space is wasted, which will increase user’s daily

cost. Therefore, battery capacity in the range of [yn
l , yn

u] can

be fully charged by PV generation in its working time. PV

provides energy en,h
b for the battery in time slot h and the

battery will obtain gchen,h
b considering the charging

efficiency. That is:

ks
XH

h¼1

ebn;h ¼ ksyn=gch ð23Þ

Additionally,

XH

h¼1

eln;h ¼
XH

h¼1

lhn �
XH

h¼1

xhn �
XH

h¼1

bln;h ð24Þ

where
P

h=1
H bn,h

l = gdisyn.
Therefore, (22) is equal to:
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Fn xn; x�n; ynð Þ¼
XH

h¼1

ph Xhð Þ � ksð Þxhn þ kbatþn yn þ u ð25Þ

where

kbatþn ¼ kbatn þ ks=gch � gdisks ð26Þ

and

u ¼ ks
XH

h¼1

lhn þ kPVn � ks
� �XH

h¼1

en;h ð27Þ

Our target is to find an optimal battery capacity and the

best strategy of energy consumption for all users so that the

daily cost of each user will be minimized:

min
xhn2xn;8n2N

Fn xn; x�n; ynð Þ ð28Þ

where constraints are (15)–(20). The best energy demand

strategy and optimal battery capacity can be found by

searching the optimal solution of problem (28) in the fea-

sible region.

3.2 Non-cooperative game formulation

Game-theoretic methods can be employed to optimize

energy consumption of users because they can capture the

features of interactions among users. Games can be divi-

ded into cooperative games and non-cooperative games

according to the presence or absence of agreements

among the players. Generally, players in the cooperative

game aim to minimize/maximize the total group cost/

profit of all players and then search the overall optimal

solution for each player by solving the optimization

problem; while in the non-cooperative game, players only

aim to minimize/maximize their own cost/profit and then

search the Nash equilibrium. In this paper, considering the

selfishness of human beings and that each user is only

concerned about his/her cost, we formulate the model via

a non-cooperative game.

Consequently, the non-cooperative game among users

can be formulated as follow.

1) Players: users in the set N ;

2) Strategies: each user n 2 N selects its strategy by

scheduling household loads to maximize its payoff;

3) Payoffs: Pn xn; x�n; ynð Þ for user n is defined as

follows:

Pn xn; x�n; ynð Þ ¼ �Fn xn; x�n; ynð Þ ð29Þ

Based on the payoff function of residential users, they

are willing to schedule their shiftable loads to minimize

their cost until the Nash equilibrium of the game is

reached. Let x�1; � � � ; x�n; � � � ; x�N
� �

denote the Nash

equilibrium and optimal battery capacity is yn
*, then:

Pn x�n; x
�
�n; y

�
n

� �
�Pn ~x�n; ~x

�
�n; yn

� �
ð30Þ

and

Pn ~x�n; ~x
�
�n; yn

� �
�Pn xn; ~x

�
�n; yn

� �
ð31Þ

where ~x�n; ~x
�
�n

� �
denotes the Nash equilibrium corre-

sponding to battery capacity yn. Once the Nash equilibrium

of the non-cooperative game among all users is reached,

the payoff of user n will be damaged by deviating from

xn
*, Vn 2 N. The existence and uniqueness of the Nash

equilibrium are proved mathematically in the following

propositions 1 and 2. The proof of propositions 1 and 2 is

performed on the basis of fixed battery capacity yn. When

battery capacity is determined, the PV-battery system can

be taken as a type of household load, whose energy con-

sumption is negative. Energy demand of users can be

obtained via scheduling household loads, including

shiftable loads and PV-battery systems.

Proposition 1 For user n 2 N , daily cost function

Fn xn; x�n; ynð Þ is continuously differentiable in xn. For

each fixed vector xn and yn, Fn xn; x�n; ynð Þ is convex in xn.

Proof Due to the continuous characteristics of the daily

cost function Fn xn; x�n; ynð Þ, it is continuously differen-

tiable in xn. After calculation, the Hessian of

Fn xn; x�n; ynð Þ is a positive semi-definite, therefore,

Fn xn; x�n; ynð Þ is convex in xn [35].

Proposition 1 shows that the daily cost Fn xn; x�n; ynð Þ is

continuously differentiable and convex in xn because the

energy cost Cn xn; x�nð Þ has a continuous quadratic form

with respect to xn. Proposition 1 is the precondition of

proving proposition 2.

Proposition 2 For 8n 2 N ; h 2 H, the Nash equilibrium

of the non-cooperative game exists and is also unique.

Proof Since the function Fn xn; x�n; ynð Þ is convex in xn,

According to the [36, Th. 6], the Nash equilibrium of the

non-cooperative game exists and is also unique.

Proposition 3 The unique Nash equilibrium x�n; x
�
�n

� �
in

the game is Pareto optimality.

Proof A strategy state is Pareto optimality when no one

can increase their payoff by modifying the users’ strategies

without damaging other users’ payoff [24]. According to

proposition 2, the non-cooperative game has the Nash

equilibrium among users and each user has improved its

strategy for the highest payoff based on other users’

strategies. That is, no one can increase its payoff without

the permission of changing other users’ strategies [37].
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Therefore, we can conclude that equilibrium x�n; x
�
�n

� �
in

the game is the Pareto optimality.

Proposition 2 demonstrates that there is a unique Nash

equilibrium of the non-cooperative game for a fixed

capacity but the Nash equilibrium will be different along

with the change of battery capacity. Based on proposition

3, it shows that the strategy of energy consumption among

residential users will reach a Pareto optimality and no user

can increase its payoff without damaging other users’

payoffs.

Proposition 4 For battery capacity yn 2 [yn
l , yn

u] and the

energy consumption vector ln of user n, there is a unique

battery capacity yn that can make the daily cost function

Fn xn; x�n; ynð Þ be the minimum.

Proof See ‘‘Appendix A’’.

Proposition 4 shows there exits an optimal battery

capacity in the range of [yn
l , yn

u]. The meaning of yn
* can be

understood as that there is a specific value of cost

Fn xn; x�n; ynð Þ with a certain battery capacity and only yn
*

can make the cost minimum. From the above propositions

1–3, one can see that the non-cooperative game we pro-

posed based on the payoff function (29) which can

encourage residential users to make a best strategy of

energy consumption and optimal battery capacity for

reducing their cost.

3.3 Distributed algorithm

A distributed algorithm is proposed to optimize battery

capacity and schedule energy consumption of the users. It

is implemented based on the ToU pricing policy which can

encourage users to participate in energy consumption

scheduling. This algorithm shows the interactions among

residential users as it is employed in each user’s smart

meter, where users select their own strategy according to

other users’ strategies. The algorithm progresses by

assuming a static battery capacity when the user solves his/

her optimization problem (28). Since function (28) is

strictly convex, it can be solved by convex programming

techniques such as the interior point method (IPM) and will

always have a unique solution for the fixed parameters of

function [29]. Each of the Nash equilibriums will be

reached according to different battery capacities. Com-

paring the daily costs corresponding to these capacities and

the Nash equilibriums, the algorithm will select the mini-

mal cost and obtain the best response strategy and optimal

battery capacity. More details about the distributed algo-

rithm for the non-cooperative game are shown in Algo-

rithm 1.

Algorithm 1: Executed by each user n∈N

yn=yln
while yn≤yun do

Initialize xn and x n

repeat
Solve problem (28) with IPM 
if xn changes then

Update and broadcast xn
end
if A new update is received then

Update x n accordingly 
end

until No user changes its strategy 
yn=yn+Δyn

end
Select minimal daily cost Fn(xn, x n, yn) 
Return optimal strategy x*n and battery capacity y*n

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

4 Simulation results

An analytical case study in this section is presented to

verify the performance and effectiveness of the proposed

game approach for residential users optimizing their bat-

tery capacity and scheduling their energy consumption.

In this paper, ToU is adopted and a whole day is divided

into H = 24 hours which are classified into different seg-

ments with different pricing parameters. According to
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Fig. 2 Energy consumption of non-shiftable loads across 5 users
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energy consumption behavior of residential users, a whole

day can be divided into three segments: off-peak hours,

mid-peak hours and on-peak hours. The interval from 0:00

to 7:00 belongs to off-peak hours due to having the least

energy consumption of loads. The intervals from 7:00 to

17:00 and from 22:00 to 24:00 belong to mid-peak hours.

Residential users begin to use household loads intensively

during the interval from 17:00 to 22:00 and this period

belongs to on-peak hours. Each segment has a specific

value of ah and bh with maximal value in peak demand

hours and minimal value in off-peak demand hours.

In the simulation, assume that there are N = 5 resi-

dential users. Each user has between 10 to 15 non-

shiftable loads that cannot participate in the energy

consumption management, including refrigerator, light,

heater and so on. Figure 2 shows the energy consumption

distribution of non-shiftable loads in each hour across 5

users. Moreover, we assume that each user has three

shiftable loads, including dishwasher (daily consumption:

1.39–1.5 kWh), washing machine (daily consumption:

1.49–1.53 kWh) and electric vehicle (daily consumption: 4

kWh). For the shiftable load dishwasher, we assume that it

works 2 hours, 1 hour between 7:00 and 9:00 and 1 hour

between 18:00 and 22:00. For the washing machine, it

works 1 hour between 19:00 and 22:00. For the electric

vehicle, we assume that it can be charged from 22:00 to

24:00 and from 0:00 to 7:00 the day after. As for PV

generation, it is obvious that users can benefit more if there

are more daylight hours or higher energy output of the PV.

Furthermore, energy output and daylight hours have greater

influence on the battery capacity optimization when users

supply their storage system. However, no matter what the

energy output and daylight hours will be, the effectiveness

of the proposed method in this paper will not be influenced.

Therefore, without loss of generality, we suppose that each

smart house in the scenario installs a 2 kW rooftop PV

generation system. Energy output in a certain day, which is

shown in Fig. 3, is assumed based on the predicted data in

[38]. Additionally, user’s battery capacity is assumed in the

range of [1.0, 5.0] kWh and the battery can be charged

during PV working time from 6:00 to 17:00. The time slots
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Fig. 3 Energy output of PV generation in a certain day

Table 1 Parameters of pricing model

Time slot ah(cents/kWh2) bh(cents/kWh)

0:00–7:00 0.04 5.3

7:00–17:00 0.05 11.1

17:00–22:00 0.06 17.9

22:00–24:00 0.05 11.1

Table 2 Parameters of the PV-battery system

Item Value Item Value

yn [1.0, 5.0] Bch 1.5

Bdis 1.5 gch 92%

gdis 92% ks 6.3

kn
PV 4.2 kn

bat 7.2

Charge time 6:00–17:00 Discharge time 17:00–22:00
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Fig. 4 Energy consumption of residential users
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of the discharging battery can be any time except charging

time, yet user’s cost is dependent on the discharging time,

which will be the least when the battery discharges in the

peak demand hours. Hence the time slot of the discharging

battery is from 17:00 to 22:00. The maximum energy

charged/discharged to/from the battery in an hour are both

1.5 kWh; charging and discharging efficiency of the bat-

tery are both 92% [9]; daily depreciation cost of the bat-

tery is assumed to be 7.2 cents/kWh [20]. More details

about parameters in the simulation can be found in

Tables 1 and 2.

Figure 4 shows the total energy consumption by 5 res-

idential users in a whole day: Fig. 4a is initial energy

consumption without scheduling and Fig. 4b is optimal

energy consumption with game approach. In the initial

situation, the dishwasher works at 7:00 and 19:00, the

washing machine works at 20:00, and the electric vehicle

charges from 22:00 to 24:00 and the next day from 0:00 to

2:00. In Fig. 4a, one can see that the maximal consumption

achieves 11.65 kWh between 20:00 and 21:00, while the

least consumption is only about 0.5 kWh between 2:00 and

6:00. In Fig. 4b, the shiftable loads of 5 users have been

shifted across different hours of the day, for example, the

charging time slots of the EV have been shifted to the

interval from 0:00 to 7:00 in which the energy price is

lower than for other time slots.

Figure 5 shows that the proposed game approach con-

tributes to reducing the PAR in each user’s daily energy

demand sent to the utility company and the PAR in the

total energy demand. The individual PAR in the figure is

calculated as follows:

PARn ¼ H
max
h2H

xhn
P

h2H
xhn

ð32Þ

In order to demonstrate the advantage of the proposed

game approach, we take into account the situation that

users take part in the DSM but there is no game behavior

among the users. That is, each user optimizes its strategy

without considering the influence of other users and will

not modify its strategy according to other users’ strategies.

We can see that the PAR in the total energy demand which

is sent to the utility company is 4.18 in the initial situation.

When all users participate in the DSM without game, PAR

reduces to 2.66. Furthermore, it declines to 2.13 when the

non-cooperative game approach is employed. Additionally,

the individual PAR is distributed around the PAR in the

total energy demand and it is also reduced when DSM is

employed, for example, PAR in user 4’s energy demand is

reduced from 4.11 to 2.74, and then to 2.00.

There are 5 residential users in the simulation and each

user has an optimal battery capacity and strategy of energy

consumption after the Nash equilibrium among 5 users is

reached. To facilitate the analysis, we take user 1 as the

example which is shown in Figs. 6 and 7. Figure 6 shows

the energy distribution of PV generation. Figure 6a is the
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Fig. 5 PAR in each user’s daily energy demand and the PAR in the

total daily energy demand by all users
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initial distribution of the PV with battery capacity 1.5 kWh,

in which PV generation only provides energy for the user’s

loads from 6:00 to 9:00 and begins to charge the battery at

9:00 until the battery is fully charged at 12:00. After sat-

isfying loads and battery charging, approximately one-third

of the produced energy (1.98 kWh) is sold back to the

utility company. While users all take part in the non-co-

operative game in Fig. 6b, one can see that almost all of the

produced energy is used to satisfy loads and battery needs.

The battery is charged from 9:00 to 16:00, which consumes

energy of 3.59 kWh. Figure 7 shows the energy con-

sumption of user 1 in a whole day. Energy consumption of

loads in the daylight from 9:00 to 16:00 is all covered by

PV generation. In peak demand hours between 17:00 and

22:00, the battery is employed to provide energy for loads

to reduce the energy consumption during such period

because of the high energy price. Since the existence of

energy consumption scheduling, there is a more evenly

distributed energy demand across different hours of the

day.

Daily energy costs of users corresponding to different

battery capacities are shown in Fig. 8. Selecting different

battery capacities will lead to the differences of daily cost

for each user. Each user’s cost decreases first and then

increases with the increase of battery capacity from 1 kWh

to 5 kWh, which represents a minimal value corresponding

to the optimal capacity. The optimal battery capacities are

3.3 kWh for user 1, 3.8 kWh for user 2, 4.3 kWh for user 3,

3.5 kWh for user 4, and 3.9 kWh for user 5. Due to the

limitation in space, the optimal battery capacities in the

situation of DSM without game are not shown in the figure.

The optimal battery capacities are 3.3, 3.8, 4.2, 3.4, and 3.8

kWh respectively. Figure 9 shows the cost of each resi-

dential user for three situations ‘‘without DSM,’’ ‘‘DSM

without game’’ and ‘‘DSM with game.’’ In the situation

without DSM, one can see that the daily costs of the 5 users

are $1.96, $1.83, $1.78, $1.86, and $1.89 respectively.

When DSM is employed without game, the daily costs are

$1.82, $1.68, $1.61, $1.72, and $1.73 respectively. How-

ever, when users all participate in the energy consumption

scheduling with game approach, their daily costs have

reduced to $1.73, $1.58, $1.51, $1.63 and $1.63.

5 Conclusion

In this paper, we have presented a non-cooperative game

approach among residential users for optimizing battery

capacity and scheduling their energy consumption in the

scenario where the users are selfish and compete to reduce

their own cost. The bidirectional energy trading is also

considered by allowing users to buy and sell energy from/

to the utility company with PV generation. The proposed
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method can help users choose an optimal battery capacity

which is optimized according to energy price, household

loads and depreciation cost of the battery. Simulation

results shows that: when users all have optimal battery

capacity and scheduled energy consumption, their costs

reduces approximately 11%–15% compared to the initial

situation without scheduling and the PAR in the total

energy demand and the PAR in each user’s energy demand

are both reduced about 50%. It demonstrates that the pro-

posed game approach can not only reduce the costs of the

residential user but also contributes to reducing the PAR of

the grid.
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Appendix A

Suppose the peak demand hours in a whole day are H0,
hence Fn xn; x�n; ynð Þ can be written as follow:

Fn ¼
X

H0 ph Xhð Þ � ksð Þxhn þ kbatþn yn þ u0 ðA1Þ

where u
0

is irrelevant to battery capacity with:

u0 ¼
X

HnH0 ph Xhð Þ � ksð Þxhn þ u

The battery provides energy for loads in peak demand

hours and assumes that the provided energy takes up kh of

battery capacity in time slot h 2 H
0
. That is, the battery

provides energy khyn for the loads. In addition, kh should

satisfy:
X

H0 kh ¼ gdis � 1 ðA2Þ

Accordingly, (A1) can be rewritten as:

Fn ¼
X

H0 ph Xhð Þ � ksð Þ lhn � khyn
� �� �

þ kbatþn yn þ u0

ðA3Þ

After some calculation, (A3) is deduced as:

Fn ¼ Ay2
n � Byn þ C ðA4Þ

where

A ¼
X

H0 ahk
2
h

B ¼
X

H0 2ahkhl
h
n þ kh ahx

h
�n þ bh � ks

� �
� kbatþn

� �

C ¼
X

H0 ah lhn
� �2þ ahx

h
�n þ bh � ks

� �
lhn

h i
þ u0

Because of A ¼
P

H0 ahk
2
h [ 0, function Fn is convex in

yn and exists as an optimal yn
* that can make Fn minimal.

Let:

~yn ¼
B

2A
ðA5Þ

when ~yn 62 yln; y
u
n

� �
, the optimal battery capacity is yn

* = yn
l

or yn
* = yn

u, which depends on the value of F(yn
l ) and F(yn

u).

When ~yn 2 yln; y
u
n

� �
, the optimal battery capacity is y�n ¼ ~yn.

The proof is completed.
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